用户名: 密码: 验证码:
超超临界汽轮机用钢1Cr10NiMoW2VNbN的组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1Cr10NiMoW2VNbN (10705AJ)是改性的12%Cr铁素体/马氏体钢,主要用于制造600℃以下工况的超(超)临界汽轮机叶片和螺栓。为了加快该钢在超超临界发电机组的使用,迫切要求自行掌握该钢种的性能数据和组织演化,以便更安全的使用。本文采用光学金相(OM)和透射电镜(TEM)分析手段研究了热处理制度对该钢组织的影响,进行了短长期蠕变和应力松弛试验,分析了其高温力学行为,并用光学金相和原子力显微镜研究了短期蠕变试样的形貌像。用电子背散射衍射花样(EBSD)研究了长时蠕变组织的显微结构,并借助TEM研究了亚结构在蠕变过程中的组织演变。得出以下结论:
     10705AJ钢在1100oC~1140℃温度区间淬火形成高密度位错的板条马氏体,在600℃~ 700℃温度区间回火,组织介于回火屈氏体和索氏体之间。其性能均能满足标准要求。660~680℃间存在碳化物的峰值析出。析出的碳化物主要为M23C6类型,还有少量的M6X和NbN类型。该钢在1100℃~ 1140℃淬火,660℃~ 680℃回火比较理想。
     10705AJ的第一阶段蠕变符合正瞬态蠕变的幂率描述,其指数介于0.385~0.614之间,且和蠕变应力不存在单调关系。蠕变第一阶段的激活能与应力有关,150 MPa下161.3 kJ/mol,其它应力条件下为88.0 ~ 98.9 kJ/mol,均低于Fe的自扩散激活能。10705AJ钢的松弛曲线存在两个阶段,第一阶段应力松弛速度远大于第二阶段;温度是影响应力松弛行为的最主要因素,温度越高,应力松弛速率也越大;同温度下,提高初应力会加大应力松弛速率,且无论初应力的大小,在松弛过程中都有松弛于相同应力的趋向。利用双对数三项式模型和金-魏模型实现了25000小时的剩余应力数据外推。两者均表现出较低的拟合误差,外推结果相近;前者外推结果略保守;后者外推结果略显乐观。
     随着蠕变时间延长,组织的再结晶程度增大,碳化物在蠕变过程中发生了聚集长大,碳化物从晶内向晶界聚集;高温低应力更易加剧碳化物析出长大的不均匀性。OIM和TEM分析都表明在蠕变过程中有亚晶(界)生成,除存在原始大角度晶界的连续破坏外,还存在亚晶界和大角度晶界的动态生成现象。10705AJ钢的蠕变存在亚晶的生成及亚晶界向大角度晶界的连续演变过程;丰富的位错亚结构的存在说明10705AJ是位错蠕变。颗粒对位错运动起到较强的障碍作用。
1Cr10NiMoW2VNbN (10705AJ) is one of the modified 9~12Cr wt% ferritic / martenite steels, and it is mainly used as supercritical (ultra-supercritical) steam turbine blade steels and bolt steels at or below 600oC. For excelerating the use of this steel in the ultra-supercritical gas turbine power unit, it is urgent for us to master the performance and microstructure of this steel and to make it be used more safely.
     In this study, effect of heat-treatment technique on microstructure of the steel was investigated by OM and TEM. Short-term and long-term creep tests as well as stress relaxation tests have been carried out, and the high-temperature mechanical performance of the steel has been analyzed. Then, the microstructure evolution during creep testing was studied by OM, AFM, EBSD and TEM.
     Lath martensite with high-density dislocations is formed in steel 10705AJ after the steel is quenched between 1100 and 1140oC and microstructure of tempered martensite occurs after it is tempered between 600 and 700oC. The steels after heat-treatment are all meet the demands of the standard. The peak value of precipitation of carbides appears between 660 and 680oC. The carbides are mostly M23C6, and a small quantity of M6X and NbN are also observed. It is proved that it is better for steel 10705AJ to be quenched between 1100 and 1140oC and then to be tempered between 660 and 680oC.
     The first-stage creep curves of steel 10705AJ accord with the power characterization of the instantaneous creep, and the index value of them without monotone relationship is between 0.385 and 0.614. The activation energy for the first-stage creep related to the stress is 88~161.3 kJ/mol, which is far below the activation energy of self-diffusion of Fe inα-Fe (239 kJ/mol).
     There are two stages for the stress relaxation curves of steel 10705AJ. The stress relaxation rate of the first stage is much larger than that of the second one. Temperature is the primary factor to affect the behavior of stress relaxation. The higher the temperature is, the larger the stress relaxation rate is. The stress relaxation rate increases with increasing the initial stress. Extrapolation for residual stress of the steel at 25000h was achieved through double logarithm model and Jin-wei model. Both extrapolation results are near and represent lower errors. The former is appreciably smaller, and the latter is appreciably larger.
     The process of recrystallization is accelerated with creep time. Coarsening occurs in carbides, high temperature or low stress makes carbides agglomerate easily and inhomogeneously. The analysis of OIM and TEM displays that Sub-grain is formed during creep tests. Except for continued destroy of original large-angle grain boundaries, there exists the development of sub-grain boundaries transforming to large-angle boundaries. Occurrence of the ample dislocation sub-structure indicates that the deformation mechanism is dislocation creep. The precipitates act as the obstacles to block the movement of dislocations.
引文
[1]陆燕荪.中国电力工业发展与电站装备材料. 2009年先进电站用耐热钢和合金研讨会.
    [2]张素心,阳红,姚祖安.超临界汽轮机的开发与展望[J].上海汽轮机,2002(1): 15-22
    [3]苗迺金,危师让.超临界火电技术及其发展[J].热力发电,2002,(5):2-15
    [4]王为民,王建录.高效超临界汽轮机的研究与开发[J].动力工程,2004,24(5): 609-613
    [5]沈邱农,陈文辉.超超临界汽轮机的技术特点[J].动力工程,2002,22(2): 1659-1663
    [6] Henry J. F., Fishburn J D, Perrin I J, et al, Advanced Supercritical Technology: Back to the future[A], Viswanathan R, eds, Proceeding of the 4th International Conference on Advances in Materials Technology for Fossil Power Plants[C]. Ohio, USA: EPRI, 2005:137-142.
    [7] Kjaer S., Klauke F., Vanstone R., et al, The Advanced Supercritical 700℃Pulverised Coal-Fired Power Plant [J]. VGB Power Tech, 2002, 82(7): 46-49.
    [8]毛雪平,王罡,马志勇.超超临界机组汽轮机材料发展状况[J].现代电力,2005,22(1): 69-75.
    [9]沈邱农,陈文辉.超超临界汽轮机的技术特点[J].动力工程,2002,22(2):1659-1663.
    [10] Henry J. F., Fishburn J. D., Perrin I. J., et a1.Advanced Supercritical Technology:Back to the Future[A], Viswanathan R., eds. Proceedings of the 4th International Conference on Advances in Materials Technology for Fossil Power Plants[c].ohio,USA :EPRI,2005:137-142.
    [11] Kjaer S., Klauke F., Vanstone R., et a1. The Advanced Supercritical 700℃Pulverised Coal—Fired Power Plant[J].VGB Power Tech,2002,82(7):46-49.
    [12]李荣夫.超临界汽轮机气缸等铸钢件材料的选用[J].电站系统工程,2003,19(2):59-61.
    [13]刑春林,王曰东,黄蓉,等. 300MW、600MW汽轮机材料科研总结及汽轮机材料的研究方向[J].汽轮机技术,1997,39(3): 179-184.
    [14] Gregg J. L., The Alloys of Iron and Molybdenum [M]. NewYork,USA :McG raw-Hill,1932.
    [15] B/HJ440 2004合金钢铸件技术条件[s1.
    [16] Mints I.I., Khodykina L.E., Shulgina N.G., Creep Failure characteristics of Heat-Resistant Cr-Mo-V Steels[J].Metal Science and Heat Treatment,1989,31(7-8):516-521.
    [17] Tanoosaki K., Improvement of High Temperature Strength of 2 1/4Cr 1Mo Heat Resistant Steel.Tetsu-To-Hagane,1971,57 (2): 367-385.
    [18] Bodnar R. L., Ohhashi T., Jaffee R. I., Effects of Mn,Si,and Purity on the Design of 3.5NiCrM oV ,1CrMoV,and 2.25Cr-1Mo Bainitic Alloy Steels[J].Metallurgical Transactions,1989,20A (8):1445-1460.
    [19] B/HJ711-2002超临界汽轮机用ZG1Cr10MoVNbN不锈钢铸件技术条件[s].
    [20] B/HJ771-2006 ZG1Cr10MoWVNbN钢汽轮机铸件技术条件[s].
    [21]胡平.超(超)临界火电机组锅炉材料的发展[J1.电力建设,2005,26(6):26-29.
    [22]黄雅罗.超超临界火力发电技术及其应用前景[J].火力发电,2002,(2): 2-7.
    [23] Masuyama F., History of Power Plants and Progress in Hear Ressistant Steels [J]. ISIJ International, 2001, 41(6): 612-625.
    [24] Searlin B., Kern T. U., Staubli L., The European Efforts in Material Development for 650℃USC Power Plants-COST522[A].Viswanathan R. , eds.Proceedings of the 4th International Conference on Advances in Materials Technology for Fossil Power Plants [C].ohio,USA:EPRI,2005.80-99.
    [25] Fujita T., Current Progress in Advanced High Cr Ferritic Steels for High—Temperature Applications [J]. ISIJ International,1992,32(2):175-181.
    [26] Grobner P. J., Hagel W. C., The Effect of Molybdenum on High—Temperature Properties of 9 Pct Cr Steels[J].Metallurgical Transactions,1980,11A(4):633—642.
    [27] LIU Xing-yang, Fujita T., Effect of W Content on Creep Rupture Strength and Toughness of a 12 Cr Heat Resisting Steel[J].Transactions of the Iron and Steel Institute of Japan,1987,27(11):287-298.
    [28] LIU Xing-yang, Fujita T., Effect of Chromium Content on Creep Rupture Properties of a High Chromium Ferritic Heat Resisting Steel[J]. ISIJ International,1989,29(8):680-686.
    [29] LIU Xing-yang, Fujita T., Effects of Mo and W Contents on Creep Rupture Strength and Toughness of a 10 Cr Heat Resistant Steel[J].Journal of the Iron and Steel Institute of Japan,1988,74(3):513-520.
    [30] Hanus R., Advanced 9-12 Cr Cast Stee1 Grades,Research—Foundry Process Development—Quality Experience [A].Viswanathan R,eds. Proceedings of the 4th International Conference on Advances in M aterials Technology for Fossil Power Plants[c].Ohio,USA:EPRI,2005.638-651.
    [31] Hattestrand M., Andren H. O., Boron Distribution in 9-12 Chromium Steels[J].Materials Science and Engineering,1999,A270(1):33-37.
    [32] Kloos K. H., Granacher J., Oehl M., Creep Behaviour of Heat Resistant Steels.PartⅡ:Creep Equations for Steels 2.25Cr1Mo[J].Materia1wissenschaft und Werkstofftechnik,1993,24(9):331-338.
    [33] Yamamoto K., Kimura Y.,Mishima Y., Effect of Matrix Microstructure on Precipitation of Laves Phase in Fe l0Cr 1.4W(-Co)Alloys[J].Intermetallics,2006,14(5):515-520.
    [34] Knezevic V., Sauthoff G., Improvement of Creep Strength of Heat Resistant Martensitic/Ferritic 12 Cr Steels [A].Viswanathan R, eds. Proceedings of the 4th International Conference on Advances in Materials Technology for Fossil Power Plants[c].Ohio,USA:EPRI,2005.1256-1269.
    [35] Fuiita T., Heat Resistant Steels for Aadvanced Power Plants [J]. Advanced Materials& Processes,1992,141(4):42-45.
    [36] Berger C., Mayer K. H., Scarlin R. B., Neue Turbinenstaeh1ezur Verbessern ng der W irtschaftlichkeit yon Kraftwerken (New Turbine Steds for the Improvement of Power Station Economy)[J].VGB Kraftwerkstechnik,1991,71(7):686-699.
    [37] Kawabe Y., Nakagawa R., Mukoyama T., Creep Rupture Strength of 18Cr-12Ni-3Mo Austenitic Heat Resisting Steel Containing Nitrogen[J].Transactions of National Research Institute for Metals,1971,13(3):110-123.
    [1] American Society for Testing and Materials, 1993, ASTM E 831– 93, Standard Test Method for Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis.
    [2]中华人民共和国国家标准,1985,GB5058-85《钢的等温转变曲线图的测定方法》.
    [3]巴征馨,1Cr12Mo钢碳化物相分析,四川冶金,1994,4, 96-100.
    [4] Hofer P., Miller M. K., Babu. S., David. S. A., Cerjak H., Investigation of boron distribution in martensitic 9% Cr creep resistant steel, ISIJ International, Vol. 42 (2002), Supplement, S62-S66.
    [5] Ymada K., Igarashi M., Muneki S.,Abe F., Effect of Co addition on microstructue in high Cr ferritic steels. ISIJ International, Vol. 43 (2003), No. 9, 1438-1443.
    1.中华人民共和国国家标准GB/T 2039-1997《金属拉伸蠕变及持久试验方法》,1997.
    2. Hedworth J., Stowell M. J., The measurement of strain-rate sensitivity in superplastic alloys, J. Mater. Sci., 1971, 6(8): 1061-1069.
    [1]莫其逢,黄创高,田建民等.原子力显微镜与表面形貌观察.广西物理,2007,28(2): 46-49.
    [2]Venables J. A., Harland C.J., Electron Back-Scattering Patterns--A New Technique for Obtaining Crystallographic Information in the Scanning Electron Microscope, Philosophical Magazine, 1973, 27 (5): 1193-1200.
    [3]Wright S. I., Review of automated orientation imaging microscopy (OIM), Journal of Computer Assisted Microscopy, 1993, 5(3): 207-221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700