用户名: 密码: 验证码:
金属纳米粒子的尺寸和形状可控合成及其表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属纳米粒子的特殊性质和潜在应用与它的尺寸和形状密切相关,迄今人们已发展了许多金属纳米粒子的制备方法,但绝大多数方法的产物皆是球形纳米粒子,如何建立可对目标材料进行人为的尺寸和形状调控的简易方法是一个极具挑战的课题。
     本论文工作的目标是设计一种简单有效的水相合成方法,制备出尺寸和形状可控的金和银纳米粒子。在作为包裹剂的十二烷基磺酸钠(SDSN)存在下,用柠檬酸钠(Na_3C_6H_5O_7)分别还原硝酸银(AgNO_3)或氯金酸(HAuCl_4)。它最鲜明的特点在于不需要任何模板和种子诱导,仅通过控制还原剂的浓度就可以实现对纳米粒子的尺寸和形状控制,而包裹剂的主要作用是防止粒子聚集和得到更好晶型结构。使用TEM、HRTEM、SEM、AFM、XRD、SAED、ED、UV-Visible和SERS等手段较系统地表征了这些纳米粒子的结构、尺寸、形状及其光学和电学性质。本论文工作获得的主要成果如下:
     1.制备了尺寸和长径比可控的银纳米棒和纳米线。还原剂的浓度与纳米棒或纳米线的直径(10-24nm)成线性关系,与纳米棒和纳米线的长径比(8-150)成对数关系。
     2.合成出具有蝌蚪和项链形的新颖形状的金纳米粒子。蝌蚪纳米粒子具有新颖的三维结构;蝌蚪纳米粒子的尺寸可控范围为12-31nm(头部宽度),项链形纳米粒子的尺寸可控范围在20-35nm。它们皆具有特殊的光学和电学性质。
     3.提出有关纳米粒子的生长模型,分别解释金和银两种金属由还原剂浓度控制粒子生长的生长机理。而两种金属纳米粒子的形状完全不同的主要原因则主要来源于其离子被还原能力的差异和与包裹剂作用能力的不同。
     4.合成出尺寸较均一且可控的球形金纳米粒子(10-40nm)。另用种子法合成出单分散性好且尺寸可控的铂包金纳米粒子(8-150nm),并得到了铂纳米粒子的SERS谱图。
     总之,该创新的合成方法可望用于上述纳米粒子的批量生产,并可能发展成为合成其它金属的尺寸和形状可控纳米粒子的通用方法。
The unique properties and potential applications of metal nanoparticles are mainly determined by the size and shape. So far there have been many methods to prepare metal nanostructures, but spherical nanoparticles are usually the major products. It is therefore a great challenge to develop some simple and effect methods of synthesizing nanoparticles whose size and shape can be controlled at will.
    The main goal of the present work is to develop a simple and effect aqueous-phase method to synthesize gold and silver nanparticles with controllable size and shape. The synthesis was realized by the reduction of AgNO3 or HAuCl4 with Na3C6H5O7 respectively in the presence of SDSN as a capping agent. This non-template and non-seed method has its unique advantage that control the particle's shape and size by changing the reductant concentration. The role played by the capping agent is to assist the growth of good crystalline of nanoparticles. Their structure, size, shape, and optical and electronic properties were characterized systemically using TEM, HRTEM, SEM, AFM, XRD, SAED, ED, UV-Visible, and SERS. The major results of the thesis are outlined as follows:
    1. Silver nanoparticles with controllable diameter and aspect ratio were synthesized. The diameter (10-24 nm) of the nanorods or nanowires linearly depends on the reductant concentration; while the aspect ratio (8-150) of these nanoparticles shows logarithm-dependence.
    2. Gold nanoparticles with tadpole and necklace-shaped were prepared successfully. These nanoparticles possess novel three-dimensional structure, e.g. the size of the nanotadpoles can be controlled to be 12-31 nm (the head width), and the size of the nanonecklaces to be 20-35 nm. They show some novel optical and electronic properties.
    3. To explain concentration-dependent crystal growth mechanism of gold or silver nanoparticles with different size and shape respectively, we propose two preliminary models. The dramatically shape difference of gold and silver nanoparticles is largely attributed to the different reducing ability of the metal ions and coalescent ability with the capping agent.
    4. Spherical gold nanoparticles with uniform but controllable size (10-40 nm) were fabricated. AucorePtshell nanoparticles with well-dispersed and controllable size (8-150 nm) were also synthesized by using a seed-induced approach, and the SERS spectra of platinum nanoparticles were obtained.
    As a consequence, this novel synthetic method is expected to scale up, and will probably develop to a common method for synthesizing other metal nanoparticles with controllable size and shape.
引文
[1]张立德,牟季美。纳米材料和纳米结构[M],科学出版社,2001.
    [2]白春礼。纳米科学与技术[M],云南科技出版社,1999.
    [3] W. A. de Heer, Modern Phys. Rev. 1993, 65, 611.
    [4] W. Z. Li, S. S. Xie, L. X. Qian, Science 1996, 274,1701.
    [5] D. Zhou, S. Seraphin, Chem. Phys. Lett. 1994,222,223.
    [6] W. Q. Han, S. S. Fan, Q. Q. Li, Science 1997, 277,1287.
    [7] K. Suenaga, C. Colliex, N. Demoncy, Science 1997, 275, 654.
    [8] Y. Wang, N. Herron, J.Phys. Chem 1991,95, 525.
    [9] A. Hagfeld, M. Gratzer, Chem. Rev. 1995, 95,49.
    [10] A. J. Legget, S. Chakravarty, Rev. Mod Phys. 1987, 59, 1.
    [11] H. Tabagi, H. Ogawa, Appl. Phys. Lett 1990, 59,2379.
    [12]L. E. Brus.y. Phys. Chem. 1984, 80, 440
    [13] W. P. Halperin, Rev. Modern Phys. 1986, 55, 532
    [14] A. Henglein, Chem. Rev. 1989,89,1861
    [15] T. Matsumoto, J. Suzuki, M. Ohnuma, Y. Kanemitsu, Y. Masumoto, Phys.
    Rev. B 2001, 63, 195322
    [16] R. Kubo,J. Phys. Soc. Jpn. 1962,17, 975.
    [17] A. Kawabata, R. Kubo,J. Phys. Soc. Jpn.1966,21, 1765
    [18] Y. Wang, W. Mahler, Opt. Commun. 1987, 61,233
    [19] E. Hilinski, P. Lucas, Y. Wang, J. Chem. Phys. 1988, 89, 3435.
    [20] S. Auer, D. Frenkel, Nature, 2001,413,711.
    [21]赵于文,现代化工,1991,5,52.
    [22] B. Barbara, W. Wemsdorfer, Curr. Opin. Solid State. Mater. Sci. 1997, 2 , 220.
    
    
    [23] A. H. Chokshi,A. Rosen, J. Karch, H. Gleiter, Scripta Metall. 1989,23, 1679
    [24] G. W. Nieman, J.R. Weertman, R.W. Siegel, Scripta Metall. 1989,23, 2013.
    [25] G. Mcmahon, U. Erb, Microstructura.Sci. 1989,17,447
    [26] I. W. Chen, L. A. Xue, J. Am. Ceram. Sci. 1990, 73,2585.
    [27] I. Nishida, K. Kimoto, Thin Solids Films, 1974,23, 1979.
    [28] T. S. Yeh, M. D. Sacks, J. Am. Ceram.Soc.19SS, 71, 841.
    [29] H. Gleiter, Prog. Mater. Sci. 1989,33,223
    [30] Y. S. Liu, C. M. Mo, W. L. Cai, J. Mater. Sci. Tech. 2000,16, 506.
    [31] T. D. Krauss, L. E. Brus, Mater. Sci. Eng. B 2000, 69, 289.
    [32] W. X. Wang, D. H. Li, Appl. Phys. Lett. 1993, 62, 321.
    [33]都有为。磁记录材料[M],电子工业出版社,1992.
    [34] A. Pert, L. Piraux, J. Magn. Magn. Mater. 1999,200,338.
    [35] J. T. Lue, J. Phys. Chem. Solids, 2001, 62,1599.
    [36]巩雄,郭永,杨宏秀,陈文驹。化学通报[J],1998,3,19.
    [37] G. Banfi, V. Degiorgio, D. Ricard,^Jv. Phys. 1998,47,447.
    [38] S. Link, M. A. El-sayed, J. Phys. Chem. B 1999, 703, 8410.
    [39] K. P. Charle, F. Frank, W. Schulze, Ber.Bunsenges. Phys. Chem. 1984, 88,
    350.
    [40] N. Felidj, J. Aubard, G. Levi, J. Chem. Phys. 1999, 111,1195.
    [41]日本的科学与技术编辑部编。日本的科学与技术[M],长春日报社第二
     印刷厂,1985。
    [42] W. Wu, J. M. Herman, Pichat P Catal 1989,3,73.
    [43] S. N. Frank, A. J. Bard, J. Phys. Chem. 1977,81,1484.
    [44] J. K. Leland, A. J. Bard, J. Phys. Chem. 1987,91, 5076.
    [45] Q. S. Li, Chem. Lett. 1983, 735,321.
    
    
    [46] H. Yoneyama, Cryt. Rev. Solid State Mater. Sci. 1993,18, 69.
    [47] W. J. Albery, P. N. Bartlett, J. Electrochem. Soc. 1984,131, 315.
    [48] G. Rothenberger, J. Moser, M. Gratzel, J. Am. Chem. Soc. 1985, 707, 8054.
    [49] M. A. Fox, Nouv. J. Chem. 1987,11,129.
    [50] H. Ross, J. Bending, S. Hecht, Solar Cells 1994,33,475.
    [51] D. W. Bahneman, J. Phys. Chem. 1994, 98, 1025.
    [52] W. Y. Choi,Angew. Chem. 1994,33,1091.
    [53]胡春,王怡中,汤鸿宵。环境科学进展[J],1995,3,55。
    [54]符小荣,张枝刚,宋世庚等。应用化学[J],1997,4,77。
    [55] V. Sulchharev, A. Wold, Y. M. Cao,J. Solid State Chem. 1995, 779, 339.
    [56] K. B. Kraeutler, A. J. Bard, J. Am. Chem. Soc. 1978, 700, 5985.
    [57] A. J. Bard, J. Electrochem. Soc. 1979, 70, 59.
    [58] H. Cui, K. Dwight, S. Soled, J. Solid State Chem. 1995, 775, 187.
    [59] J. Papp, S. Soled, M. Dwight, Chem. Matter. 1994, 6, 496.
    [60] M. D. Sacks, Science of Ceramical Processing, New York, 1989, 522.
    [61] M. E. Woods, I. M. Krieger, Aqueous Dispersions. J. Colloid Interface Sci.
    1970,7,91.
    [62] Y. S. Pair, I. M. Krieger, Nonaqueous Media. J. Colloid Interface Sci. 1970,
    34, 126.
    [63] I. M. Krieger, Adv. Colloid Interface Sci. 1972,3, 111.
    [61]张立德编著,严东生、冯端主编。材料新星-纳米材料科学[M],长沙
     湖南科学技术出版社,1997。
    [62] S. Y. Chou, P. R. Krauss, W. Zhang, et al., J. Vac. Sci. Technol. B 1997, 75,
    2897.
    [63] J. F. Scott, M. Alexe, C. Curran, et al., Gigabit Nanoscale Bismuth Oxide
    Electrode Self-patterning Ferroelectric Thin Films for Memory Application,
    
    
    in: M. Muhammed, K. Rao, B. Kear, et al. eds. Book of Abstracts of Fourth International Conference on Nanostructured Materials, Stockholm, Sweden, 159,1998.
    [64] R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, J. G. Zheng, Science 2001,294,1901.
    [68]张立德,蔡伟平,牟季美。自然科学进展[J],1999,9,103.
    [69] J. C. Hulteen, C. R. Martin, Chapter 10, in: J. H. Fendler ed. Nanoparticles
    and Nanostructured Films. Weinheim, New York. Chichester, Brisbane,
    Singapore, Toronto: WILEY-VCH, 247,1998.
    [70] J. C. Hulteen, C. R. Martin, Chapter 10, in: J. H. Fendler ed. Nanoparticles
    and Nanostructured Films. Weinheim, New York. Chichester, Brisbane,
    Singapore, Toronto: WILEY-VCH, 255,1998.
    [71] C. R. Martin, Science 1994,266,1961.
    [72] R. B. Morris, D. J. Franta, H. S. White, J. Phys. Chem. 1987,91,3559.
    [73] R. M. Penner, C. R. Martin, Anal. Chem. 1987, 59, 2625.
    [74] A. Ferrari, Development, Industrialization of Nanocomposite Ceramic
    Materials, in: Proceedings of Nanostructure Materials and Coatings'95,
    Atlanta Airport Marriott. Atlanta, Georgia, USA, 1995.
    [75] J. C. Hulteen, C. R. Chapter 10, in: J. H. Fend, Nanoparticles and
    Nanostructured Films. WILEY-VCH, Weinheim, New York, Chichester,
    Brisban, Singapore, Toronto, 244,1998.
    [76] M. Kobayashi, J. Saraie, H. Matsunami, Appl. Phys. Lett. 1981, 38, 696.
    [77] M. L. Mandich, V. E. Bondybey, W. D. Reents, J. Chem. Phys. 1987, 86,
    4245.
    [78] C. N. R. Rao, J. Mater. Chem 1999,9,1.
    [79] B. Xia, I. W. Lenggoro, K. Okuyama,J. Am. Ceram. Soc. 2001,84,1425.
    [80] J. H. Kim, T. A. Germer, G. W. Mulholland, S. H. Ehrman, Adv. Mater. 2002,
    
    
    74,518.
    [81] A. Goossens, W. F. A. Besling, J. Schoonman, J. Phys. IV, 1999, 9, 519.
    [82] Y. Kamlag, A. Goossens, I. Colbeck, J. Schoonman, J. Phys. IV, 2001, 11,
    461.
    [83] J. Turkevich, G. Garton, P. C. Stevenson, J. Colloid Set. 1954, 9,26.
    [84] G. Frens, Nature 1973, 241, 20.
    [85] M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, Chem.
    Commun. 1994,801.
    [86] M. J. Hostetler, J. E. Wingate, C. J. Zhong, J. E. Harris, R. W. Vachet, M. R.
    Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish,
    M. D. Porter, N. D. Evans, R. W. Murray, Langmuir 1998, 74,17.
    [87] D. V. Leff, P. C. Ohara, J. R. Heath, W. M. Gelbart, J. Phys. Chem. 1995, 99,
    7036.
    [88] S. W. Chen, A. C. Templeton, R. W. Murray, Langmuir 2000,16, 3543.
    [89] S. Schneider, P. Halbig, H. Grau, U. Nickel, Photochem. Photobiol. 1994, 60,
    605.
    [90] M. A. Watzky, R. G. Finke, Chem. Mater. 1997, 9, 3083.
    [91] K. R. Brown, M. J. Natan, Langmuir 1998,14, 726.
    [92] K. R. Brown, D. G. Walter, M. J. Natan, Chem. Mater. 2000,12, 306.
    [93] A. Henglein, M. Giersig, J. Phys. Chem. B 1999, 703, 9533.
    [94] A. Henglein, Langmuir 1999, 75, 6738.
    [95] T. Teranishi, M. Miyake, Chem. Mater. 1998,10, 594.
    [96] T. Teranishi, M. Hosoe, T. Tanaka, M. Miyake, J. Phys. Chem. B 1999,103,
    3818.
    [97] N. R. Jana, L. Gearheart, C. J. Murphy, Chem. Mater. 2001,13, 2313.
    
    
    [98] N. R. Jana, L. Gearheart, C. J. Murphy, Langmuir 2001, 17, 6782.
    [99] N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G.
    Louie, A. Zettl, Science, 1995,269,966.
    [100] Y. Saito, M. Maida, T. Matsumoto, Jpn. J. Appl. Phys. I 1999, 38,159.
    [101] A. M. Morales, C. M. Lieber, Science 1998,279,208.
    [102] W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, S. T. Lee, Adv. Mater. 2001,13,
    591.
    [103] Y. F. Zhang, Y. H. Tang, N. Wang, D.P. Yu, C. S. Lee, I. Bello, S. T. Lee,
    Appl. Phys. Lett. 1998, 72,1835.
    [104] G. W. Zhou, Z. Zhang, Z. G. Bai, S. Q. Feng, D. P. Yu, Appl. Phys. Lett.
    1998, 73, 677.
    [105] H. Z. Zhang, D. P. Yu, Y. Ding, Z. G. Bai, Q. L. Hang, S. Q. Feng, Appl.
    Phys. Lett. 1998, 73, 3396.
    [106] M. S. Gudiksen, J. F. Wang, C. M. Lieiber, J. Phys. Chem. B, 2001, 105,
    4062.
    [107] W. S. Shi, Y. F. Zheng, H. Y. Peng, N. Wang, C. S. Lee, S. T. Lee, J. Am.
    Ceram. Soc. 2000,83, 3228.
    [108] X. F. Duan, J. F. Wang, C. M. Lieber, Appl. Phys. Lett. 2000, 76,1116.
    [109] D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H.
    Zou, W. Qian, G. C. Xiong, S. Q. Feng, Appl. Phys. Lett. 1998, 73, 3076.
    [110] N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, S. T. Lee, Phys. Rev. 1998, 58,
    16024.
    [111] W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, S. T. Lee, J. Vac. Sci.
    Technol.2001, 19, 1115.
    
    
    [112] W. S. Shi, Y. F. Zheng , N. Wang, C. S. Lee, S. T. Lee, Chem. Phys. Lett.
    2001, 345, 377.
    [113] W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, S. T. Lee, Appl. Phys. Lett.
    2001, 78, 3304.
    [114] Y. F. Zhang, Y. H. Tang, X. F. Duan, Y. Zhang, C. S. Lee, N. Wang, I. Bello,
    S. T. Lee, Chem. Phys. Lett. 2000, 323,180.
    [115] P. Forrer, F. Schlottig, H. Siegenthaler, M. Textor, J. Appl. Electrochem.
    2000, 30, 533.
    [116] W. Q. Han, S. S. Fan, Q. Q. Li, Y. D. Hu, Science, 1997,277, 1287.
    [117] H. W. Liu, S. M. Hou, G. M. Zhang, Z. Y. Shen, W. M. Liu, J. L. Wu, Z. Q.
    Xue, E. Roy, K.Y. Zhang, Acta Phys. Chim. Sin. 2002,18, 359.
    [118] E. Braun, Y. Elchen, U. Sivan, G. Ben-Yoseph, Nature, 1998,391, 775.
    [119] B. Xia, I. W. Lenggoro, K. Okuyama, J. Am. Ceram. Soc. 2001, 84, 1425.
    [120] A. Anders, Sur. Coat. Techn. 1999, 727, 319.
    [121] H. Qi, T. Zhu, Z. F. Liu, Acta Phys. Chim. Sin. 2000,16, 956.
    [122] N. R. Jana, L. Gearheart, C. J. Murphy, Chem. Com. 2001,17, 617.
    [123] N. R. Jana, L. Gearheart, C. J. Murphy, J. Phys. Chem. B 2001,105, 4065.
    [124] N. R. Jana, L. Gearheart, C. J. Murphy, Adv. Mater. 2001,13,1389.
    [125] C. J. Murphy, N. R. Jana,Adv. Mater. 2002,14, 80.
    [126] Y. Sun, B. T. Mayers, Y. Xia, Nona Lett. 2002, 2,481.
    [127] Y. Sun, Y. Xia, Adv. Mater. 2002,14, 833.
    [128] Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, Y. Xia, Chem. Mater. 2002, 14,
    4736.
    [129] Y. Xie, H. L. Su, B. Li, Y. T. Qian, Mater. Res. Bull. 2000, 35, 675.
    [130] K. K. Caswell, C. M. Bender, C. J. Murphy, Nano Lett. 2003, in press.
    
    
    [131] R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schartz, J. G. Zheng,
    Science 2001,294, 1901.
    [132] S. H. Chen, Z. Y. Fan, D. L. Carroll, J. Phys. Chem. B 2002, 705,10777.
    [133] N. Pinna, K. Weiss, J. Urban, M. P. Pileni, Adv, Mater. 2001,13,261.
    [134] J. H. Fendler, F. C. Meldrum, Adv, Mater. 1995, 7,607.
    [135] T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, M. A. E1-Sayed,
    Science 1996, 272, 1924.
    [136] J. M. Petroski, T. C. Green, M. A. E1-sayed, J. Phys. Chem. A 2001, 105,
    5542.
    [137] Z. L. Wang, J. M. Petroski, T. C. Green, M. A. El-sayed, J. Phys. Chem. B
    1998,102,6145.
    [138] Y. G. Sun, Y. N. Xia, Science 2002,295,2176.
    [139] K. P. Charle, F. Frank, W. Schulze, Ber.Bunsenges. Phys. Chem. 1984, 88,
    350.
    [140] L. Gao, K. W. Yu, B. B. Hu, Phys. Rev. E 2001, 64.
    [141] N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, A. G. Melnikov, J.
    Colloid Sci. 1996,180,436.
    [142] S. Link, M. B. Mohamed, M. A. El-sayed, J. Phys. Chem. B 1999, 703,
    3073.
    [143] M. Fleischmann, P. J. Hendra, A. J. Mcquillan, Chem. Phys. Lett. 1974, 26,
    163.
    [144] J. I. Gersten, A. Nitzen.J. Chem. Phys. 1980, 73, 3023.
    [145] J. L. Yao, X. Xu, Y. Xie, et al., Chem. Commun.2000, 1627.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700