用户名: 密码: 验证码:
低氧对HepG2细胞铁调节蛋白1(IRP1)基因表达的影响及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的研究低氧对人肝癌HepG2细胞铁调节蛋白1(Iron Regulatory Proteins 1, IRP1)基因表达的影响,探讨低氧对IRP1的调控机制。方法物理(1% O_2)或化学缺氧(400 MCoCl2)方式处理
     HepG2细胞6 h,通过RT-PCR分析IRP1 mRNA的转录水平;QRT-PCR检测缺氧不同时间对IRP1 mRNA转录水平的影响;Western blot检测物理或化学缺氧6 h后低氧诱导因子-1α(Hypoxia Inducible Factor-1α, HIF-1α)和IRP1的蛋白表达,应用MatInspector软件在线分析预测IRP1基因5’-调控区可能存在的HIF-1结合位点,即低氧反应元件(Hypoxia Responsive Element, HRE);利用凝胶迁移试验(Electrophoretic Mobility Shift Assay, EMSA)及超迁移试验(Supershift)分析疑似HRE和HIF-1的结合活性;构建含疑似HRE片段的萤光素酶报告基因表达体系,瞬时转染HepG2细胞,物理或化学缺氧处理后,测量萤光值;利用定点突变技术,将HRE核心序列(RCGTG)突变成RAATG,将突变质粒转染HepG2细胞,缺氧处理后测量萤光值;共转染HIF-1α的表达质粒,和上述含疑似HRE或突变序列的质粒,常氧条件培养后,测量萤光值。
     结果IRP1 mRNA的转录水平在短时程物理缺氧及化学缺氧处理后明显降低;QRT-PCR结果显示短时程物理缺氧时IRP1 mRNA转录水平呈下降趋势,最低点在6 h左右;随着缺氧时间的延长,IRP1 mRNA转录水平则开始升高;缺氧处理6 h后,HepG2细胞内的HIF-1蛋白含量大幅上升,而IRP1的表达量则显著下降;MatInspector软件分析发现,在IRP1基因的5’-调控区存在4个疑似HRE特征序列,分别位于基因的-21756~-21740、-21251~-21235、-20754~-20738及-20753~-20737位点(以翻译起始位点为+1)。经EMSA及Supershift试验分析,最终确定IRP1基因5’-调控区-21756~-21740的序列(HRE1)在体外与HIF-1有特异性结合;转染了含有HRE1序列报告基因质粒的HepG2细胞,在缺氧条件下萤光值比常氧下显著降低,而不含HRE1片段的质粒或HRE1突变质粒转染后,细胞缺氧处理后的萤光值较之常氧情况,均没有明显变化;共转染HIF-1α表达质粒后,发现转染了含HRE1片段质粒的细胞在正常培养后,其萤光值远小于转染空载质粒细胞,差异有统计学意义。
     结论缺氧在一定时间内(6小时以内)能抑制IRP1 mRNA的转录,其调控机制是通过HIF-1与IRP1基因5’-调控区的-21756~-21740位置上的HRE的结合来抑制IRP1 mRNA的转录并最终影响其蛋白表达。
Objective The study was designed to research the effects of hypoxia on the transcription of iron regulatory proteins 1 (IRP1) in human hepatoma HepG2 cells and explore the regulatory mechanism.
     Methods The HepG2 cells were exposed to hypoxia (1% O_2) or 400αM CoCl2 for 6 h, the IRP1 mRNA transcription was analyzed by RT-PCR,and the total proteins were extracted to detect the expression of IRP1 and hypoxia inducible factor-1αααHIF-1ααby Western blotting. Simultaneously,The effect of different duration of hypoxia on IRP1 mRNA transcription was detected by QRT-PCR. Using the online data software MatInspector, the presence of putative hypoxia responsive element (HRE) of IRP1 were revealed. The binding of putative HRE of IRP1 with HIF-1 was analyzed by electrophoretic mobility shift assay (EMSA) and supershift assay. The putative HRE core sequence was subcloned into luciferase reporter vector and then transiently transfected into HepG2 cells. After hypoxia treatment, the luciferase activities of samples were measured to verify the existence of HRE in IRPs. The core sequence of HRE (RCGTG) was site-directed mutated to (RAATG) and constructed into luciferase reporter vectors. The luciferase activity was measured under normoxia or hypoxia after transfecting. Furthermore, HIF-1αexpressed plasmid was cotransfected into cells with the vectors containing natural or mutated HRE sequence. The cells were cultured in normoxia and the luciferase activity was quantitated to identify the relationship between HIF-1 and transcription of IRP1.
     Results The content of HIF-1αin HepG2 was visibly increased after hypoxia or CoCl2 treatment for 6 h, while the expression of IRP1 remarkably decresed. The transcriptional level of IRP1 mRNA was also down-regulated. The transcriptional level of IRP1 mRNA persistently decreased before 6 h time point for hypoxia, but increased in hypoxic condition for more than 6 h. Four putative HRE were found by MatInspector which respectively existed in the sequences of -21756~-21740、-21251~-21235、-20754~-20738 and -20753~-20737 of 5’-regulatory region of IRP1 gene(set the translation initiation site as +1. The -21756~-21740 sequence (HRE1)was confirmed to specific bind with HIF-1 through the analysis and exclusion by EMSA and supershift. The luciferase activites with the plasmids containing HRE1 sequence in HepG2 cells markedly decreased under hypoxia compared with that of normoxia. Furthermore, the luciferase activities of HepG2 cells with the constructs, which had no putative HRE1 or contained mutational HRE1 sequence, had not obvious change whether in hypoxia or normoxia. The data with cotransfected vectors showed that the luciferase activities of cells with HRE1 was markedly lower than that of cells with empty vector.
     Conclusions Hypoxia within 6 h could down-regulate the transcription of IRP1 through the binding of HIF-1 with the functional HRE in the 5’-regulatory region of IRP1, which may inhibite the mRNA and protein level of IRP1.
引文
[1] Papanikolaou G, Pantopoulos K. Iron metabolism and toxicity[J]. Toxicol Appl Pharmacol, 2005, 202(2): 199-211.
    [2] Rouault TA, Tong WH. Iron-sulphur cluster biogenesis and mitochondrial iron homeostasis[J]. Nat Rev Mol Cell Biol, 2005, 6(4): 345-51.
    [3] Afanas'ev IB. Superoxide and nitric oxide in pathological conditions associated with iron overload: the effects of antioxidants and chelators[J]. Curr Med Chem, 2005,12(23): 2731-2739.
    [4] Castellani RJ, Moreira PI, Liu G, et al. Iron: the Redox-active center of oxidative stress in Alzheimer disease[J]. Neurochem Res, 2007, 32(10): 1640-1645.
    [5] Qian ZM, Shen X. Brain iron transport and neurodegeneration[J]. Trends Mol Med, 2001,7(3): 103-108.
    [6] Lee PL, Gelbart T, West C, et al. The human Nramp2 gene: characterization of the gene structure, alternative splicing, promoter region and polymorphisms[J]. Blood Cells Mol Dis, 1998, 24(2): 199-215.
    [7] Qian ZM, Tang PL. Mechanisms of iron uptake by mammalian cells[J]. Biochim Biophys Acta, 1995,1269(3): 205-214.
    [8] Dunn LL, Rahmanto YS, Richardson DR. Iron uptake and metabolism in the new millennium[J]. Trends Cell Biol, 2007,17(2): 93-100.
    [9] Christova T, Templeton DM. Effect of hypoxia on the binding and subcellular distribution of iron regulatory proteins[J]. Mol Cell Biochem, 2007, 301(1-2): 21-32.
    [10] Schneider BD, Leibold EA. Effects of iron regulatory protein regulation on iron homeostasis during hypoxia[J]. Blood, 2003, 102(9): 3404-3011.
    [11] Guo B, Phillips JD, Yu Y, et al. Iron regulates the intracellular degradation of iron regulatory protein 2 by the proteasome[J]. J Biol Chem, 1995, 270(37):21645-21651.
    [12] Leung PS, Srai SK, Mascarenhas M, et al. Increased duodenal iron uptake and transfer in a rat model of chronic hypoxia is accompanied by reduced hepcidin expression[J]. Gut, 2005, 54(10): 1391-1395.
    [13] O'Riordan DK, Debnam ES, Sharp PA, et al. Mechanisms involved in increased iron uptake across rat duodenal brush-border membrane during hypoxia[J]. J Physiol, 1997, 500 ( Pt 2):379-384.
    [14] Tacchini L, Fusar Poli D, Bernelli-Zazzera A, et al. Transferrin receptor gene expression and transferrin-bound iron uptake are increased during postischemic rat liver reperfusion[J]. Hepatology, 2002, 36(1): 103-111.
    [15] Dietrich RB, Bradley WG, Jr. Iron accumulation in the basal ganglia following severeischemic-anoxic insults in children[J]. Radiology, 1988, 168(1): 203-206.
    [16] Thomas JD, Johannews GJ. Identification of mRNAs that continue to associate with polysomes during hypoxia[J]. RNA, 2007, 13(7): 1116-1131.
    [17] Martens LK, Kirschner KM, Warnecke C, et al. Hypoxia-inducible factor-1 (HIF-1) is a transcriptional activator of the TrkB neurotrophin receptor gene[J]. J Biol Chem, 2007,282(19): 14379-14388.
    [18] Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation[J]. Mol Cell Biol, 1992, 12(12): 5447-5454.
    [19] Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol,2006, 70(5): 1469-1480.
    [20] Lok CN, Ponka P. Identification of a hypoxia response element in the transferrin receptor gene[J]. J Biol Chem, 1999, 274(34): 24147-24152.
    [21] Mukhopadhyay CK, Mazumder B, Fox PL. Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency[J]. J Biol Chem, 2000, 275(28): 21048-21054.
    [22] Rolfs A, Kvietikova I, Gassmann M, et al. Oxygen-regulated transferrin expression is mediated by hypoxia-inducible factor-1[J]. J Biol Chem, 1997, 272(32): 20055-20062.
    [23] Hanson ES, Leibold EA. Regulation of iron regulatory protein 1 during hypoxia and hypoxia/reoxygenation[J]. J Biol Chem, 1998, 273(13): 7588-7593.
    [24] Brian DS, Elizabeth AL. Effects of iron regulatory protein regulation on iron homeostasis during hypoxia[J]. Blood, 2003, 102(9): 3404-3411.
    [25] Li Z, Lai Z, Ya K, et al. Correlation between the expression of divalent metal transporter 1 and the content of hypoxia-inducible factor-1 in hypoxic HepG2 cells[J]. J Cell Mol Med, 2008, 12(2): 569-579.
    [26] Greijer AE, van der Groep P, Kemming D, et al. Up-regulation of gene expression by hypoxia is mediated predominantly by hypoxia-inducible factor 1 (HIF-1)[J]. J Pathol, 2005, 206(3): 291-304.
    [27] Nakayama K, Kanzaki A, Hata K, et al. Hypoxia-inducible factor 1 alpha (HIF-1 alpha) gene expression in human ovarian carcinoma[J]. Cancer Lett, 2002, 176(2): 215-223.
    [28] Garayoa M, Martinez A, Lee S, et al. Hypoxia-inducible factor-1 (HIF-1) up-regulates adrenomedullin expression in human tumor cell lines during oxygen deprivation: a possible promotion mechanism of carcinogenesis[J]. Mol Endocrinol, 2000, 14(6): 848-862.
    [29] Nguyen SV, Claycomb WC. Hypoxia regulates the expression of the adrenomedullin and HIF-1 genes in cultured HL-1 cardiomyocytes[J]. Biochem Biophys Res Commun, 1999, 265(2): 382-386.
    [30] Tacchini L, Bianchi L, Bernelli-Zazzera A, et al. Transferrin receptor induction by hypoxia. HIF-1-mediated transcriptional activation and cell-specific post-transcriptional regulation[J]. J Biol Chem, 1999, 274(34): 24142-24146.
    [31]. Toth I, Yuan L, Rogers JT, et al. Hypoxia alters iron-regulatory protein-1 binding capacity and modulates cellular iron homeostasis in human hepatoma and erythroleukemia cells[J]. J Biol Chem, 1999, 274(7): 4467-4473.
    [32] Cartharius K, Frech K, Grote K, et al. MatInspector and beyond: promoter analysis based on transcription factor binding sites[J]. Bioinformatics, 2005, 21(13): 2933-2942.
    [33] Donna W, Lee, Julie K.Andersen, Role of HIF-1 in iron regulation: Potential therapeutic strategy for neurodegenerative disorders[J]. Curr Med Chem, 2006, 6(8): 883-893.
    [34] Junichi Sugawara, Salli I. Tazuke, Lii F-Suen,et al. Regulation of insulin-like growth factor-binding protein 1 by hypoxia and 3*,5*-cyclic adenosine monophosphate is additive in HepG2 cells[J]. J Clin Endocr Metab, 2000,85(10): 3821-3827
    [1] Ganz, T. Hepcidin in iron metabolism[J]. Curr Opin Hematol, 2004, 11 (4): 251-254.
    [2] Aisen, P. Transferrin, the transferrin receptor, and the uptake of iron by cells[J]. Met. Ions Biol Syst, 1998, 35: 585-631.
    [3] Klausner RD, Rouault TA, Harford JB. Regulating the fate of mRNA: the control of cellular iron metabolism[J]. Cell, 1993: 72 (1): 19-28.
    [4] Addess KJ, Basilion JP, Klausner RD, et al. Structure and dynamics of the iron responsive element RNA: implications for binding of the RNA by iron regulatory proteins[J]. J Mol Biol, 1997, 274 (1): 72-83.
    [5] Gdaniec Z, Sierzputowska-Gracz H, Theil EC. Iron regulatory element and internal loop/bulge structure for ferritin mRNA studied by cobalt(III) hexammine binding, molecular modeling, and NMR spectroscopy[J]. Biochemistry,1998,37(6): 1505-1512.
    [6] Johnson DC, Dean DR, Smith AD, et al. Structure, function, and formation of biological iron-sulfur clusters[J]. Annu Rev Biochem, 2005, 74: 247-281.
    [7] Lill R, Muhlenhoff U. Iron-sulfur-protein biogenesis in eukaryotes[J]. Trends Biochem Sci, 2005, 30 (3): 133-141.
    [8] Rouault TA, Tong WH. Opinion: iron-sulphur cluster biogenesis and mitochondrial iron homeostasis[J]. Nat Rev Mol Cell Biol, 2005, 6 (4): 345-351.
    [9] Tong WH, Rouault TA. Functions of mitochondrial ISCU and cytosolic ISCU in mammalian iron-sulfur cluster biogenesis and iron homeostasis[J]. Cell Metab, 2006, 3 (3): 199-210.
    [10] Li K, Tong WH, Hughes RM. et al. Roles of the mammalian cytosolic cysteine desulfurase, ISCS, and scaffold protein, ISCU, in iron-sulfur cluster assembly[J]. J Biol Chem, 2006, 281 (18): 12344–12351.
    [11] Land T, Rouault TA. Targeting of a human iron-sulfur cluster assembly enzyme, nifs, to different subcellular compartments is regulated through alternative AUG utilization[J]. Mol Cell, 1998, 2 (6): 807–815.
    [12] Rodriguez-Manzaneque MT, Tamarit J, Belli G. et al. Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes[J]. Mol Biol Cell, 2002, 13(4): 1109-1121.
    [13] Molina-Navarro MM, Casas C, Piedrafita L. et al. Prokaryotic and eukaryotic monothiol glutaredoxins are able to perform the functions of Grx5 in the biogenesis of Fe/S clusters in yeast mitochondria[J]. FEBS Lett, 2006, 580 (9): 2273-2280.
    [14] Cairo G, Ronchi R, Recalcati S. et al. Nitric oxide and peroxynitrite activate the iron regulatory protein-1 of J774A.1 macrophages by direct disassembly of the Fe-S cluster of cytoplasmic aconitase[J]. Biochemistry, 2002, 41(23): 7435-7442.
    [15] Recalcati S. Iron regulatory proteins 1 and 2 in human monocytes, macrophages and duodenum: expression and regulation in hereditary hemochromatosis and iron deficiency[J]. Haematologica, 2006, 91 (3): 303-310.
    [16] Missirlis F. Compartment-specific protection of iron-sulfur proteins by superoxide dismutase[J]. J Biol Chem, 2003, 278 (48): 47365-47369.
    [17] Wallace MA. Superoxide inhibits 4Fe-4S cluster enzymes involved in amino acid biosynthesis. Cross-compartment protection by CuZn-superoxide dismutase[J]. J Biol. Chem, 2004, 279 (31): 32055-32062.
    [18] Gonzalez D, Drapier JC, Bouton C. Endogenous nitration of iron regulatory protein-1 (IRP-1) in nitric oxide-producing murine macrophages: further insight into the mechanism of nitration in vivo and its impact on IRP-1 functions[J]. J Biol Chem, 2004, 279 (41): 43345-43351.
    [19] Pitula JS. Selective inhibition of the citrate-to-isocitrate reaction of cytosolic aconitase by phosphomimetic mutation of serine-711[J]. Proc Natl Acad Sci USA, 2004,101 (30): 10907-10912.
    [20] Fillebeen C, Caltagirone A, Martelli A. et al. IRP1 Ser-711 is a phosphorylation site, critical for regulation of RNA-binding and aconitase activities[J]. Biochem J, 2005, 388 (Pt1): 143-150.
    [21] Rouault TA, Tang CK, Kaptain S. et al. Cloning of the cDNA encoding an RNA regulatory protein±the human iron-responsive element-binding protein[J]. Proc Natl Acad Sci USA, 1990, 87 (20): 7958-7962.
    [22] Alen C, Sonenshein AL. Bacillus subtilis aconitase is an RNA-binding protein[J]. Proc Natl Acad Sci, USA, 1999, 96 (18): 10412-10417.
    [23] Mengaud JM, Horwitz MA. The major iron-containing protein of Legionella pneumophila is an aconitase homologous with the human iron-responsive element-binding protein[J]. J Bacteriol, 1993, 175 (17): 5666-5676.
    [24] Prodromou C, Artymiuk PJ, Guest JR. The aconitase of Escherichia coli. Nucleotide sequence of the aconitase gene and amino acid sequence similarity with mitochondrial aconitases, the iron-responsive-element-binding protein and isopropylmalate isomerases[J]. Eur J Biochem, 1992, 204 (2): 599-609.
    [25] Peyret P, Perez P, Alric M. Structure, genomic organization, and expression of the Arabidopsis thaliana aconitase gene[J]. J Biol Chem, 1995, 270 (14): 8131-8137.
    [26] Navarre DA, Wendehenne D, Durner J. et al. Nitric oxide modulates the activity of tobacco aconitase[J]. Plant Physiol, 2000, 122 (2): 573-582.
    [27] Saas J, Ziegelbauer K, von Haeseler A. et al. A developmentally regulated aconitase related to iron-regulatory protein-1 is localized in the cytoplasm and in the mitochondrion of Trypanosoma brucei[J]. J Biol Chem, 2000, 275 (4): 2745-2755.
    [28] Gourley BL, Parker SB, Jones BJ. Et al. Cytosolic aconitase and ferritin are regulated by iron in Caenorhabditis elegans [J]. J Biol Chem, 2003, 278(5): 3227-3234.
    [29] Nichol H, Law JH, Winzerling JJ. Iron metabolism in insects[J]. Annu Rev Entomol, 2002, 47: 535-559.
    [30] Dupuy J, Volbeda A, Carpentier P. et al. Crystal structure of human iron regulatory protein 1 as cytosolic aconitase[J]. Structure, 2006, 14 (1): 129-139.
    [31] Hentze MW, Kuhn LC. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress[J]. Proc Natl Acad Sci USA, 1996, 93 (16): 8175-8182.
    [32] Rouault TA, Klausner RD. The impact of oxidative stress on eukaryotic iron metabolism[J]. EXS, 1996, 77: 183-197.
    [33] Eisenstein RS, Blemings KP. Iron regulatory proteins, iron responsive elements and iron homeostasis[J]. J Nutr, 1998, 128 (12): 2295-2298.
    [34] Hanson ES, Leibold EA. Regulation of the iron regulatory proteins by reactive nitrogen and oxygen species[J]. Gene Expression, 1999, 7 (4-6): 367-376.
    [35] Theil EC. Targeting mRNA to regulate iron and oxygen metabolism[J]. Biochem Pharmacol, 2000, 59 (1): 87-93.
    [36] Guo B, Brown FM, Phillips JD. et al. Characterization and expression of iron regulatory protein 2 (IRP2). Presence of multiple IRP2 transcripts regulated by intracellular iron levels[J]. J Biol Chem, 1995, 270 (28): 16529-16535.
    [37] Guo B, Yu Y, Leibold EA. Iron regulates cytoplasmic levels of a novel iron-responsive element-binding protein without aconitase activity[J]. J Biol Chem, 1994, 269 (39): 24252-24260.
    [38] Guo B, Phillips JD, Yu Y and Leibold EA. Iron regulates the intracellular degradation of iron regulatory protein 2 by the proteasome [J]. J Biol Chem, 1995, 270 (37):21645-51.
    [39] Donna W, Lee and Julie K, Andersen. Role of HIF-1 in iron regulation: potential therapeutic strategy for neurodegenerative disorders[J]. Current Molecular Medicine, 2006, 6 (8): 883-893.
    [40] Erlitzki R, Long JC, Theil EC. Multiple, conserved iron-responsive elements in the 3’-untranslated region of transferrin receptor mRNA enhance binding of iron regulatory protein 2[J]. J Biol Chem, 2002, 277 (45): 42579– 42587.
    [41] Meyron-Holtz EG, Ghosh MC, Iwai K. et al. Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis[J]. EMBO J, 2004, 23 (2): 386-395.
    [42] Brown PH, Daniels-McQueen S, Walden WE. et al. Requirements for the translational repression of ferritin transcripts in wheat germ extracts by a 90-kDa protein from rabbit liver[J]. J Biol Chem, 1989, 264 (23): 13383-13386.
    [43] Wallander M, Leibold EA, Eisenstein RS. Molecular control of vertebrate iron homeostasis by iron regulatory proteins[J]. Biochim Biophys Acta, 2006, 1763 (7): 668-689.
    [44] Fillebeen C, Chahine D, Caltagirone A. et al. A phosphomimetic mutation at Ser-138 renders iron regulatory protein 1 sensitive to irondependent degradation[J]. Mol Cell Biol, 2003, 23 (19): 6973-6981.
    [45] Clarke SL, Vasanthakumar A, Anderson SA. Et al. Iron-responsive degradation of iron-regulatory protein 1 does not require the Fe-S cluster[J]. EMBO J, 2006, 25 (3):544-553.
    [46] Wang J, Fillebeen C, Chen G. et al. Iron-dependent degradation of apo-IRP1 by the ubiquitin-proteasome pathway[J]. Mol Cell Biol, 2007, 27 (7): 2423-2430.
    [47] Guo B, Phillips JD, Yu Y. et al. Iron regulates the intracellular degradation of iron regulatory protein 2 by the proteasome[J]. J Biol Chem, 1995, 270 (37): 21645-21651.
    [48] Iwai K, Klausner RD, Rouault TA. Requirements for iron-regulated degradation of the RNA binding protein, iron regulatory protein 2[J]. EMBO J,1995, 14 (21): 5350-5357.
    [49]Samaniego F, Chin J, Iwai K. et al. Molecular characterization of a second ironresponsive element binding protein, iron regulatory protein 2. Structure, function, and post-translational regulation[J]. J Biol Chem, 1994, 269 (49): 30904-30910.
    [50] Goessling LS, Mascotti DP, Thach RE. Involvement of heme in the degradation of iron-regulatory protein 2[J]. J Biol Chem, 1998, 273 (20): 12555-12557.
    [51]Goessling LS, Mascotti DP, Bhattacharyya-Pakrasi M. et al. Irreversible steps in the ferritin synthesis induction pathway[J]. J Biol Chem, 1994, 269 (6): 4343-4348.
    [52] Jeong J, Rouault TA, Levine RL. Identification of a heme-sensing domain in iron regulatory protein 2[J]. J Biol Chem, 2004, 279 (44): 45450-45454.
    [53] Schalinske KL, Anderson SA, Tuazon PT. et al. The iron-sulfur cluster of iron regulatory protein 1modulates the accessibility of RNA binding and phosphorylation sites[J]. Biochemistry, 1997, 36 (13): 3950-3958.
    [54] Schalinske KL, Eisenstein RS. Phosphorylation and activation of both iron regulatory proteins 1 and 2 in HL-60 cells[J]. J Biol Chem, 1996, 271 (12): 7168-7176.
    [55] Sanchez M, Galy B, Dandekar T. et al. Iron regulation and the cell cycle: identification of an iron responsive element in the 3’-untranslated region of human cell division cycle 14A mRNA by a refined microarray-based screening strategy[J]. J Biol Chem, 2006, 281 (32): 22865-22874.
    [56] Seznec H, Simon D, Bouton C. et al. Friedreich ataxia: the oxidative stress paradox. Hum[J]. Mol Genet, 2005, 14 (4): 463-474.
    [57] Stehling O, Elsasser HP, Bruckel B. et al. Iron-sulfur protein maturation in human cells: evidence for a function of frataxin[J]. Hum Mol Genet, 2004, 13 (23): 3007-3015.
    [58] Walden WE, Selezneva AI, Dupuy J. et al. Structure of dual function iron regulatory protein 1 complexed with ferritin IRE-RNA[J]. Science, 2006, 314 (5807): 1903-1908.
    [59] Brazzolotto X, Timmins P, Dupont Y. et al. Structural changes associated with switching activities of human iron regulatory protein 1[J]. J Biol Chem, 2002, 277 (14): 11995-2000.
    [60] Yikilmaz E, Rouault TA, Schuck P. Selfassociation and ligand-induced conformational changes of iron regulatory proteins 1 and 2[J]. Biochemistry, 2005, 44 (23): 8470-8478.
    [61] Cairo G, Bardella L, Schiaffonati L. et al. Multiple mechanisms of iron-inducedferritin synthesis in HeLa cells[J]. Biochem Biophys Res Commun, 1985, 133 (1): 314-321.
    [62] White K, Munro HN. Induction of ferritin subunit synthesis by iron is regulated at both the transcriptional and translational levels[J]. J Biol Chem, 1988, 263 (18): 8938-8942.
    [63] Pietrangelo A, Rocchi E, Schiaffonati L. et al. Liver gene expression during chronic dietary iron overload in rats[J]. Hepatology, 1990, 11 (5): 798-804.
    [64] Pietrangelo A, Rocchi E, Ferrari A. et al. Regulation of hepatic transferrin, transferrin receptor and ferritin genes in human siderosis[J]. Hepatology. 1991, 14 (6): 1083-1089.
    [65] Pietrangelo A, Rocchi E, Casalgrandi G. et al. Regulation of transferrin, transferrin receptor, and ferritin genes in human duodenum[J]. Gastroenterology, 1992, 102 (3): 802-809.
    [66] Pietrangelo A, Casalgrandi G, Quaglino D. et al. Duodenal ferritin synthesis in genetic hemochromatosis[J]. Gastroenterology, 1995, 108 (1): 208-217.
    [67] Bianchi L, Tacchini L, Cairo G. HIF-1-mediated activation of transferring receptor gene transcription by iron chelation[J]. Nucleic Acids Res, 1999, 27 (21): 4223-4227.
    [68] Lok CN, Ponka P. Identification of a hypoxia response element in the transferrin receptor gene[J]. J Biol Chem, 1999, 274 (34): 24147-24152.
    [69] Pourzand C, Watkin RD, Brown JE. et al. Ultraviolet A radiation induces immediate release of iron in human primary skin fibroblasts: the role of ferritin[J]. Proc Natl Acad Sci, U S A, 1999, 96 (12): 6751-6756.
    [70] Konijn AM, Glickstein H, Vaisman B. et al. The cellular labile iron pool and intracellular ferritin in K562 cells[J]. Blood,1999, 94 (6): 2128-2134.
    [71] Theil, E. C. and Eisenstein, R. S. Combinatorial mRNA regulation: iron regulatory proteins and iso-ironresponsive elements (Iso-IREs) [J]. J Biol Chem, 2000, 275 (52): 40659–40662.
    [72] Chen, O. S., Schalinske, et al. Dietary iron intake modulates the activity of iron regulatory proteins and the abundance of ferritin and mitochondrial aconitase in rat liver[J]. J Nutr, 1997, 127 (2): 238–248.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700