用户名: 密码: 验证码:
纳米零价铁处理地下水中六价铬的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会和经济的快速发展,我国地下水污染问题已日益突出,地下水污染带来的负面影响也日趋明显。针对其对于环境以及经济发展带来的严重影响,加强地下水的污染治理和对相关技术的开发利用越发迫在眉睫。
     地下水中六价铬Cr(VI)的污染已成为危害环境和人类健康的危险物质。在矿山、制革、电镀等行业的废渣、废液中铬浓度可超过国家标准限制的数百甚至上千倍。这些废渣、废液中的Cr(VI)可经过渗滤作用进入地下水体,由于Cr(VI)的毒性高、易迁移,对地下水造成严重的安全隐患。本文通过纳米零价铁对六价铬的还原固定的批实验研究,获得第一手实验数据,对纳米零价铁应用于实际场地修复提供实验依据,具有重要的理论依据和应用价值。
     零价铁还原去除Cr(VI)的影响因素包括Fe0颗粒的粒径、Fe0的投加量、Cr(VI)的初始浓度、反应温度以及Fe0的老化程度等。本文通过设计单因素和正交实验,运用纳米零价铁(nZVI)还原去除水中的Cr(VI),探讨了零价铁粒径、纳米零价铁投加量、六价铬初始浓度、温度、纳米零价铁老化程度对还原反应的影响作用,并对反应进行了还原条件的优化选择。获得的实验结果和结论如下:
     (1)单因素实验表明,较细的Fe0颗粒,较大的Fe0用量,较高的反应温度以及较新鲜的Fe0对Cr(VI)还原反应的进行具有促进作用。
     (2)粒状(平均粒径0.5-1mm)零价铁在投加量为纳米零价铁数十倍时,去除效率只达到纳米零价铁去除效率的2-3%;
     (3)三因素三水平正交实验获得不同因素对零价铁去除六价铬的影响因素从大到小依次为纳米零价铁投加量、六价铬初始浓度、温度。在正交实验中,得到的最佳去除条件是在水体中含有50mg/L Cr(VI)时,投加2g/L纳米零价铁在25℃下去除效果最佳。
With the fast development of economy and society, the problem of groundwater pollution has become increasingly prominent issues, and the negative impact of polluted groundwater is also becoming more serious. It is extremely urgent to control contaminated groundwater and explore remediation technology.
     Hexavalent chromium, Cr(VI), is a pollutant in groundwater and hazardous to human health. In the residual water of mining, tanning, electroplating and other industries, the concentration of Cr(VI) is hundreds times more than limitation value of national standards. Cr(VI) could infiltrate into the groundwater and cause serious security risks because of its high mobility and toxicity.
     This thesis aimed to remove hexavalent chromium by zero-valent iron nanoparticles. Through the batch experiments, first-hand data were got and these could provide the basis for the in-site groundwater remediation using nano zero-valent iron.
     The effect factors of Cr(VI) removal contain Fe0 particle size, Fe0 dosage, initial Cr(VI) concentration, reaction temperature and Fe0 aging time. Single factor experiments and orthogonal experiments were both designed for reduction of Cr(VI) from water by nano zero-valent iron (nZVI). The factors of nZVI particle size, nZVI dosage, initial concentration of Cr(VI), temperature, nZVI aging time were discussed and optimized.
     The results showed in the following.
     (1) Smaller Fe0 particles, larger Fe0 dosage, higher temperature, and fresh Fe0 can stimulate the reaction.
     (2) For the granular zero-valent iron (average particle size 0.5-1mm), when its dosage is ten times of nZVI, removal efficiency of Cr(VI) only reaches 2-3% by nZVI.
     (3) From three factors and three levels in orthogonal experiments, the importance order of factors for Cr(VI) removal is nZVI dosage, initial Cr(VI) concentration and the temperature. The optimal removal conditions is that when the water contains 50mg/L Cr(VI), 2g/L nZVI at 25℃was added.
引文
[1]江曙光.中国水污染现状及防治对策.水产科技情报. 2010.37(4):178-181
    [2]中国地质调查局.地下水污染地址调查评价规范. DD-2008-01. 2008
    [3]姜建军.中国地下水污染现状与防治对策.环境保护科学. 2007.381:16-17
    [4]李明礼,柳诚,王祝,等.地下水常见无机污染物研究进展.岩矿测试. 2010.29(5):565-570
    [5]巩莹,刘伟江,朱倩,等.美国饮用水水源地保护的其实.环境保护. 2010.12:25-28
    [6]杨忠芳.现代地球化学.北京:地质出版社. 1999
    [7]刘云惠,魏显有,王秀敏.土壤中铬的吸附与形态提取研究.河北农业大学学报. 2000.23(1):16-20
    [8]朱月珍.土壤中六价铬的吸附与还原.环境化学. 1982.1(5):359-64
    [9]李宏伟.铬在土壤及其组分中的吸附行为.大连民族学院学报. 2008.10(5):400-403
    [10] Barceloux, D. G. Chromium. Journal of Toxicology - Clinical Toxicology. 1999.37(2):173-194
    [11]汪澜,王小兰.铬的生物作用及污染治理.重庆工商大学学报(自然科学版). 2004.21(4):325-329
    [12]唐茜,叶善蓉.茶树对铬、镉的吸收积累特性研究.茶叶科学. 2008.28(5):339-348
    [13]卢志红,赵小敏,朱美英.铬Cr(VI)对水稻种子萌发及幼苗生长的影响.中国土壤与肥料. 2008.3:60-62
    [14]朱青荣,何开宇.煤炭燃烧过程中重金属元素转化分析.河南科学. 2008.26(11):1340-1344
    [15]吴克明,潘留明,黄羽.反应柱填充活性炭法处理轧钢含铬废水.环境污染与防治. 2005.27(5):379-82
    [16] Nadhem K. Hamadi, et al. Adsorption Kinetics for the Removal of Chromium(VI) from Aqueous Solution by Adsorbents Derived from Used Tyres and Sawdust.Chemical Engineering Journal. 2001.84(2):95-105
    [17]匡少平,徐倩.利用粉煤灰中活性炭的吸附能力治理含铬废水.环境污染与防治. 2003. 25(4):240-42
    [18]张乃明.太原污灌区土壤重金属污染研究.农业环境保护. 1996.15(1):21-23
    [19] T. Karthikeyan, S. rajgopal, L. R. Miranda, Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon. Journal of Hazardous Materials. 2005.124(1-3):192-99
    [20] Hiroki Ozaki, K. S., Wilasinee Saktaywin. Performance of an ultra-low-pressure reverse osmosis membrane (ULPROM) for separating heavy metal: effects of interference parameters. Desalination. 2002.144(2002):287-294
    [21] El-shoubary, Y. A pilot plant to treat chromium-contaminated groundwater. Environmental Progress. 1998.17(3):209-213
    [22]冯俊丽,马鲁铭.催化铁内电解法处理含铬废水.水处理技术. 2005.31(7):42-45
    [23] Krauter P. Removal of Cr(VI) from ground water by Saccharomyces cerevisiae. Biodegradation, 1996.7(4):277-86
    [24] Shakoori AR, Makhdoom M, H.RU. Hexavalent chromium reduction by a dichromate-resistant gram-positive bacterium isolated from effluents of tanneries. Applied Microbiology and Biotechnology. 2000. 53(3):348-51
    [25] Guven Ozdemir. Heavy metal biosorption by biomass of Ochrobactrum anthropi producing exopolysaccharide in activated sludg. Bioresource Technology. 2003.90(1):71-74
    [26] Mueller, N. C., B. Nowack. Nanoparticles for remediation: Solving Big Problems with Little Particles. Elements. 2010.6(6):395-400
    [27] C.B. Wang, W.X. Zhang. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology. 1997.31(7):2154-56
    [28] Gillham R. W., O. H. S. F. Enhanced Degradation of Halogenated Aliphatics by Zero-Valent-Iron. Ground Water. 1994.32(6):958-67
    [29] Blowes, D.W., C.J. Ptacek, J.L. Jambor. In-situ remediation ofCr(VI)-contaminated groundwater using permeable reactive walls: Laboratory studies. Environmental Science & Technology. 1997.31(12):3348-57
    [30] Cantrell, K.J., D.I. Kaplan, T.W.Wietsma. Zero-valent iron for the in situ remediation of selected metals in groundwater. Journal of Hazardous Materials. 1995.42(2):201-212
    [31]徐新华,卫建军,王大翚. Pd/Fe及纳米Pd/Fe对氯酚的脱氯研究.中国环境科学. 2004.24(1):76-80
    [32] Orth, W.S., R.W. Gillham. Dechlorination of Trichloroethene in Aqueous Solution Using Fe0. Environmental Science & Technology. 1995.31(1):66-71
    [33] Jian-jun, W., X. Xin-hua, L. Yong. Kinetics and Mechanism of Dechlorination of o-Chlorophenol by Nanoscale Pd/Fe. Chemical Research in Chinese Universities. 2004.20(1):73-76
    [34] Agrawal, A., P.G. Tratnyek. Reduction of Nitro Aromatic Compounds by Zero-Valent Iron Metal. Environmental Science & Technology. 1995.30(1):153-160
    [35] Devlin, J.F., J. Klausen, R.P. Schwarzenbach. Kinetics of Nitroaromatic Reduction on Granular Iron in Recirculating Batch Experiments. Environmental Science & Technology. 1998.32(13):1941-47
    [36] Shokes, T.E., G. M?ller. Removal of Dissolved Heavy Metals from Acid Rock Drainage Using Iron Metal. Environmental Science & Technology. 1999.33(2):282-287
    [37] Lee, T. Use of waste iron metal for removal of Cr(VI) from water. Chemosphere. 2003.53(5):479-85
    [38] Doong, R.A. Coupled reduction of chlorinated hydrocarbons and heavy metals by zerovalent silicon. Water Science and Technology. 2004.50(8):89-96
    [39] Alowitz, M.J., M.M. Scherer. Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal. Environmental Science & Technology. 2002.36(3):299-306
    [40] Ponder, S.M., John G. Darab, T.E. Mallouk. Remediation of Cr(VI) and Pb(II) Aqueous Solutions Using Supported. Nanoscale Zero-valent Iron. Environmental Science & Technology. 2000.34(12):2564-69
    [41] Powell, R.M., R.W. Puls. Proton Generation by dissolution of intrinsic orAugmented Aluminosilicate Minerals for in Situ Contaminant Remediation by Zero-Valence-State Iron. Environmental Science & Technology. 1997.31(8):2244-51
    [42] Puls, R.W., D.W. Blowes, R.W. Gillham. Long-term performance monitoring for a permeable reactive barrier at the US Coast Guard Support Center, Elizabeth City, North Carolina. Journal of Hazardous Materials. 1999.68(1-2):109-124
    [43] Puls, R.W., C.J. Paul., R.M. Powell. The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: a field test. Applied Geochemistry. 1999.14(8):989-1000
    [44] Melitas, N., O. Chuffe-Moscoso, J. Farrell. Kinetics of soluble chromium removal from contaminated water by zerovalent iron media: Corrosion inhibition and passive oxide effects. Environmental Science & Technology. 2001.35(19):3948-53
    [45] Shi, L.N., X. Zhang, Z.L.Chen. Removal of Chromium(VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Research. 2011.45(2):886-892
    [46] Zhang, W.X., C.B. Wang, H.L. Lien, Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catalysis Today. 1998.40(4):387-395
    [47]朱慧杰,贾永锋,姚淑华,等.负载型纳米铁吸附剂除去饮用水中As(V)的研究.环境科学. 2009. 30(12):3562-67
    [48] Elliott, D.W., W.X. Zhang, Field assessment of nanoscale bimetallic particles for groundwater treatment. Abstracts of Papers of the American Chemical Society. 2003.225:U971
    [49]欧阳鸿武,孟小杰,黄誓成,等.纳米铁及氧化铁粉制备技术的进展.粉末冶金材料科学与工程. 2008.13(6):315-322
    [50]高树梅,王晓栋,秦良,等.改进液相还原法制备纳米零价铁颗粒.南京大学学报(自然科学). 2007.43(4):358-364
    [51] Li, X.Q., J.S. Cao, W.X.Zhang. Stoichiometry of Cr(VI) immobilization using nanoscale zerovalent iron (nZVI): A study with high-resolution X-ray photoelectron Spectroscopy (HR-XPS). Industrial & Engineering Chemistry Research. 2008.47(7):2131-2139

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700