用户名: 密码: 验证码:
祁连山箭叶锦鸡儿及黄花棘豆根瘤内生细菌多样性与系统发育研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根瘤菌的固氮作用是生物固氮中最高效的体系,在维持生态平衡和农业可持续发展中发挥着重要作用。为了探讨采自祁连山不同海拔两种隶属于蝶形花亚科的野生豆科植物根瘤共生体的多样性以及生物地理因素对根瘤内生菌种群分布的影响,我们对祁连山部分地区豆科植物进行了根瘤菌资源的调查,从中选出了分别位于高、低海拔的两种优势豆科物种(箭叶锦鸡儿和黄花棘豆),并对其进行了多样性及系统发育研究。
     16S rDNA PCR-RFLP结果分析表明,供试菌株3种酶酶切组合形成了35个类型,对每种类型选取代表菌株进行16S rDNA全序列测序。16S rDNA全序列系统发育分析显示,供试菌株分属于根瘤菌属(Rhizobium)、中华根瘤菌属(Sinorhizobium)、叶杆菌属(Phyllobacterium)、副球菌属(Paracoccus)、微枝形杆菌属(Microvirga)、鞘脂单胞菌属(Sphingomonas)、分枝杆菌属(Mycobacterium)、类芽孢杆菌属(Paenibacillus)、科赫氏菌属(Cohnella)、芽孢八叠球菌属(Sporosarcina)、芽孢杆菌属(Bacillus)、葡萄球菌属(Staphylococcus)、短杆菌属(Brevibacterium)、色诺菲吕斯菌属(Xenophilus)、欧文氏菌属(Erwinia)、勒克菌属(Leclercia)、不动杆菌属(Acinetobacter)和假单胞菌属(Pseudomonas)的分支。它们分别归属于变形菌门、放线菌门和厚壁菌门。其中108个归属于α-变形菌纲,11个属于β-变形菌纲;25个属于γ-变形菌纲。56个属于厚壁菌门中的Paenibacillus、Brevibacillus、Staphylococcus、Sporosarcina、Cohnella和Bacillus。1个属于放线菌门中的Mycobacterium。其中根瘤菌Rhizobium、Sinorhizobium和Phyllobacterium有100株,优势种类为Rhizobium,占到71株,在系统发育上分属于Rhizobium radiobacter、Rhizobium massiliae及Rhizobium sp.分支,说明在野生豆科植物中Rhizobium存在着占优势数量的土壤杆菌。内生菌中占优势的是Bacillus、Acinetobacter和Xenophilus,分别占到了33、16和11株。另外,有八个类群(Rhizobium、Microvirga、Mycobacterium、Cohnella、 Paenibacillus、Sporosarcina、Bacillus和Xenophilus)菌株的16S rDNA序列与已知所有菌株的序列相似性小于97%,可能为潜在的新种。
     ERIC指纹图谱有82种类型,在一些RFLP一致的菌株间存在着不同的ERIC图谱,说明和RFLP相比,REIC指纹图谱有更高的种间、种内分辨率,同时揭示了供试菌中在种水平上丰富的多样性。
     在交叉结瘤试验中,仅有34株菌株与其原宿主结瘤,不和其他经典结瘤试验推荐种结瘤。nifH及nodA系统发育研究发现,16S rDNA中处于β-变形菌纲的Xenophilus和厚壁菌门的Acinetobacter都得到了有效扩增条带,测序结果表明,它们分别位于Mesorhizobium和Sinorhizobium的发育分支。说明nodA基因和nifH基因可能在根瘤菌与内生菌间发生了水平转移。
     生物地理学分析显示,海拔和宿主植物的类型对内生菌的基因型分布起到了主要影响。植物促生长试验表明供试菌株中大部分能够分泌IAA和产生铁载体,对五种病原菌的拮抗试验显示,除了极少数对苹果炭疽病和小麦赤霉病有抑制作用外,大多数菌株都具有对西瓜枯萎病,黄瓜炭疽病和苹果罗纹病的抑制作用。
     从黄花棘豆根瘤中分离出四株好氧、无芽孢、能运动的革兰氏阴性杆菌,并进行了多相分类研究。16S rRNA序列显示,它们属于Rhizobium属的未知新分支。除一株和其它三株有一个碱基差异外,其它三株有相同的16S rRNA序列,且其模式菌株CCNWQLS01与种内已知种Rhizobium oryzae的最大相似性为94.4%。这一结果被其他两个持家基因(recA和glnA)的全序列分析、表型特征测试及共生特性试验等试验所证实。其模式株CCNWQLS01的醌型以辅酶Q-10为主,脂肪酸主要类型为成分8(C18:1ω7c/C18:1ω6c;67.2%),符合典型根瘤菌的特征。基于以上研究,这四株菌形成了一个不同于现有Rhizobium属所有已知种的新种。我们将其命名为Rhizobium qilianshanensesp. nov.,菌株CCNWQLS01T(=ACCC05747~T=JCM18337~T)为其模式株。
The association between legume plants and rhizobia is quite old and enables the plant tosurvive nutrient poor conditions because of the nitrogen fixation capacity of the rhizobia thatreside inside their root nodules. Legumes are a large family which occurs almost everywhereon earth and is divided into three subfamilies, the Caesalpinioideae, Mimosoideae andFaboideae. In China most legumes occur from this last subfamily. The aim of this study wasto make an in-depth analysis from the diversity of root nodule endosymbionts present in twoindigenous legumes (Caragana jubata and Oxytropis ochrocephala) in Qilian Mountains.
     A total of201endophytic bacteria associated to root noudules collected from twoindigenous legumes in different altitude of Qilian Mountains (Hexi Corridor) werecharacterized by16S rDNA polymerase chain reaction (PCR)-restriction fragment lengthpolymorphism,16S rRNA gene sequence analysis and enterobacterial repetitive intergenicconsensus-PCR clustering. Phylogenetically, these isolates belonged to35species in thegenera Phyllobacterium, Ensifer, Rhizobium, Microvirga, Sphingomonas, Paracoccus,Mycobacterium, Paenibacillus, Cohnella, Sporosarcina, Bacillus, Staphylococcus,Brevibacterium, Xenophilus, Erwinia, Leclercia, Acinetobacter and Pseudomonas. Thisrevealed the presence of on the one hand traditional rhizobia (50%), Phyllobacterium,Sinorhizobium and Rhizobium and on the other hand non-rhizobial endophytes belonging toseveral genera in the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria,Actinobacteria, Firmibacteria and Sphingobacteria. The non-rhizobial endophyte populationwas dominated by Bacillus, Xenophilus and Acinetobacter species. Besides, eight new groupswith sequence similarity below97%were found within the genera Rhizobium, Microvirga,Mycobacterium, Cohnella, Paenibacillus, Sporosarcina, Bacillus and Xenophilus.
     The symbiosis genes nodA and nifH were investigated for a selection of strains whichrevealed the presence of different symbiovars in traditional rhizobia including Sophoraalopecuroides, Medicago sativa, Phaseolus vulgaris, Pisum sativum, Vigna unguiculata,Trifolium repens, Glycyrrhiza max and Galega oficinalis. As a result, only thirty-four stainscould form nodules with the host plants. Additionally, Phylogenetic sequence analysis ofnodA showed higher similarity with those of Sinorhizobium meliloti within strains related tothe genera Rhizobium, Acinetobacter and Sinorhizobium. NifH sequences revealed strains belonged to Rhizobium, Acinetobacter, Phyllobacterium and Sinorhizobium had similar nifHgene with Sinorhizobium. Two representive strains belong to Xenophilus and Acinetobacterformed a novel nifH type, which distinct from any previously described symbiovar withinMesorhizobium. This indicate that horizontal gene transfer could have occurred betweenrhizobia and non-rhizobial endophytes. Moreover, the elevation and the host plant types didcontribute to the separation of the bacterial endosymbionts. PGP test showed most strainshave the ability of production of IAA, siderophore and antifungal activity.
     Four strains isolated from nodules of Oxytropis ochrocephala were classified in thegenus Rhizobium on the basis of their16S rRNA gene sequences. These strains have identical16S rRNA gene sequences, except for one strain with one base-pair different from the others.Their sequences showed a mean similarity of94.4%with the most closely related species,Rhizobium oryzae. Analysis of recA and glnA sequences showed that these strains have lessthan88.1%and88.7%similarity with the defined species of Rhizobium, respectively. Thegenetic diversity revealed by ERCI-PCR fingerprinting indicated that the isolates correspondto different strains. Strain CCNWQLS01Tcontained Q-10as the predominant ubiquinone. Themajor fatty acids were feature8(C18:1ω7c and/or C18:1ω6c;67.2%), Therefore, a novelspecies Rhizobium qilianshanense sp. nov. is proposed, and CCNWQLS01T(=ACCC05747~T=JCM18337~T) is designated as the type strain.
     This study provided valuable information about the interactions among the symbioticbacteria, nonsymbiotic bacteria and their habitats, thus increased the knowledge about theirgenetic diversity and ecology.
引文
鲍士旦.1999.土壤农化分析(第三版).北京:中国农业出版社
    常宗强,王金叶,常学向.2001.祁连山林区土壤水分与降水的关系分析.西北林学院学报,16(S):22~25
    陈华癸,樊庆笙.1987.中国共生固氮研究五十年.南京:南京农业大学出版社
    陈绍兴,费宗伟,何明涛,沈萍,谢志雄.2008.假单胞菌荧光与非荧光铁载体对铁离子的应答差异.微生物学通报,35(10):1572~1576
    陈文峰,陈文新.2003.我国豆科植物根瘤菌资源多样性及应用基础研究.生物学通报,38(7):1~4
    陈卫民,张执欣,张宏昌,韦革宏.2006.甘肃中西部豆科植物根瘤菌多样性调查研究.干旱地区农业研究,24(1):183~186
    丁玲玲,祁彪,尚占环,龙瑞军,周启星.2007.东祁连山不同高寒草地型土壤微生物数量分布特征研究.农业环境科学学报,26(6):2104~2111
    韩玉竹,陈秀蓉,王国荣,杨成德,徐成林.2007.东祁连山高寒草地土壤微生物分布特征初探.草业科学,24(4):14~17
    侯迎,王乃昂,张学敏,程弘毅,路俊伟.2011.基于树轮资料重建祁连山东段冷龙岭1848年以来的干湿变化.山地学报,29(1):12~18
    刘波.2011.微生物脂肪酸生态学.北京:中国农业科学技术出版社
    刘建泉.2005.祁连山保护区种子植物属的区系研究.干旱区资源与环境,19(7):221~228
    刘志恒.2008.现代微生物学(第2版).北京:科学出版社
    吕飞,蒋欣,徐佳洁,朱博,韦革宏.2009.新疆和陕西三叶草属根瘤菌16S rDNA多态性及系统发育研究.草业学报,17(3):304~309
    彭守璋,赵传燕,郑祥霖,许仲林,何磊.2011.祁连山青海云杉林生物量和碳储量空间分布特征.应用生态学报,22(7):1689~1694
    邱服斌,李雁津,张晓霞,陈美娟,张海杰.2010.人参内生细菌ge21菌株的鉴定及抑菌活性测定.微生物学通报,37(1):43~47
    饶小莉,沈德龙,李俊,姜昕,李力,张敏,冯瑞华.2007.甘草内生细菌的分离及拮抗菌株鉴定.微生物学通报,34(4):700~704
    王金叶,车克钧,阎文德.1996.祁连山(北坡)生物多样性分析.甘肃林业科技,2:22~27
    王清忠.2007.祁连山(中段)森林景观空间结构及其质量变化特征的研究.[博士学位论文].甘肃:甘肃农业大学
    王卫卫,胡正海.2003.几种生态因素对西北干旱地区豆科植物结瘤固氮的影响.西北植物学报,23(7):1163~1168
    韦革宏,龚明福,吕双庆.2005.中国帕米尔高原根瘤菌-豆科植物共生资源调查.西北植物学报,25(8):1618~1622
    徐琳,徐佳洁,刘巧莉,谢瑞美,韦革宏.2009a.西北部分地区苦马豆根瘤菌的遗传多样性.生物多样性,17(1):69~75
    徐琳.2009b.西北地区苦马豆根瘤菌的多样性与系统发育研究.[硕士学位论文].陕西:西北农林科技大学
    徐琳,刘贤德,张勇,张芬琴,韦革宏.2012.祁连山部分地区豆科植物根瘤菌资源调查研究.干旱地区农业研究,30(4):236~241
    薛晓娟,李英年,张法伟,王建雷,汪诗平,杜明.2009.祁连山冷龙岭南麓垂直带植被移地试验中鹅绒委陵菜克隆生长特征.西北植物学报,29(10):2070~2075
    杨文权,郭军康,冯春生,韦革宏.2007.宁夏豆科植物根瘤菌资源调查及其生态分布.干旱地区农业研究,25(5):176
    张彪,淮虎银,杜坤.藏药“作毛兴”原植物的资源学研究.中国野生植物资源,2004,23(1):12~17.
    张芬,勾晓华,苏军德,高琳琳,刘文火,满自红.2011.祁连山东部不同树龄油松径向生长对气候的响应.冰川冻土,33(3):634~638
    张俊忠,陈秀蓉,杨成德,王进明.2010a.东祁连山高寒草地土壤5种镰孢菌的形态鉴定和ITSrDNA分析.草原与草坪,30(2):33~36
    张俊忠,陈秀蓉,杨成德.2010b.东祁连山高寒草地土壤可培养真菌多样性分析.草业学报,19(2):124~132
    张琴,张磊,魏世清,李艳宾,张超.2007.钙离子对紫花苜蓿及苜蓿根瘤菌耐酸能力的影响.应用生态学报,18(6):1231~1236
    张小平,陈强,李登煜.1996.花生根瘤菌在根瘤菌系统分类中的地位研究.微生物学报,36(3):227~233
    赵传燕,别强,彭焕华.2010.祁连山北坡青海云杉林生境特征分析.地理学报,65(1):113~121
    赵成章,石福习,董小刚,任珩,盛亚萍,高福元,杨文斌.2011.祁连山北坡退化林地植被群落的自然恢复过程及土壤特征变化.生态学报,31(1):115~122
    赵龙飞,邓振山,杨文权,韦革宏.2009.我国西北部分地区豆科植物根瘤菌资源调查研究.干旱地区农业研究,27(6):34~39
    Altschul S F, Gish W, Miller W, Myers E W, Lipman D J.1990. Basic local alignment search tool. JMol Biol,215:403~410
    Amadou C, Pascal G, Mangenot S, Glew M, Bontemps C, Capela D, Carrere S, Cruveiller S, Dossat C,Lajus A, Marchetti M, Poinsot V, Rouy Z, Servin B, Saad M, Schenowitz C, Barbe V, Batut J, Medigue C,Masson-Boivin C.2008. Genome sequence of the beta-Rhizobium Cupriavidus taiwanensis andcomparative genomics of rhizobia. Genome Res,18:1472~1483
    Andrews J, Harris R.2000. The ecology and biogeography of microorganisms on plant surface. AnnRev Phytopathol,38:145~180
    Andronov E E, Terefework Z, Roumiantseva M L, Dzyubenko N I, Onichtchouk O P, Kurchak O N,Dresler-Nurmi A, Young J P W, Simarov B V, Lindstroem K.2003. Symbiotic and genetic diversity ofRhizobium galegae isolates collected from the Galega orientalis gene center in the Caucasus. Appl EnvironMicrobiol,69:1067~1074
    Ardley J K, Parker M A, De Meyer S E, Trengove R D, O'Hara G W, Reeve W G, Yates R J, DilworthM J, Willems A, Howieson J G.2011. Microvirga lupini sp. nov., Microvirga lotononidis sp. nov., andMicrovirga zambiensis sp. nov. are Alphaproteobacterial root nodule bacteria that specifically nodulate andfix nitrogen with geographically and taxonomically separate legume hosts. Int J Syst Evol Microbiol, doi:10.1099/ijs.0.035097-0
    Ashbolt N J, Inkerman P A.1990. Acetic acid bacterial biota of the pink sugar cane mealybugSaccharococcus sacchari, and its environs. Appl Environ Microbiol,56:707~712
    Ayami S, Norihisa M, Taizo H.2010. Nodulation in black locust by the GammaproteobacteriaPseudomonas sp. and the Betaproteobacteria Burkholderia sp. Syst Appl Microbiol,33:269~274
    Bacon C W, White J F.2000. Microbial endophytes. New York: Marcel Dekker
    Bai Y M, Frederic D'A, Donald L S, Brian T D.2002. Isolation of plant-growth-promoting Bacillusstrains from soybean root nodules. Canadian Journal of Microbiology,48(3):230~238
    Balkwill D L.2005. Genus VI. Ensifer Cassida1982,343VP. In Bergey’s Manual of SystematicBacteriology2nd ed. Vol.2, part C. Ed. G M Garrity. NewYork: Springer:354~358
    Baranova N A, Gogotov I N.1974. Fixation of molecular nitrogen by propionic bacteria.Mikrobiologiya,43:791~794
    Barrett C F, Parker M A.2006. Coexistence of Burkholderia, Cupriavidus, and Rhizobium sp nodulebacteria on two Mimosa spp. in Costa Rica. Appl Environ Microbiol,72:1198~1206
    Benhamou N, Belanger R R, Paulitz T.1996. Ultrastructural and cytochemical aspects of theinteraction between Pseudomonas fluorescens and Ri T-DNA transformed pea root host response tocolonization by Pythium ultimum Trow. Planta,19:105~117
    Bissett A, Richardson A E, Baker G, Wakelin S, Thrall P H.2010. Life history determinesbiogeographical patterns of soil bacterial communities over multiple spatial scales. Mol Ecol,19:4315~4327
    Boddey R M, D€obereiner J.1995. Nitrogen fixation associated with grasses and cereals: recentprogress and perspectives for the future. Fert Res,4:1~10
    Bouarab K, Potin P, Correa J, Kloareg B.1999. Sulfated oligosaccharides mediate the interactionbetween a marine red alga and its green algal pathogenic endophyte. Plant Cell,11:1635~1650
    Cacciari I, Giovannozi-Sermanni G, Grapelli A, Lippi D.1971. nitrogen fixation by Arthrobacterspecies. Ann Microbiol Enzimol,21:97~105
    Castillo-Ramirez S, Vazquez-Castellanos J F, Gonzalez V, Cevallos M A.2009. Horizontal genetransfer and diverse functional constrains within a common replication-partitioning system inAlphaproteobacteria: the repABC operon. BMC Genomics,10:536
    Chang Y L, Wang J Y, Wang E T, Liu H C, Sui X H, Chen W X.2011. Bradyrhizobium lablabi sp. nov.,isolated from effective nodules of Lablab purpureus and Arachis hypogaea. Int J Syst Evol Microbiol,61:2496~2502
    Chantreuil C, Giraud E, Prin Y, Lorquin J, Ba A, Gillis M, de Lajudie P, Dreyfus B.2000.Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. ApplEnviron Microbiol,66:5437~5447
    Chen L S, Antonio F, Pedrosa F O.2000. Genetic characterization of soybean rhizobia in Paraguay.Appl. Environ Microbiol,66:5099~5103
    Chen W F, Guan S H, Zhao C T, Yan X R, Man C X, Wang E T, Chen W X.2008. DiffrentMesorhizobium species associated with Caragana carry similar symbioticgenes and have common hostranges. FEMS Microbiol Lett,283:203~209
    Chen W M, de Faria S M, James E K.2007. Burkholderia nodosa sp. nov. isolated from root nodulesof the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella. Int J Syst Evol Microbiol,57:1055~1059
    Chen W M, James E K, Coenye T.2006. Burkholderia mimosarum sp. nov. isolated from root nodulesof Mimosa spp. from Taiwan and South America. Int J Syst Evol Microbiol,56:1847~1851
    Chen W M, Laevens S, Lee T M, Coenye T, De Vos P, Mergeay M, Vandamme P.2001. Ralstoniataiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of cystic fibrosis patients.Int J Syst Evol. Microbiol,51:729~1735
    Chen W M, Moulin L, Bontemps C, Vandamme P, Bena G, Boivin-Masson C.2003. Legumesymbiotic nitrogen fixation by β-Proteobacteria is widespread in nature. J Bacteriol,185:7266~7272
    Chi F, Shen S H, Cheng H P, Jing Y X, Yanni Y G, Dazzo F B.2005. Ascending migration ofendophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growthphysiology. Appl Environ Microbiol,71:721~727
    Chu H, Fierer N, Lauber C L, Caporaso J G, Knight R, Grogan P.2010. Soil bacterial diversity in theArctic is not fundamentally different from that found in other biomes. Environ Microbiol,12:2998~3006
    Claudia S, Pablo V, Luis E.2003. Rhizobium etli and Rhizobium gallicum Nodulate Common Bean(Phaseolus vulgaris) in a Traditionally Managed Milpa Plot in Mexico: Population Genetics andBiogeographic Implications. Appl Environ Microbiol,69(2):884~893
    Collmer A, Berman P, Mount MS.1982. Pectate lyase regulation and bacterial soft-rot pathogenesis.In: Mount MS, Lacy GH (eds) Phytopathogenic prokaryotes, vol I. New York: Academic Publishers:395~442
    Colwell R R.1970. Polyphasic taxonomy of the genus Vibrio: numerical taxonomy of vibrio cholerae,Vibrio parahaemolyticus, and related Vibrio species. J Bacteriol,104:410~433
    Compant S, Cle′ment C, Sessitsch A.2010. Plant growth-promoting bacteria in the rhizo-andendosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil BiolBiochem,42:669~678
    Compant S, Reiter B, Sessitsch A, Nowak J, Clement C, Ait Barka E.2005. Endophytic colonizationof Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl EnvironMicrobiol,71:1685~1693
    Coombs J T, Franco C M.2003. Visualization of an endophytic Streptomyces species in wheat seed.Appl Environ Microbiol,69:4260~4262
    Crowley D E, Kraemer S M.2007. The Rhizosphere, Biochemistry and Organic Substances at theSoil–Plant Interface, CRC Press:73~109
    Cummings S P, Gyaneshwar P, Vinuesa P, Farruggia F T, Andrews M, Humphry D, Elliott G N,Nelson A, Orr C, Pettitt D, Shah G R, Santos S R, Krishnan H B, Odee D, Moreira F M S, Sprent J I,Young J P W, James E K.2009. Nodulation of Sesbania species by Rhizobium(Agrobacterium) strainIRBG74and other rhizobia. Environmental Microbiology,11(10):2510~2525
    De Lajudie P, Laurent-Fulele E, Willems A, Torck U, Coopman R, Collins M D, Kersters K, DreyfusB, Gillis M.1998. Allorhizobium undicola gen. nov., sp. nov., nitrogen-fixing bacteria that efficientlynodulate Neptunia natans in Senegal. Int J Syst Bacteriol,48:1277~1290
    De Lajudie P, Willems A, Pot B, Dewettinck D, Maestrojuan G, Neyra M, Collins M D, Dreyfus B,Kersters K, Gillis M.1994. Polyphasic taxonomy of rhizobia: Emendation of the genus Sinorhizobium anddescription of Sinorhizobium meliloti comb. nov., Sinorhizobium saheli sp. nov., and Sinorhizobiumteranga sp. nov. Int J Syst Bacteriol,44:715~733
    De Ley J, Rassel A.1965. DNA base composition, flagellation and taxonomy of the genus Rhizobium.J Gen Microbiol,41:85~91
    Delgado-Salinas A, Bibler R, LavinM.2006. Phylogeny of the genus Phaseolus (Leguminosae): arecent diversification in an ancient landscape. Syst Bot,31:779~791
    Deng Z S, Zhao L F, Kong Z Y, Yang W Q, Lindstr m K, Wang E T, Wei G H.2011. Diversity ofendophytic bacteria within nodules of the Sphaerophysa salsula in different regions of Loess Plateau inChina. FEMS Microbiology Ecology,76:463~475
    Dong X Z, Cai M Y.2001. Determinative Manual for Routine Bacteriology. Beijing: Scientific Press.
    Dos Santos M F, Muniz de Padua V L, de Matos Nogueira E, Hemerly A S, Domont G B.2010.Proteome of Gluconacetobacter diazotrophicus co-cultivated with sugarcane plantlets. J Proteomics,73:917~931
    Dreyfus B L, Garcia J L, Gillis M.1988. Characterization of Azorhizobium caulinodans gen nov, astem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int J Syst Bacteriol,38:89~98
    Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, Isawa T, Mitsui H, Minamisawa K.2001.Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild ricespecies. Appl Environ Microbiol,67:5285~5293
    Elkan G H, Bunn C R.1992. Chapter107. The rhizobia. In The Prokaryotes. A handbook on theBiology of Bacteria: Ecophysiology, Isolation, Identification, Applications. Eds. A Balows, H G Tru¨ per,M Dworkin, W Harder and K-H Schleifer:2197~2213
    Elliott G N, Chen W M, Bontemps C, Chou J H, Young J P W, Sprent J I, James E K.2007.Nodulation of Cyclopia spp.(Leguminosae, Papilionoideae) by Burkholderia tuberum. Ann Bot,100:1403~1411
    Farrand S K, van Berkum P B, Oger P.2003. Agrobacterium is a definable member of the familyRhizobiaceae. Int J Syst Evol Microbiol,53:1681~1687
    Fierer N, Jackson R B.2006. The diversity and biogeography of soil bacterial communities. P NatlAcad Sci USA,103:626~631
    Frank B.1889. Ueber die Pilzsymbiose der Leguminosen. Ber Deut Bot Ges,7:332~346
    Fred E B, Baldwin I L, McCoy E.1932. Root Nodule Bacteria and Leguminous Plants. University ofWisconsin Studies in Science, number5. University of Wisconsin Press, Madison.
    Galibert F.2001. The composite genome of the legume symbiont Sinorhizobium meliloti. Science,293:668~672
    Gao L F, Hu Z A, Wang H X.2002. Genetic diversity of rhizobia isolated from Caragana intermediain Maowusu Sandland, North of China. Lett Appl Microbiol,35:347~352
    Germano M G, Menna P, Mostasso F L, Hungria M.2006. RFLP analysis of the rRNA operon of aBrasilian collection of bradyhizobial strains from33legumes species. Int J Syst Microbiol,56:217~229
    Gillis M, Van Tran V, Bardin R, Goor M, Hebbar P, Willems A, Segers P, Kerster K, Heulin T,Fernandez M P.1995. Polyphasic taxonomy in the genus Burkholderia leading to an emended descriptionof the genus and the proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice inVietnam. Int J Syst Bacteriol,45:274~289
    Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre J C, Jaubert M, Simon D, Cartieaux F, PrinY, Bena G, Hannibal L, Fardoux J, Kojadinovic M, Vuillet L, Lajus A, Cruveiller S, Rouy Z, Mangenot S,Segurens B, Dossat C, Franck W L, Chang W S, Saunders E, Bruce D, Richardson P, Normand P, DreyfusB, Pignol D, Stacey G, Emerich D, Vermeglio A, Medigue C, Sadowsky M.2007. Legumes symbioses:absence of nod genes in photosynthetic bradyrhizobia. Science,316:1307~1312
    Gonza′lez V, Acosta J L, Santamar′a R I, Bustos P, Ferna′ndez J L, Herna′ndez Gonza′lez I L, D′azR, Flores M, Palacios R, Mora J, Da′vila G.2010. Conserved symbiotic plasmid DNA sequences in themultireplicon pangenomic structure of Rhizobium etli. Appl Environ Microbiol,76:1604~1614
    Gonza′lez V, Santamaria R I, Bustos P, Hernandez-Gonzalez I, Medrano-Soto A, Moreno-Hagelsieb G,Janga S C, Ramirez M A, Jimenez-Jacinto V, Collado-Vides J, Davila G.2006. The partitioned Rhizobiumetli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci USA,103:3834~3839
    Graham P H.1964. The application of computer techniques to the taxonomy of the root-nodulebacteria of legumes. J Gen Microbiol,35:511~517
    Graham P H, Sadowsky M J, Keyser H H.1991. Proposed minimal stangards for the description ofnew genera and species of root and stem-nodulation bacteria. Int J Syst Bacteriol,41:582~587
    Grange L, Hungria M.2004. Genetic diversity of indigenous common bean (Phaseolus vulgaris)rhizobia in two Brazilian ecosystems. Soil Biol Bioch,36:1389~1398
    Gu C T, Wang E T, Tian C F, Han T X, Chen W F, Sui X H, Chen W X.2008. Rhizobium miluonensesp. nov., a symbiotic bacterium isolated from Lespedeza root nodules. Int J Syst Evol Microbiol,58:1364~1368
    Hallmann J, Quadt-Hallmann A, Mahaffee W F, Kloepper J W.1997. Bacterial endophytes inagricultural crops. Can J Microbiol,43:895~914
    Han S Z, Wang E T, Chen W X.2005. Diverse bacteria isolated from root nodules of Phaseolusvulgaris and species within the genera Campylotropis and Cassia grown in China. Syst Appl Microbiol,28:265~276.
    Han T X, Wang E T, Han L L, Chen W F, Sui X H, Chen W X.2008. Molecular diversity andphylogeny of rhizobia associated with wild legumes native to Xinjiang, China. Syst Appl Microbiol,31:287~301
    Hao X L, Lin Y B, Johnstone L, Baltrusd D A, Millere S J, Wei G H, Rensing C.2012. Draft GenomeSequence of Plant Growth-Promoting Rhizobium Mesorhizobium amorphae, Isolated from Zinc-Lead MineTailings. J Bacteriol,736~737
    Hardoim P R, van Overbeek L S, Elsas J D.2008. Properties of bacterial endophytes and theirproposed role in plant growth. Trends Microbiol,16:463~471
    Hughes Martiny J B H, Bohannan B J M, Brown J H, Colwell R K, Fuhrman J A, Green JL,Horner-Devine M C, Kane M, Krumins J A, Kuske C R, Morin P J, Naeem S, vres L, Reysenbach A L,Smith V H, Staley J T.2006. Microbial biogeography: putting microorganisms on the map. Nature Rev,4:102~112
    Hungria M, Franchini J C, Campo R J, Graham P H.2005. The importance of nitrogen fixation tosoybean cropping in South America. In: Werner D, Newton WE (eds) Nitrogen fixation in agriculture,forestry, ecology, and the environment. Dordrecht: Springer, Dordrecht:25~42
    Hungria M, Chueire L M O, Megias M, Lamrabet Y, Probanza A, Guttierrez-Mafiero F I, Campo R J.2006. Genetic diversity of indigenous tropical fast-growing rhizobia isolated from soybean nodules. PlantSoil,288:343~356
    Hurek T, Handley L, Reinhold-Hurek B, Piche′Y.2002. Azoarcus grass endophytes contribute fixednitrogen to the plant in anunculturable state. Mol Plant-Microbe Interact,15:233~242
    Hurek T, Reinhold-Hurek B.2003. Azoarcus sp. strain BH72as a model for nitrogen-fixing grassendophytes. J Biotechnol,106:169~178
    Hurek T, Reinhold-Hurek B, Van Montagu M, Kellenberger E.1991. Infection of intact roots of Kallargrass and rice seedlings by Azoarcus. In Nitrogen fixation. Edited by Polsinelli M, Materassi R, VincenziniM. Kluwer Academic Publishers:235~242
    Ibá ez F, Angelini J, Taurian T.2009. Endophytic occupation of peanut root nodules by opportunisticGammaproteobacteria. Syst Appl Microbiol,32(1):49~55
    James K, Olivares F L.1997. Infection and colonization of sugar cane and other Graminaceous plantsby endophytic diazotrophs. Crit Rev Plant Sci,17:77~119
    Jarvis B D W, van Berkum P, Chen W X, Nour S M, Fernandez M P, Cleyet-Marel J C, Gillis M.1997.Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, andRhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol,47:895~898
    Jarvis B D, Tighe W.1994. Rapid identification of Rhizobium species based on cellular fatty acidanalysis. Plant&Soil,161:31~34
    Jones K M, Kobayashi H, Davies B W, Taga M E, Walker G C.2007. How rhizobial symbionts invadeplants: the Sinorhizobium-Medicago model. Nat Rev Microbiol,5:619~633
    Jordan D C.1982. Transfer of Rhizobium japonicum Buchanan1980to Bradyrhizobium gen. nov., agenus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol,32:136~139
    Jordan D C.1984. Family III. Rhizobiaceae Conn1938. In Bergey’s Manual of SystematicBacteriology. Eds. N Krieg and R G Holt:234~235
    Jourand P, Giraud E, Bena G, Sy A, Willems A, Gillis M, Dreyfus B, De Lajudie P.2004.Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic, legumeroot-nodule-forming and nitrogen-fixing bacteria. Int J Syst Evol Microbiol,54:2269~2273
    Kaneko T.2000. Complete genome structure of the nitrogenfixing symbiotic bacteriumMesorhizobium loti. DNA Res,7:331~338
    Kaneko T.2002. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobiumjaponicum USDA110. DNA Res,9:189~197
    Kanso S, Patel B K C.2003. Microvirga subterranea gen. nov., sp. nov., a moderate thermophile froma deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol,53:401~406
    Kloepper J W, Schippers B, Bakker P A H M.1992. Proposed elimination of the term endorhizosphere.Phytopathology,82:726~727
    Kluepfel D A.1993. The behavior and tracking of bacteria in the rhizosphere. Annu Rev Phytopathol,31:441~472
    Knapp R, Jurtshuk P.1988. Characterization of free-living nitrogen-fixing Streptomyces species andfactors which affect their rates of acetylene reduction. Abstr Annu Meet Am Soc Microbiol,88
    Komagata K, Suzuki K.1987. Lipid and cell-wall analysis in bacterial systematics. MethodsMicrobiol,19:161~207
    Kuklinsky-Sorbral J, Araujo W L, Mendes R, Olivio G, Pizzirani-Kleiner A P, Azevedo J L.2004.Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion.Environ Microbiol,6:1244~1251
    Kuykendall L D, Saxena B, Devine T E, Udell S E.1992. Genetic diversity in Bradyrhizobiumjaponicum Jordan1982and a proposal for Bradyrhizobium elkanii sp. nov. Can J Microbiol,38:501~505.Volker L, Panstruga R.2005. Dynamic cellular responses in plant–microbe interactions. Curr Opin PlantBiol,8:625~631
    Kwon S W, ParK J Y, Kim J S.2005. Phylogenetic analysis of the genera Bradyrhizobium,Mesorhizobium, Rhizobium and Sinorhizobium on the basis of16S rRNA gene and internally transcribedspacer region sequences. Int J Syst Evol Microbiol,55:263~270
    Lacava P T, Araujo W L, Azevedo J L.2007. Evaluation of endophytic colonization of Citrus sinensisand Catharanthus roseusseedlings by endophytic bacteria. J Microbiol,45:11~14
    Lamb T G, Tonkyn D W, Kluepfel D A.1996. Movement of Pseudomonas aureofaciens from therhizosphere to aerial plant tissue. Can J Microbiol,42:1112~1120
    Lapage S P, Sneath P H A, Lessel E F.1992. International Code of Nomenclature of Bacteria (1990Revision). Bacteriological Code. Washington D C: American Society for Microbiology,1992. Chen W X,Yan G H and Li J L1988Numerical taxonomic study of fast-growing soybean rhizobia and proposal thatRhizobium fredii be assigned to Sinorhizobium gen. nov. Int J Syst Bacteriol,38:392~397
    Laguerre G, Nour S M, Macheret V, Sanjuan J, Drouin P, Amarger N.2001. Classification of rhizobiabased on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgarissymbionts. Microbiology,147:981~993
    Lee K B.2008. The genome of the versatile nitrogen fixer Azorhizobium caulinodans ORS571. BMCGenomics,9:271
    Li L, Sinkko H, Montonen L, Wei G H, Lindstro¨m K, Ra¨ sa¨nen L A.2012. Biogeography ofsymbiotic and other endophytic bacteria isolated from medicinal Glycyrrhiza species in China. FEMSMicrobiol Ecol,79:46~68
    Li Q Q, Wang E T, Chang Y L, Zhang Y Z, Zhang Y M, Sui X H, Chen W F, Chen W X.2011. Ensifersojae sp. nov., isolated from root nodules of Glycine max grown in saline-alkaline soils. Int J Syst EvolMicrobiol,61:1981~1988
    Lin D X, Chen W F, Wang F Q, Hu D, Wang E T, Sui X H, Chen W X.2009. Rhizobium mesosinicumsp. nov., isolated from root nodules of three different legumes. Int J Syst Evol Microbiol,59:1919~1923
    Liu J, Wang E T, Chen W X.2005. Diverse rhizobia associated with woody legumes Wisteria sinensis,Cercis racemosa and Amorpha fruticosa grown in the temperate zone of China. Syst Appl Microbiol,28(5):465~477
    Li J H, Wang E T, Chen W F.2008. Genetic diversity and potential for promotion of plant growthdetected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China[J]. Soil BiolBiochemistry,40(1):238~246
    Lloret L, Ormen o-Orrillo E, Rinco′n R, Mart′nez-Romero J, Rogel-Herna′ndez M A, Mart′nez-Romero E.2007. Ensifer mexicanus sp. nov. a new species nodulating Acacia angustissima (Mill.) Kuntzein Mexico. Syst Appl Microbiol,30:280~290
    Lo′pez-Lo′pez A, Rosenblueth M, Mart′nez J, Mart′nez-Romero E.2010. Rhizobial symbioses intropical legumes and non-legumes. In: Dion P (ed) Soil biology and agriculture in the tropics. SpringerHeidelberg:63~184
    Lodewyckx C, Vangronsveld J, Porteous F, Moore E R B, Thagavi S, van der Lelie D.2002.Endophytic bacteria and their potential applications. Crit Rev Plant Sci,21:583~606
    Mahaffee W F, Kloepper J W.1994. Applications of plant growth-promoting Rhizobacteria insustainable agriculture. In: Pankhurst CE, Double BM, Gupta VVSR, Grace PR (eds) soilbiota-management in sustainable farming systems. Australia: CSIRO Adelaide:23~31
    Marler M, Pedersen D, Mitchell O T, Callaway R M.1999. A polymerase chain reaction method fordetecting dwarf mistletoe infection in Douglas fir and western larch. Can J For Res,29:1317~1321
    Marnik V, Johan D, Michiel J T.2007. AFLP technology for DNA fingerprinting. Nature Protocols,2:1387~1398
    Martens M, Delaere M, Coopman R, De Vos P, Gillis M, Willems A.2007. Multilocus sequenceanalysis of Ensifer and related taxa. Int J Syst Evol Microbiol,57:489~503
    Martens M, Dawyndt P, Coopman R, Gillis M, Vos P, Willems A.2008. Advantages of multilocussequence analysis for taxonomic studies: a case study using10housekeeping genes in the genus Ensifer(including former Sinorhizobium). Int J Syst Evol Microbiol,58:200~214
    Mart′nez-Romero E.1996. Comments on Rhizobium systematics. Lessons from R. tropici and R. etli.In: Stacey G, Mullin B, Gresshoff PM (eds) Biology of plant–microbe interactions. International Society forMolecular Plant–Microbe Interactions, St. Paul, Minnesota:503~508
    Martinez-Romero E.1994. Recent developments in Rhizobium taxonomy. Plant Soil,161:11~20
    Martinez-Romero E.2009. Coevolution in Rhizobium-legume symbiosis? DNA Cell Biol,28:361~370
    Mastretta C, Barac T, Vangronsveld J, Newman L, Taghavi S, van der Lelie D.2006. Endophyticbacteria and their potential application to improve the phytoremediation of contaminated environments.Biotechnol Genet Eng Rev,23:15~207
    Maynaud G, Willems A, Soussou S, Vidal C, Mauré L, Moulin L, Cleyet-Marel J C, Brunel B.2012.Molecular and phenotypic characterization of strains nodulating Anthyllis vulneraria in mine tailings, andproposal of Aminobacter anthyllidis sp. nov., the first definition of Aminobacter as legume-nodulatingbacteria. Syst Appl Microbiol,35(2):65~72
    Mhamdia R.2002. Different species and symbiotic genotypes of field rhizobia can nodulatePhaseolus vulgaris in Tunisian soils. FEMS Microbiology Ecology,41(1):77~84
    Mhamdi R, Mrabet M, Laguerre G, Tiwari R, Aouani M E.2005. Colonization of Phaseolus vulgarisnodules by Agrobacterium-like strains. Can J Microbiol,51:105~111
    Mirza M S, Ahmad W L F, Haurat J, Bally R, Normand P, Malik K A.2001. Isolation, partialcharacterization, and effect of plant growth-promoting bacteria (PGPB) on micro-propagated sugarcane invitro. Plant Soil,237:47~54
    Moreira F M S, Haukka K, Young J P W.1998. Biodiversity of rhizobia isolated from a wide range offorest legumes in Brazil. Mol Ecol,7:889~895
    Moulin L, Bena G, Boivin-Masson C, Stepkowski T.2004. Phylogenetic analyses of symbioticnodulation genes support vertical and lateral gene co-transfer within the Bradyrhizobium genus. MolPhylogenet Evol,30:720~732
    Moulin L, Munive A, Dreyfus B, Boivin-Masson C.2001. Nodulation of legumes by members of theβ-subclass of Proteobacteria. Nature,411:948~950
    Muresu R, Polone E, Sulas L, Baldan B, Tondello A, Delogu G, Cappuccinelli P, Alberghini S,Benhizia Y, Benhizia H, Benguedouar A, Mori B, Calamassi R, Dazzo F B, Squartini A.2008. Coexistenceof predominantly nonculturable rhizobia with diverse, endophytic bacterial taxa within nodules of wildlegumes. FEMS Microbiology Ecology,63(3):383~400
    Musan G, McInroy J A, Kloepper J W.1995. Development of delivery systems for introducingendophytic bacteria into cotton. Biocon Sci Technol,5:407~416
    Nandasena K G, O’Hara G W, Tiwari R P, Sezmis E, Howieson J G.2007. In situ lateral transfer ofsymbiosis islands results in rapid evolution of diverse competitive strains of mesorhizobia suboptimal insymbiotic nitrogen fixation on the pasture legume Biserrula pelecinus L. Environ Microbiol,9:2496–2511
    Noel K D, Brill W J.1980. Diversity and dynamics of indigenous Rhizobium japonicum. Appl EnvironMicrobiol,40:931~938
    Odee D W, Haukka K, McInroy S G, Sprent J I, Sutherland J M, Young J P W.2002. Genetic andsymbiotic characterization of rhizobia isolated from tree and herbaceous legumes grown in soilsfromecologically diverse sites in Kenya. Soil Biol Biochem,34:801~811
    Oliveira A L M, Urquiaga S, D€obereiner J, Baldani J I.2002. The effect of inoculating endophyticN2-fixing bacteria on micropropagated sugarcane plants. Plant Soil,242:205~215
    Ormen o-Orrillo E, Vinuesa P, Zuniga-Davila D, Martinez-Romero E.2006. Molecular diversity ofnative bradyrhizobia isolated from Lima bean (Phaseolus lunatus L.) in Peru. Syst Appl Microbiol,29:253~262
    Oyaizu H, Naruhashi N, Gamou T.1992. Molecular methods of analysing bacterial diversity: The caseof rhizobia. Biodiversity and Conservation,1:237~249
    Palaniappan P, Chauhan P S, Saravanan V S.2010. Isolation and characterization of plant growthpromoting endophytic bacterial isolates from root nodule of Lespedeza sp. Biol Fertil Soils,46(8):807~816
    Bashan Y, Holguin G.1998. Proposal for the division of plant growth-promoting rhizobacteria intotwo classifications: biocontrol-PGPB (plant-growth-promoting bacteria) and PGPB. Soil Biol Biochem,30:1225~1228
    Parker M A.2004. rRNA and dnaK relationships of Bradyrhizobium sp. nodule bacteria from fourPapilionoid legume trees in Costa Rica. Syst Appl Microbiol,27:334~342
    Peng G X, Tan Z Y, Wang E T, Reinhold-Hurek B, Chen W F, Chen W X.2002. Identification ofisolates from soybean nodules in Xinjiang region as Sinorhizobium xinjiangense and genetic differentiationof S. xinjiangense from Sinorhizobium fredii. Int J Syst Evol Microbiol,52:457~462
    Perret X, Staehelin Ch, Broughton W J.2000. Molecular basis of symbiotic promiscuity. MicrobiolMol Biol Rev,64:180~201
    Pinto F G S, Hungria M, Mercsnte F M.2007. Polyphasic characterization of Brazilian Rhizobiumtropici strains effective in fixing N2with common bean (Phaseolus vulgaris L.). Soil Biology andBiochemistry,39:1851~1864
    Provorov N A, Vorobyov N I.2008. Equilibrium between the “genuine mutualists” and “symbioticcheaters” in the bacterial population co-evolving with plants in a facultative symbiosis. Theor PopulBiol,74:345~355
    Qian J, Kwon S, Parker M A.2003. rRNA and nifD phylogeny of Bradyrhizobium from sites acrossthe Pacific Basin. FEMS Microbiol Lett,219:159~165
    Rainey F A, Wiegel J.1996.16S ribosomal DNA sequence analysis confirms the closerelationshipbetween the genera Xanthobacter, Azorhizobium and Aquabacter and reveals a lack of phylogeneticcoherence among Xanthobacter species. Int J Syst Bacteriol,46:607~610
    Ram′rez-Bahena M H, Garc′a-Fraile P, Peix A, Valverde A, Rivas R, Igual J M, Mateos P F,Mart′nez-Molina E, Vela′zquez E.2008. Revision of the taxonomic status of the species Rhizobiumleguminosarum (Frank1879) Frank1889AL, Rhizobium phaseoli Dangeard1926AL and Rhizobium trifoliiDangeard1926AL. R. trifolii is a later synonym of R. leguminosarum. Reclassification of the strain R.leguminosarum DSM30132(NCIMB11478) as Rhizobium pisi sp. nov. Int J Syst Evol Microbiol,58:2484~2490
    Rasolomampianina R, Bailly X, Fetiarison R, Rabevohitra R, Bena G, Ramaroson L, RaherimandimbyM, Moulin L, De Lajudie P, Dreyfus B and Avarre J C.2005. Nitrogen-fixing nodules from rose woodlegume trees (Dalbergia spp.) endemic to Madagascar host seven different genera belonging to alpha-andbeta-Proteobacteria. Mol Ecol,14:4135~4146
    Reinhold B, Hurek T, Niemann E G, Fendrik I.1986. Close association of Azospirillum anddiazotrophic rods with different root zones of Kallar grass. Appl Environ Microbiol,52:520~526
    Reinhold-Hurek B, Krause A, Leyser B, Miche′L, Hurek T.2007. The rice apoplast as a habitat forendophytic N2-fixing bacteria. The Apoplast of Higher Plants: Compartment of Storage, Transport, andReactions:427~443
    Riley M S, Cooper1V S, Lenski R E, Forney L J, Marsh T L.2001. Rapid phenotypic change anddiversification of a soil bacterium during1000generations of experimental evolution. Microbiology,147(4):995~1006
    Rincon-Rosales R, Lloret L, Ponce E, Martinez-Romero E.2009. Rhizobia with different symbioticefficiencies nodulate Acaciella angustissima in Mexico, including Sinorhizobium chiapanecum sp. nov.which has common symbiotic genes with Sinorhizobium mexicanum. FEMS Microbiol Ecol,68:255~255
    Rivas R, Velazquez E, Willems A, Vizcaino N, Subba-Rao N S, Mateos P F, Gillis M, Dazzo F B,Martinez-Molina E.2002. A new species of Devosia that forms a unique nitrogen-fixing rootnodulesymbiosis with the aquatic legume Neptunia natans (L.f.) Druce. Appl Environ Microbiol,68:5217~5222
    Rivas R, Willems A, Palomo J L, Garc′a-Benavides P, Mateos P F, Mart′nez-Molina E, Gillis M,Vela′zquez E.2004. Bradyrhizobium betae sp. nov., isolated from roots of Beta vulgaris affected bytumour-like deformations. Int J Syst Evol Microbiol,54:1271~1275
    Rivas R, Martens M, de Lajudie P, Willems A.2009. Multilocus sequence analysis of the genusBradyrhizobium. Sys Appl Microbiol,32(2):101~110
    Rivas R, Willems A, Subba-Rao N, Mateos P F, Dazzo F B, Mart′nez-Molina E, Gillis M and Vela`zquez E2003Description of Devosia neptunia sp. nov. that nodulates and fixes nitrogen in symbiosis withNeptunia natans, an aquatic legume from India. Syst. Appl. Microbiol.26:47~53.
    Rogel M A, Torres C, Lloret L, Rosenblueth M, Herna′ndez-Lucas I, Mart′nez L, Mart′nez J,Mart′nez-Romero E.2006. Lateral transfer of Rhizobium symbiotic plasmids leading to genomicinnovation. In: Sa′nchez F, Quinto C, Lo′pez-Lara IM, Geiger O (eds) Biology of plant–microbeinteractions. USA: International Society for Molecular Plant–Microbe Interactions, St. Paul:310~318
    Roncato-Maccari L D B, Ramos H J O, Pedrosa F O, Alquini Y, Chubatsu L S, Yates M G, Rigo L U,Steffens M B R, Souza E M.2003. Endophytic Herbaspirillum seropedicae expresses nif genes ingramineous plants. FEMS Microbiol Ecol,45:39~47
    Rosenblueth M, Mart′nez-Romero E.2006. Bacterial endophytes and their interactions with hosts.Mol Plant Microbe Interact,19:827~837
    Rouws L F, Meneses C H, Guedes H V, Vidal M S, Baldani J I, Schwab S.2010. Monitoring thecolonization of sugarcane and rice plants by the endophytic diazotrophic bacterium Gluconacetobacterdiazotrophicus marked with gfp and gusA reporter genes. Lett Appl Microbiol,51:325~330
    Sataekbrand E, Frederiksen W, Garrity G M.2002. Report of the ad hoc committee for there-evaluation of the species definition in bacterialogy. Int J Syst Evol Microbiol,52:1043~1047
    Sasser M.1990. Identification of bacteria by gas chromatography of cellular fatty acids, MIDITechnical Note101. Newark, DE: MIDI Inc.
    Schmeisser C.2009. Rhizobium sp. strain NGR234possesses a remarkable number ofsecretionsystems. Appl Environ Microbiol,75:4035
    Schulz B, Boyle C.2006. What are endophytes? In: Schulz BJE (ed) Microbial root endophytes.Sieber:1~13
    Senthilkumar M R, Anandham M, Madhaiyan V, Venkateswaran, Tongmin S.2011. Bacteria inAgrobiology: Crop Ecosystems, chap3Endophytic Bacteria: Perspectives and Applications in AgriculturalCrop Production:667~669
    Sheng X F, Xia J J.2006. Improvement of rape (Brassica napus) plant growth and cadmium uptake bycadmium-resistant bacteria. Chemosphere,64(6):1036~1042.
    Silva C, Vinuesa P, Eguiarte L E, Souza V, Martinez-Romero E.2005. Evolutionary genetics andbiogeographic structure of Rhizobium gallicum sensu lato, a widely distributed bacterial symbiont ofdiverse legumes. Mol Ecol,14:4033~4050
    Sneath P H A.1984. Bacterial classification Ⅱ Numerical taxonomy. In: N. R. Krieg and J. G. Holt(ed.), Bergeys Manual of systematic Bacteriology. USA: Williams and Wilkins, Baltimore:1~7
    Sneath P H A.2001. Bacterial classification Ⅱ. Numerical Taxonomy. In: George M Garrity (ed.),Bergeys Manual of systematic Bacteriology. VolumeⅠ2nd Edition. New York: Springer Verlag:39~42
    Sohail H, Sumera Y, Kauser A M, Yusuf Z, Fauzia Y H.2004. Rhizobium, Bradyrhizobium andAgrobacterium strains isolated from cultivated legumes. Biol Fertil Soils,39:179~185
    Spaepen S, Vanderleyden J, Remans R.2007. Indole-3-acetic acid in microbial andmicroorganism-plant signaling. FEMS Microbiol Rev,31:425~448
    Sprent J I.1995. Legume trees and shrubs in the tropics: N2fixation in prespective. Soil Biol Biochem.Baltimore: The Williams&Wilkins Co:27:401~407
    Staub T, Williams P H.1972. Factors influencing black rot lesion development in resistant andsusceptible cabbage. Phytopathology,72:722~728
    Steenkamp E T, Stepkowski T, Przymusiak A, Botha W J, Law I J.2008. Cowpea and peanut insouthern Africa are nodulated by diverse Bradyrhizobium strains harboring nodulation genes that belong tothe large pantropical clade common in Africa. Mol Phylogenet Evol,48:1131~1144
    Stepkowski T, Hughes C E, Law I J, Markiewicz L, Gurda D, Chlebicka A, Moulin L.2007.Diversification of lupine Bradyrhizobium strains: evidence from nodulation gene trees. Appl EnvironMicrobiol,73:3254~3264
    Sui X H, Han L L, Wang E T, Jiang F, Liu Y H, Chen W X.2009. Novel associations betweenrhizobial populations and legume species within the genera Lathyrus and Oxytropis grown in the temperateregion of China. Science in China. Series C, Life Sciences/Chinese Academy of Sciences52(2):182~192
    Sullivan J T, Trzebiatowski J R, Cruickshank R W, Gouzy J, Brown S D, Elliot R M, Fleetwood D J,McCallum N G, Rossbach U, Stuart G S, Weaver J E, Webby R J, de Bruijn FJ, Ronson C W.2002.Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. J Bacteriol,184:3086~3095
    Sun L, Qiu F B, Zhang X X, Dai X, Dong X Z, Song W.2008. Endophytic bacterial diversity in rice(Oryza sativa L.) roots estimated by16Sr DNA sequence analysis. Microb Ecol,55:415~424
    Sy A, Giraud E, Jourand P, Garcia N, Willems A, de Lajudie P, Prin Y, Neyra M, Gillis M,Boivin-Masson C, Dreyfus B.2001. Methylotrophic Methylobacterium bacteria nodulate and fix nitrogenin symbiosis with legumes. J Bacteriol,183:214~220
    Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, vander Lelie D.2009. Genome survey and characterization of endophytic bacteria exhibiting a beneficial effecton growth and development of poplar trees. Appl Environ Microbiol,75:748~757
    Tan R X, Zou W X.2001. Endophytes: a rich source of functional metabolites. Nat Prod Rep,18:448~459
    Tervet I W, Hollis J P.1948. Bacteria in the storage organs of healthy plants. Phytopathology,38:960~967
    Thompson J D, Higgins D G, Gibson T J.1994. CLUSTAL W: improving the sensitivity ofprogressive multiple sequence alignment through sequence weighting, position-specific gap penalties andweight matrix choice. Nucleic Acids Res,22:4673~4680
    Terefework Z, Kaijalainen S, Lindstr m K.2001. AFLP fingerprinting as a tool to study the geneticdiversity of Rhizobium galegae. J Biotechnol,91:169~180
    Tian C F, Wang E T, Han T X, Sui X H, Chen W X.2007. Genetic diversity of rhizobia associatedwith Vicia faba in three ecological regions of China. Arch Microbiol,188:273~282
    Tian C F, Zhang Y J, Yan M Z, Li Q Q, Zhang Y Z, Li D F, Wang S, Wang J, Gilbert L B, Li Y R,Chen W X.2012. Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment oflineage-specific genes in adaptations. PNAS, doi:10.1073/pnas.1120436109
    Tighe S W, de Lajudie P, Dipietro K.2000. Analysis of cellular fatty acids and phenotypicrelationships of Agrobaterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium speciesusing the Sherlock Microbial Identification System. Int J Syst Evol Microbiol,50:787~801
    Trujillo M E, Willems A, Abril A, Planchuelo A-M, Rivas R, Ludena D, Mateos P F, Mart′nez-MolinaE, Vela′zquez E.2005. Nodulation of Lupinus by strains of Ochrobactrum lupini sp. nov. Appl EnvironMicrobiol,71:1318~1327
    Turner S L, Young J H W.2000. The Glutamine Synthetases of Rhizobia: Phylogenetics andEvolutionary Im plications. Molecular Biology and Evolution,7:309~316
    Valverde A, Vela′zquez E, Ferna′ndez-Santos F, Vizca′no N, Rivas R, Gillis M, Mateos P F,Mart′nez-Molina E, Igual J M, Willems.2005. Phyllobacterium trifolii sp. nov. nodulating Trifolium andLupinus in Spanish soils. Int J Syst Evol Microbiol,55:1985~1989
    Valverde A, Velazquez E, Gutierrez C.2003. Herbaspirillum lusitanum sp. nov., novel nitrogen-fixingbacterium associated with root nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol,53:1979~1983
    Van Berkum P, Fuhrmann J.2001. Characterization of soybean bradyrhizobia for which serogroupaffinities have not been identified. Can J Microbiol,47(6):519~525
    Van Berkum P, Terefework Z, Paulin L.2003. Discordant phylogenies within the rrn loci of Rhizobia.J Bacteriol,185(10):2988~2998
    Van der Lelie D, Taghavi S, Monchy S, Schwender J, Miller L, Ferrieri R, Rogers A, Wu X, Zhu W,Weyens N.2009. Poplar and itsbacterial endophytes: coexistence and harmony. Crit Rev Plant Sci,28:346~358
    Vandamme P, Coenye T.2004. Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J SystEvol Microbiol,54:2285~2289
    Vandamme P, Goris J, Chen W M, De Vos P, Willems A.2003. Burkholderia tuberum sp. nov. andBurkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Syst Appl Microbiol,25:507~512
    Vazquez M, Davalos A, de las Pen as A, Sanchez F, Quinto C.1991. Novel organization of thecommon nodulaiton genes in Rhizobium leguminosarum bv. phaseoli strains. J Bacteriol,173:1250~1258
    Velázquez E, Peix A, Zurdo-Pi eiro J L.2005. The coexistence of symbiosis andpathogenicity-determining genes in Rhizobium rhizogenes strains enables them to induce nodules andtumors or hairy roots in plants. Mol Plant-Microbe Interac,18(12):1325~1332
    Vermis K, Coenye T, LiPuma J J, Mahenthiralingam E, Nelis H J, Vandamme P.2004. Proposal toaccommodate Burkholderia cepacia genomovar VI as Burkholderia dolosa sp. nov. Int J Syst EvolMicrobiol,54:689~691
    Vincent J M, Humphrey B A.1970. Taxonomically significant group antigens in Rhizobium. J GenMicrobiol,63:379~382
    Vinuesa P, Rademaker J L W, de Bruijn F J, Werner D.1998. Genotypic Characterization ofBradyrhizobium Strains Nodulating Endemic Woody Legumes of the Canary Islands by PCR-RestrictionFragment Length Polymorphism Analysis of Genes Encoding16S rRNA (16S rDNA) and16S-23S rDNAIntergenic Spacers, Repetitive Extragenic Palindromic PCR Genomic Fingerprinting, and Partial16S rDNASequencingIntergenic spacers, repetitive extragenic palindomic PCR genomic fingerprinting, and partial16S rRNA sequencing. Appl Environ Microbiology,64:2096~2104
    Vinuesa P, Leon-Barrios M, Silva C, Willems A, Jarabo-Lorenzo A, Perez-Galdona R, Werner D,Mart′nez-Romero E.2005a. Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont thatnodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along withBradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobiumgenospecies beta. Int J Syst Evol Microbiol,55:569~575
    Vinuesa P, Silva C, Werner D.2005b. population genetics and Phylogenetic inference in bacterialmolecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion anddelineation. Molecular Phyolgenetics and Evolution,34:29~54
    Wang E T, Rogel M A, Garc a-De los Santos A, Mart′nez-Romero J, Cevallos M A,Mart′nez-Romero E.1999a. Rhizobium etli bv. mimosae, a novel biovar isolated from Mimosa affinis. Int JSyst Bacteriol,49:1479~1491
    Wang E T, van Berkum P, Sui XH, Beyene D, Chen W X, Martinez-Romero E.1999b. Diversity ofrhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobiumamorphae sp. nov. Int J Syst Bacteriol,49:51~65
    Wang F Q, Wang E T, Liu J.2007. Mesorhizobium albiziae sp. nov., a novel bacterium that nodulatesAlbizia kalkora in a subtropical region of China. Int J Syst Evol Microbiol,57:1192~1199
    Wang L L, Wang E T, Liu J, Li Y, Chen W X.2006. Endophytic occupation of root nodules and rootsof Melilotus dentatus by Agrobacterium tumefaciens. Microbial Ecology,52:436~443
    Wayne LG, Brenner D J,Colwell R R.1987. Report of thrad hoc committee on reconciliation ofapproaches to bacterial systematics. Int J Syst Bacteriol,37:464~464
    Wei G H, Tan Z Y, Chen W X.2003. Characterization of rhizobia isolated from legume species withinthe genera Astragalus and Lespedeza grown in the Loess Plateau of China and description of Rhizboiumloessense sp. Nov. Int J Syst Evol Microbiol,53:1575~1583
    Wei G H, Wang E T, Chen W X.2002. Rhizobium indigoferae sp. nov. and Sinorhizobiumkummerowiae sp. nov., respectively isolated from Indigofera spp. and Kummerowia stipulacea. Int J SystEvol Microbiol,52:2231~2239
    Weon H Y, Kwon S W, Son J A, Jo E H, Kim S J, Kim Y S, Kim B Y, Ka J O.2010. Description ofMicrovirga aerophila sp. nov. and Microvirga aerilata sp. nov., isolated from air, reclassification ofBalneimonas flocculans Takeda et al.2004as Microvirga flocculans comb. nov. and emended descriptionof the genus Microvirga. Int J Syst Evol Microbiol,60:2596~2600
    Weyens N, van der Lelie D, Taghavi S, Vangronsveld J.2009. Phytoremediation: plant–endophytepartnerships take thechallenge. Curr Opin Biotechnol,20:248~254
    Willems A, Coopman R, Gillis M.2001. Phylogenetic and DNA: DNA hybridization analyses ofBradyrhizobium species. Int J Syst Evol Microbiol.51:111~117
    Willems A, Ferna′ndez-Lo′pez M, Mun oz-Adelantado E, Goris J, De Vos P, Mart′nez-Romero E,Toro N, Gillis M.2003. Description of New Ensifer strains from nodules and proposal to transfer Ensiferadhaerens Cassida1982to Sinorhizobium as Sinorhizobium adhaerens comb. nov. Request for an Opinion.Int J Syst Evol Microbiol,53:1207~1217
    Williams S T.1989. Bergey’s Manual of Systematic Bacteriology, vol.4. Baltimoret: Williams&Wilkins. Ding J, Sun H J, Su F Y, Xu Q D, Huang Y L, Lin P G.1981. Studies on nitrogen fixation byactinomycetes. Acta Microbiol Sin,21:424~427
    Xu M L, Ge C, Cui Z, Li J and Fan H1995Bradyrhizobium liaoningense sp. nov., isolated from theroot nodules of soybeans. Int. J. Syst. Bacteriol.45:706~711.
    Yacine B, Hayet B, Ammar B, Rosella M, Alessio G. Andrea S.2004. Gamma Proteobacteria CanNodulate Legumes of the Genus Hedysarum. Sys Appl Microbiol,27:462~468
    Yan X R, Chen W F, Fu J F, Lu Y L, Xue C Y, Sui X H, Li Y, Wang E T, Chen W X.2007.Mesorhizobium spp. are the main microsymbionts of Caragana spp. grown in Liaoning Province of China.FEMS Microbiol Lett,271:265~273
    Yao Z Y, Kan F L, Wang E T, Wei G H, Chen W X.2002. Characterization of rhizobia that nodulatelegume species within the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. Int JSyst Evol Microbiol,52:2219~2230
    You C B, Lin M, Fang X J, Song W.1995. Attachment of Alcaligenes to rice roots. Soil Biol Biochem,7:463~466
    Young J M.2010. Sinorhizobium versus Ensifer: may a taxonomy subcommittee of the ICSPcontradict the Judicial Commission? Int J Syst Evol Microbiol,60:1711~1713
    Young J M, Kuykendall L D, Mart′nez-Romero E, Kerr A, Sawada H.2001. A revision of RhizobiumFrank1889, with an emended description of the genus, and the inclusion of all species of AgrobacteriumConn1942and Allorhizobium undicola de Lajudie et al.1998as new combinations: Rhizobium radiobacter,R. rhizogenes, R. rubi, R. Undicola and R. vitis. Int J Syst Evol Microbiol,51:89~103
    Young J P W, Haukka K E.1996. Diversity and phylogeny of rhizobia New Phytologist,133:87~94
    Young J P W, Mutch L A, Ashford D A, Ze′ze′A, Mutch K E.2003. The molecular evolution of hostspecificity in the Rhizobium-legume symbiosis. In: Hails R, Godfray HJC, Beringer JE (eds) Genes in theenvironment. Oxford: Blackwell Science:245~257
    Young J P W.2006. The genome of Rhizobium leguminosarum has recognizable core and accessorycomponents. Genome Biol,7:34
    Zabaloy M C, Gómez M A.2005. Diversity of rhizobia isolated from an agricultural soil in Argentinabased on carbon utilization and effects of herbicides on growth. Biology and Fertility of Soils,42:83~88
    Zakhia F, Jeder H, Willems A, Dreyfus B, de Lajudie P.2006. Diverse bacteria associated with rootnodules of spontaneous legumes in Tunisia and first report for nifH-like gene within the generaMicrobacterium and Starkeya. Microb Ecol,51:375~393
    Zehr J P, Jenkins B D, Short S M, Steward G F.2003. Nitrogenase gene diversity and microbialcommunity structure: a crosssystem comparison. Environ Microbiol,5:539~554
    Zhang X X, Sun L, Ma X T, Sui X H, Jiang R B.2011. Rhizobium pseudoryzae sp. nov., isolated fromthe rhizosphere of rice. Int J Syst Evol Microbiol,61:2425~2429
    Zhang J, Song F, Xin Y H, Zhang J, Fang C.2009. Microvirga guangxiensis sp. nov., a novelAlphaproteobacterium from soil, and emended description of the genus Microvirga. Int J Syst EvolMicrobiol,59:1997~2001
    Zhang Y J, Yuan Q P, Liang H.2003. The biosynthesis of coenzyme Q10in Bullera pseudoalba.Microbiology,30:65~69
    Zurdo-Pineiro J, Rivas R, Trujillo M E, Vizcaino N, Carrasco J A, Chambe M.2007. Ochrobactrumcytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. Int J Syst Evol Microbiol,57:784~788

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700