用户名: 密码: 验证码:
纳米碳纤维的微结构及表面性质与其氧还原催化活性的内在规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米碳纤维由于其独特的电子及结构特性,近年来在作为催化剂和催化剂载体方面受到了广泛关注。氧还原反应几乎是所有燃料电池的阴极反应,且该反应广泛应用于金属腐蚀、能量转换与存储等领域,因此具有十分重要的研究意义。
     本论文的研究目的在于以纳米碳纤维作为催化剂或者催化剂载体,以氧还原反应为探针反应,研究纳米碳纤维的微结构及表面性质对氧还原催化活性的影响。目前得到的主要研究结果如下:
     (1)采用超声处理的方法分别在管式和鱼骨式纳米碳纤维表面成功引入含氧和含氮官能团。电化学测试结果表明,在0.1 M KOH溶液中,两种不同微结构的CNF的氧还原催化活性都遵循相同的趋势,即CNF-P     (2)分别以含氧和含氮的f-CNF为载体,利用乙二醇法负载Pt纳米粒子,制备催化剂电极。电化学测试结果表明Pt/CNF-ON/GC电极的氧还原催化剂活性好于Pt/CNF-O/GC电极。一般认为,Pt/CNF-ON/GC电极较好的催化活性主要是由于Pt纳米粒子较小的颗粒尺寸、较均匀的颗粒分布、Pt与CNF-ON载体之间的协同效应及增强的结合力以及CNF-ON独特的结构和电子特性。
     (3)利用乙二醇法制备了不同Pt-Pd合金配比的催化剂,RDE结果表明,制备的合金催化剂随着铂含量的增加,氧还原催化活性依次增强,但含Pt量较多的Pt3Pd1/CNF例外。当Pt:Pd=2:1时,催化剂具有较好的氧还原催化性能,可归因于合适的Pt-Pd原子比、有利的原子间距和合金化程度的改变。
Carbon nanofibers (CNFs) have attracted considerable attention as catalyst and catalyst support for ORR in recent years because of their special electrical and structural properties. The oxygen reduction reaction (ORR) at the cathode of fuel cells plays a key role in controlling the performance of a fuel cell, and efficient ORR electrocatalysts are essential for practical applications of the fuel cells.
     The purpose of this paper is to study the microstructure and surface properties of CNFs towards oxygen reduction reaction (ORR) using CNFs as catalysts or catalyst supports. The main results obtained up to now are as follows:
     (1) Oxygen- and nitrogen-containing functional groups were successfully introduced onto the t-CNF and f-CNF surface by sonochemical treatment in mixed acids (concentrated sulfuric acid and nitric acid) and ammonia, respectively. The ORR activity of the CNF catalyst was measured in an oxygen-saturated 0.1 M KOH electrolyte solution by rotating disk electrode technique. The RDE results show that the electrocatalytic activities of the two types of CNFs increase in the same sequence untreated CNFs< oxygen-containing CNFs< nitrogen-containing CNFs, while the f-CNFs-based catalysts have higher electrocatalytic activities for ORR than their t-CNFs-based counterparts. The above results indicate that the surface properties and the microstructures of CNFs both have effects on the electrocatalytic activity of CNFs for ORR, although the former may have a dominant effect.
     (2) The oxygen-and nitrogen-containing functional groups were introduced onto the f-CNF surface by sonochemical treatment in mixed acids (concentrated sulfuric acid and nitric acid) and ammonia, respectively. The Pt/CNF-ON/GC electrode exhibited a better electrocatalytic activity toward ORR compared with Pt/CNF-O/GC electrode. It is believed that the enhanced catalytic activity exhibited by the Pt/CNF-ON/GC electrode can mainly be attributed to the smaller Pt particle size and more uniform particle size distribution. The synergistic effect, the enhanced Pt-CNF-ON interaction, and the unique structural and electronic properties of CNF-ON may also contribute to the enhanced catalytic activity.
     (3) Pt-Pd alloy catalysts with different ratios of Pt and Pd were prepared by glycol method. RDE results show that the catalytic activity toward ORR of the alloy catalysts increased with the increasing platinum content, except for Pt3Pd1/CNF. Among these alloy catalysts, Pt2Pd1/CNF shows the highest ORR catalytic activity. The enhanced catalytic activity can be attributed to the appropriate Pt-Pd atomic ratio, a favorable degree of atomic spacing and the proper alloy extent.
引文
[1]衣宝廉.燃料电池--原理·技术·应用[M].化学工业出版社.2004
    [2]Joon K. Fuel cells-a 21st century power system [J]. Journal of Power Sources.1998,71 (1-2):12-18
    [3]衣宝廉.质子交换膜型燃料电池(PEMFC)——国内外状况与主要技术问题[J].电源技术.1997,21(2):80-82
    [4]O'Hayre R,车硕源,COLELLA W.燃料电池基础[M].北京:电子工业出版社.2007
    [5]衣宝廉.燃料电池的原理,技术状态与展望[J].电池工业.2003,8(1):16-22
    [6]查全性.电极过程动力学导论[M].北京:科学出版社.2002
    [7]Steigerwalt E S, Deluga G A, Lukeharta C. Rapid preparation of Pt-Ru/graphitic carbon nanofiber nanocomposites as DMFC anode catalysts using microwave processing [J]. Journal of nanoscience and nanotechnology.2003,3 (3):247-251
    [8]Steigerwalt E, Deluga G, Cliffel D, et al. A Pt- Ru/graphitic carbon nanofiber nanocomposite exhibiting high relative performance as a direct-methanol fuel cell anode catalyst [J]. The Journal of Physical Chemistry B.2001,105 (34):8097-8101
    [9]Zheng J, Wang M, Zhang X, et al. Platinum/carbon nanofiber nanocomposite synthesized by electrophoretic deposition as electrocatalyst for oxygen reduction [J]. Journal of Power Sources.2008,175(1):211-216
    [10]Inaba M, Kinumoto T, Kiriake M, et al. Gas crossover and membrane degradation in polymer electrolyte fuel cells [J]. Electrochimica Acta.2006,51 (26):5746-5753
    [11]Yeager E. Electrocatalysts for O2 reduction [J]. Electrochimica Acta.1984,29 (11): 1527-1537
    [12]Kundu S, Nagaiah T, Xia W, et al. Electrocatalytic Activity and Stability of Nitrogen-Containing Carbon Nanotubes in the Oxygen Reduction Reaction [J]. The Journal of Physical Chemistry C.2009,113 (32):14302-14310
    [13]Vijayaraghavan G, Stevenson K J. Synergistic Assembly of Dendrimer-Templated Platinum Catalysts on Nitrogen-Doped Carbon Nanotube Electrodes for Oxygen Reduction [J]. Langmuir.2007,23 (10):5279-5282
    [14]Bett J, Lundquist J, Washington E, et al. Platinum crystallite size considerations for electrocatalytic oxygen reduction—I [J]. Electrochimica Acta.1973,18 (5):343-348
    [15]Bockris J, Abdu R. A theoretical study of the electrochemical reduction of oxygen [J]. Journal of Electroanalytical Chemistry.1998,448 (2):189-204
    [16]Travitsky N, Ripenbein T, Golodnitsky D, et al. Pt-, PtNi- and PtCo-supported catalysts for oxygen reduction in PEM fuel cells [J]. Journal of Power Sources.2006,161 (2): 782-789
    [17]Koffi R, Coutanceau C, Gamier E, et al. Synthesis, characterization and electrocatalytic behaviour of non-alloyed PtCr methanol tolerant nanoelectrocatalysts for the oxygen reduction reaction (ORR) [J]. Electrochimica Acta.2005,50 (20):4117-4127
    [18]Paulus U, Wokaun A, Scherer G, et al. Oxygen reduction on carbon-supported Pt-Ni and Pt-Co alloy catalysts [J]. The Journal of Physical Chemistry B.2002,106 (16): 4181-4191
    [19]Wang W, Zheng D, Du C, et al. Carbon-supported Pd-Co bimetallic nanoparticles as electrocatalysts for the oxygen reduction reaction [J]. Journal of Power Sources.2007, 167 (2):243-249
    [20]Huang Q, Yang H, Tang Y, et al. Carbon-supported Pt-Co alloy nanoparticles for oxygen reduction reaction [J]. Electrochemistry Communications.2006,8 (8):1220-1224
    [21]Kadirgan F, Kannan A M, Atilan T, et al. Carbon supported nano-sized Pt-Pd and Pt-Co electrocatalysts for proton exchange membrane fuel cells [J]. International Journal of Hydrogen Energy.2009,34 (23):9450-9460
    [22]Mustain W E, Prakash J. Kinetics and mechanism for the oxygen reduction reaction on polycrystalline cobalt-palladium electrocatalysts in acid media [J]. Journal of Power Sources.2007,170 (1):28-37
    [23]Shao M, Huang T, Liu P, et al. Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction [J]. Langmuir.2006,22 (25):10409-10415
    [24]Zhang L, Lee K, Zhang J. The effect of heat treatment on nanoparticle size and ORR activity for carbon-supported Pd-Co alloy electrocatalysts [J]. Electrochimica Acta.2007, 52 (9):3088-3094
    [25]Tominaka S, Momma T, Osaka T. Electrodeposited Pd-Co catalyst for direct methanol fuel cell electrodes:Preparation and characterization [J]. Electrochimica Acta.2008,53 (14):4679-4686
    [26]Mustain W E, Kepler K, Prakash J. Investigations of carbon-supported CoPd3 catalysts as oxygen cathodes in PEM fuel cells [J]. Electrochemistry Communications.2006,8 (3): 406-410
    [27]Jasinski R. A new fuel cell cathode catalyst [J]. Nature.1964,1212-1213
    [28]Wiesener K, Ohms D, Neumann V, et al. N4 macrocycles as electrocatalysts for the cathodic reduction of oxygen [J]. Materials Chemistry and Physics.1989,22 (3-4): 457-475
    [29]Jahnke H, Zimmermann G. In Topics in Current Chemistry 61 [M]. Dyestuffs, Springer-Verlag, Berlin.1976
    [30]张宇,吴汜昕,张鸿斌等.碳纳米管负载铑催化剂上丙烯氢甲酰化[J].物理化学学 报.1997,13(12):1057-1060
    [31]Coutanceau C, El Hourch A, Crouigneau P, et al. Conducting polymer electrodes modified by metal tetrasulfonated phthalocyanines:Preparation and electrocatalytic behaviour towards dioxygen reduction in acid medium [J]. Electrochimica Acta.1995, 40 (17):2739-2748
    [32]Jiang J, Kucernak A. Novel electrocatalyst for the oxygen reduction reaction in acidic media using electrochemically activated iron 2,6-bis (imino)-pyridyl complexes [J]. Electrochimica Acta.2002,47 (12):1967-1973
    [33]Reeve R, Christensen P, Dickinson A, et al. Methanol-tolerant oxygen reduction catalysts based on transition metal sulfides and their application to the study of methanol permeation [J]. Electrochimica Acta.2000,45 (25-26):4237-4250
    [34]Cheng H, Yuan W, Scott K. The influence of a new fabrication procedure on the catalytic activity of ruthenium-selenium catalysts [J]. Electrochimica Acta.2006,52 (2):466-473
    [35]Antolini E. Catalysts for direct ethanol fuel cells [J]. Journal of Power Sources.2007, 170(1):1-12
    [36]Cropper MAJ, Geiger S, Jollie D M. Fuel cells:a survey of current developments [J]. Journal of Power Sources.2004,131 (1-2):57-61
    [37]Alcaide F, Alvarez G, Miguel O, et al. Pt supported on carbon nanofibers as electrocatalyst for low temperature polymer electrolyte membrane fuel cells [J]. Electrochemistry Communications.2009,11 (5):1081-1084
    [38]Lee K, Zhang J, Wang H, et al. Progress in the synthesis of carbon nanotube-and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis [J]. Journal of Applied Electrochemistry.2006,36 (5):507-522
    [39]Li Z, Cui X, Zhang X, et al. Pt/Carbon Nanofiber Nanocomposites as Electrocatalysts for Direct Methanol Fuel Cells:Prominent Effects of Carbon Nanofiber Nanostructures [J]. Journal of nanoscience and nanotechnology.2009,9 (4):2316-2323
    [40]K Gong, S Chakrabarti, L Dai. Electrochemistry at carbon nanotube electrodes:is the nanotube tip more active than the sidewall? [J]. Angewandte Chemie International Edition.2008,47 (29):5446-5450
    [41]Gerhard Ertl, Knozinger H, Weitkamp Jens. Preparation of solid catalysts [C]. Weinheim: Wiley-VCH.1999,150-240
    [42]Montes-Moran M A, Suarez D, Menendez J A, et al. On the nature of basic sites on carbon surfaces: An overview [J]. Carbon.2004,42 (7):1219-1225
    [43]Contescu A, Vass M, Contescu C, et al. Acid buffering capacity of basic carbons revealed by their continuous pK distribution [J]. Carbon.1998,36 (3):247-258
    [44]Barton S S, Ebans J B, Halliop E, et al. Acidic and basic sites on the surface of porous carbon [J]. Carbon.1997,35 (9):1361-1366
    [45]Papirer E, Li S, Donnet J B. Contribution to the study of basic surface groups on carbons [J]. Carbon.1987,25 (2):243-247
    [46]Zhou J, Sui Z, Li P, et al. Structural characterization of carbon nanofibers formed from different carbon-containing gases [J]. Carbon.2006,44 (15):3255-3262
    [47]Zhao T, Dai Y, Yuan W, et al. Synthesis of dimethyl oxalate from CO and CH3ONO on carbon nanofiber supported palladium catalysts [J]. Industrial and Engineering Chemistry Research.2004,43 (16):4595-4601
    [48]Sui Z, Zhou J, Dai Y, et al. Oxidative dehydrogenation of propane over catalysts based on carbon nanofibers [J]. Catalysis Today.2005,106 (1-4):90-94
    [49]Fuchigami H, Tsumura A, Koezuka H. Polythienylenevinylene thin-film transistor with high carrier mobility [J]. Applied physics letters.1993,63 (10):1372-1374
    [50]Iijima S. Helical microtubules of graphitic carbon [J]. Nature.1991,354 (6348):56-58
    [51]Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter [J]. Nature.1993, 363:603-605
    [52]赵稼祥.纳米碳纤维及其应用[J].纤维复合材料.2003,28(2):7-10
    [53]顾书英,朱立华,藤新荣等.纳米碳纤维的制备及应用[J].材料导报.2004,18(F04):86-88
    [54]隋志军.纳米碳纤维在催化丙烷氧化脱氢中的研究[D].上海:华东理工大学,2005
    [55]Ishikawa Y, Austin L G, Brown D E, et al. Ortho-/Parahydrogen conversion and hydrogen-deuterium equilibration over carbon surfaces [A]. In: Walker P L Jr. Thrower P A eds. Chemistry and physics of carbon vol12 [C]. New York:Marcel Dekker,1975, 39-85.
    [56]Chesnokov V V, Prosvirin I P, Zaitseva N A, et al. Effect of the structure of carbon nanofibers on the state of an active component and on the catalytic properties of Pd/C catalysts in the selective hydrogenation of 1,3-butadiene [J]. Kinetics and Catalysis.2002, 43:838-846
    [57]Bessel C A, Laubernds K, Rodriguez N M, et al. Graphite nanofibers as an electrode for fuel cell applications [J]. The Journal of Physical Chemistry B.2001,105:1115-1118
    [58]赵铁均.纳米碳纤维的微结构调控及相关催化性能研究[D].上海:华东理工大学,2004
    [59]Banks C E, Davies T J, Wildgoose G G, et al. Electrocatalysis at graphite and carbon nanotube modified electrodes:edge-plane sites and tube ends are the reactive sites [J]. Chemical Communications.2005, (7):829-841
    [60]Wildgoose G, Banks C, Compton R. Metal nanoparticles and related materials supported on carbon nanotubes:methods and applications [J]. Small.2006,2 (2):182-193
    [61]Gong K, Yan Y, Zhang M, et al. Electrochemistry and electroanalytical applications of carbon nanotubes:a review [J]. Analytical Sciences.2005,21 (12):1383-1393
    [62]Guo J, Sun G., Wang Q, et al. Carbon nanofibers supported Pt-Ru electrocatalysts for direct methanol fuel cells [J]. Carbon.2006,44 (1):152-157
    [63]Wildgoose G G, Banks C E, Leventis H C, et al. Chemically modified carbon nanotubes for use in electroanalysis [J]. Microchimica Acta.2006,152 (3):187-214
    [64]Ros T G, Van Dillen A J, Geus J W, et al. Surface oxidation of carbon nanofibres [J]. Chemistry-A European Journal.2002,8 (5):1151-1162
    [65]Kvande I, Zhu J, Zhao T, et al. Importance of Oxygen-Free Edge and Defect Sites for the Immobilization of Colloidal Pt Oxide Particles with Implications for the Preparation of CNF-Supported Catalysts [J]. The Journal of Physical Chemistry C.2010,114 (4): 1752-1762
    [66]Wang X, Li N, Webb A, et al. Effect of surface oxygen containing groups on the catalytic activity of multi-walled carbon nanotube supported Pt catalyst [J]. Applied Catalysis B: Environmental.2010,101 (1-2):21-30
    [67]Biniak S, Walczyk M, Szymanski G S. Modified porous carbon materials as catalytic support for cathodic reduction of dioxygen [J]. Fuel processing technology.2002,79 (3): 251-257
    [68]Szymaski G S, Grzybek T, Papp H. Influence of nitrogen surface functionalities on the catalytic activity of activated carbon in low temperature SCR of NOx with NH3 [J]. Catalysis Today.2004,90 (1-2):51-59
    [69]Matzner S, Boehm H. Influence of nitrogen doping on the adsorption and reduction of nitric oxide by activated carbons [J]. Carbon.1998,36 (11):1697-1700
    [70]Yang S Y, Ma C C M, Teng C C, et al. Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites [J]. Carbon.2010,48 (3):592-603
    [71]Maldonado S, Stevenson K. Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes [J]. The Journal of Physical Chemistry B. 2005,109 (10):4707-4716
    [72]Banks C, Moore R, Davies T, et al. Investigation of modified basal plane pyrolytic graphite electrodes:definitive evidence for the electrocatalytic properties of the ends of carbon nanotubes [J]. Chemical Communications.2004,2004 (16):1804-1805
    [73]Banks C, Compton R. New electrodes for old:from carbon nanotubes to edge plane pyrolytic graphite [J]. The Analyst.2006,131 (1):15-21
    [74]Banks C E, Compton R G. Edge plane pyrolytic graphite electrodes in electroanalysis:an overview [J]. Analytical Sciences.2005,21 (11):1263-1268
    [75]Zheng J, Zhang X, Li P, et al. Microstructure effect of carbon nanofiber on electrocatalytic oxygen reduction reaction [J]. Catalysis Today.2008,131 (1-4):270-277
    [76]周静红.TA加氢精制的Pd/CNF新型催化剂设计及性能研究[D].上海:华东理工大学,2007
    [77]Taylor R J, Humffray A A. Electrochemical studies on glassy carbon electrodes:II. Oxygen reduction in solutions of high pH (pH>10) [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry.1975,64 (1):63-84
    [78]Saha M S, Kundu A. Functionalizing carbon nanotubes for proton exchange membrane fuel cells electrode [J]. Journal of Power Sources.2010,195 (19):6255-6261
    [79]Sidik R A, Anderson A B, Subramanian N P, et al. O2 reduction on graphite and nitrogen-doped graphite:experiment and theory [J]. The Journal of Physical Chemistry B. 2006,110(4):1787-1793
    [80]Xing Y. Synthesis and electrochemical characterization of uniformly-dispersed high loading Pt nanoparticles on sonochemically-treated carbon nanotubes [J]. The Journal of Physical Chemistry B.2004,108 (50):19255-19259
    [81]覃远航.纳米碳纤维及其负载贵金属催化剂的制备及性能研究[D].上海:华东理工大学,2011
    [82]Jawhari T, Roid A, Casado J. Raman spectroscopic characterization of some commercially available carbon black materials [J]. Carbon.1995,33 (11):1561-1565
    [83]Katagiri G, Ishida H, Ishitani A. Raman spectra of graphite edge planes [J]. Carbon.1988, 26 (4):565-571
    [84]郑俊生.纳米碳纤维微结构的电催化效应:氧的阴极还原性能[D].上海:华东理工大学,2008
    [85]Shen Y, Trauble M, Wittstock G. Detection of hydrogen peroxide produced during electrochemical oxygen reduction using scanning electrochemical microscopy [J]. Analytical chemistry.2008,80 (3):750-759
    [86]Gong K, Du F, Xia Z, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction [J]. Science.2009,323 (5915):760-764
    [87]Tang Y, Allen B L, Kauffman D R. Electrocatalytic activity of nitrogen-doped carbon nanotube cups [J]. Journal of the American Chemical Society.2009,131 (37): 13200-13201
    [88]Bard A J, Faulkner L R. Electrochemical methods [M]. Wiley,2001.
    [89]Gottesfeld S, Raistrick I, Srinivasan S. Oxygen reduction kinetics on a platinum RDE coated with a recast Nafion film [J]. Journal of the Electrochemical Society.1987,134 (6):1455-1462
    [90]Lide D R. CRC handbook of chemistry and physics [M]. CRC Pr I Lic.2003
    [91]Xu X, Jiang S, Hu Z, et al. Nitrogen-Doped Carbon Nanotubes:High Electrocatalytic Activity toward the Oxidation of Hydrogen Peroxide and Its Application for Biosensing [J]. ACS nano.2010,4 (7),4292-4298
    [92]Chen Z, Waje M, Li W, et al. Supportless Pt and PtPd Nanotubes as Electrocatalysts for Oxygen Reduction Reactions [J]. Angewandte Chemie.2007,119 (22):4138-4141
    [93]Sljukic B, Banks C, Compton R. An overview of the electrochemical reduction of oxygen at carbon-based modified electrodes [J]. Journal of the Iranian Chemical Society. 2005,2(1):1-25
    [94]Yu R, Chen L, Liu Q, et al. Platinum deposition on carbon nanotubes via chemical modification [J]. Chemistry of Materials.1998,10 (3):718-722
    [95]Vinke P, Van der Eijk M, Verbree M, et al. Modification of the surfaces of a gasactivated carbon and a chemically activated carbon with nitric acid, hypochlorite, and ammonia [J]. Carbon.1994,32 (4):675-686
    [96]Wang C H, Du H Y, Tsai Y T, et al. High performance of low electrocatalysts loading on CNT directly grown on carbon cloth for DMFC [J]. Journal of Power Sources.2007,171 (1):55-62
    [97]Roy S, Harding A, Russell A, et al. Spectroelectrochemical study of the role played by carbon functionality in fuel cell electrodes [J]. Journal of the Electrochemical Society. 1997,144 (7):2323-2328
    [98]Saha M S, Li R, Sun X, et al.3-D composite electrodes for high performance PEM fuel cells composed of Pt supported on nitrogen-doped carbon nanotubes grown on carbon paper [J]. Electrochemistry Communications.2009,11 (2):438-441
    [99]Shao Y, Sui J, Yin G, et al. Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell [J]. Applied Catalysis B: Environmental.2008,79 (1):89-99
    [100]Glerup M, Steinmetz J, Samaille D, et al. Synthesis of N-doped SWNT using the arc-discharge procedure [J]. Chemical physics letters.2004,387 (1-3):193-197
    [101]Droppa Jr R, P Hammer, ACM Carvalho, et al. Incorporation of nitrogen in carbon nanotubes [J]. Journal of Non-Crystalline Solids.2002,299-302 (2):874-879
    [102]Grobert N, Hsu W, Zhu Y, et al. Enhanced magnetic coercivities in Fe nanowires [J]. Applied physics letters.1999,75 (21):3363-3365
    [103]Yudasaka M, Kikuchi R, Ohki Y, et al. Nitrogen-containing carbon nanotube growth from Ni phthalocyanine by chemical vapor deposition [J]. Carbon.1997,35 (2): 195-201
    [104]Burch H J, Brown E, Contera S A, et al. Effect of Acid Treatment on the Structure and Electrical Properties of Nitrogen-Doped Multiwalled Carbon Nanotubes [J]. The Journal of Physical Chemistry C.2008,112 (6):1908-1912
    [105]Li W, Liang C, Zhou W, et al. Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells [J]. The Journal of Physical Chemistry B.2003,107 (26):6292-6299
    [106]E Yeager, J. O'M. Bockris, BE Conway, et al. Editors [M]. Comprehensive Treatise of Electrochemistry VII., Plenum, New York,1984
    [107]Alexeyeva N, Shulga E, Kisand V, et al. Electroreduction of oxygen on nitrogen-doped carbon nanotube modified glassy carbon electrodes in acid and alkaline solutions [J]. Journal of Electroanalytical Chemistry.2010,648 (2):169-175
    [108]Maldonado S, Morin S, Stevenson K J. Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping [J]. Carbon.2006,44 (8):1429-1437
    [109]Yang Q H, Hou P X, Unno M, et al. Dual Raman features of double coaxial carbon nanotubes with N-doped and B-doped multiwalls [J]. Nano letters.2005,5 (12): 2465-2469
    [110]Jang J W, Lee C E, Lyu S C, et al. Structural study of nitrogen-doping effects in bamboo-shaped multiwalled carbon nanotubes [J]. Applied physics letters.2004,84 (15):2877
    [111]Higgins D C, Meza D, Chen Z W. Nitrogen-Doped Carbon Nanotubes as Platinum Catalyst Supports for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells [J]. Journal of Physical Chemistry C.2010,114 (50):21982-21988
    [112]Liu H, Song C, Zhang L, et al. A review of anode catalysis in the direct methanol fuel cell [J]. Journal of Power Sources.2006,155 (2):95-110
    [113]Bauen A, Hart D. Assessment of the environmental benefits of transport and stationary fuel cells [J]. Journal of Power Sources.2000,86 (1-2):482-494
    [114]Chen Z, Higgins D, Tao H, et al. Highly Active Nitrogen-Doped Carbon Nanotubes for Oxygen Reduction Reaction in Fuel Cell Applications [J]. The Journal of Physical Chemistry C.2009,113 (49):21008-21013
    [115]Hogarth M, Ralph T. Catalysis for low temperature fuel cells [J]. Platinum Metals Review.2002,46 (4):146-164
    [116]Stamenkovic V R, Mun B S, Mayrhofer K J J, et al. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces [J]. Journal of the American Chemical Society.2006, 128 (27):8813-8819
    [117]Gloaguen F, J.-M. LE' GER, Lamy C. Electrocatalytic oxidation of methanol on platinum nanoparticles electrodeposited onto porous carbon substrates [J]. Journal of Applied Electrochemistry.1997,27(9):1052-1060
    [118]Britto P J, Santhanam K S V, Rubio A, et al. Improved charge transfer at carbon nanotube electrodes [J]. Advanced Materials.1999,11 (2):154-157
    [119]Zhang Y, Toebes M L, van der Eerden, et al. Metal particle size and structure of the metal-support interface of carbon-supported platinum catalysts as determined with EXAFS spectroscopy [J]. The Journal of Physical Chemistry B.2004,108 (48): 18509-18519
    [120]Villers D, Sun S, Serventi A, et al. Characterization of Pt nanoparticles deposited onto carbon nanotubes grown on carbon paper and evaluation of this electrode for the reduction of oxygen [J]. The Journal of Physical Chemistry B.2006,110 (51): 25916-25925
    [121]Poncharal P, Berger C, Yi Y, et al. Room temperature ballistic conduction in carbon nanotubes [J]. The Journal of Physical Chemistry B.2002,106 (47):12104-12118
    [122]Cadek M, Coleman J, Ryan K, et al. Reinforcement of polymers with carbon nanotubes: the role of nanotube surface area [J]. Nano letters.2004,4 (2):353-356
    [123]Shao Y, Yin G, Gao Y, et al. Durability Study of Pt/C and Pt/CNTs Catalysts under Simulated PEM Fuel Cell Conditions [J]. Journal of the Electrochemical Society.2006, 153(6):A1093-A1097
    [124]Shao Y, Yin G, Zhang J, et al. Comparative investigation of the resistance to electrochemical oxidation of carbon black and carbon nanotubes in aqueous sulfuric acid solution [J]. Electrochimica Acta.2006,51 (26):5853-5857
    [125]Wang X, Li W, Chen Z, et al. Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell [J]. Journal of Power Sources.2006, 158(1):154-159
    [126]Matsumoto T, Komatsu T, Nakano H, et al. Efficient usage of highly dispersed Pt on carbon nanotubes for electrode catalysts of polymer electrolyte fuel cells [J]. Catalysis Today.2004,90 (3-4):277-281
    [127]Zhao L, Gao L. Novel in situ synthesis of MWNTs-hydroxyapatite composites [J]. Carbon.2004,42 (2):423-426
    [128]Yuan F, Ryu H. The synthesis, characterization, and performance of carbon nanotubes and carbon nanofibres with controlled size and morphology as a catalyst support material for a polymer electrolyte membrane fuel cell [J]. Nanotechnology.2004,15 (10):S596
    [129]Li W, Wang X, Chen Z, et al. Carbon nanotube film by filtration as cathode catalyst support for proton-exchange membrane fuel cell [J]. Langmuir.2005,21 (21): 9386-9389
    [130]Wang X, Waje M, Yan Y. CNT-based electrodes with high efficiency for PEMFCs [J]. Electrochemical and solid-state letters.2005,8 (1):A42-A44
    [131]Li H, Xin Q, Li W, et al. An improved palladium-based DMFCs cathode catalyst [J]. Chemical Communications.2004, (23):2776-2777
    [132]Li H, Sun G, Li N, et al. Design and Preparation of Highly Active Pt-Pd/C Catalyst for the Oxygen Reduction Reaction [J]. The Journal of Physical Chemistry C.2007,111 (15):5605-5617
    [133]Wang W M, Huang Q H, Liu J Y, et al. One-step synthesis of carbon-supported Pd-Pt alloy electrocatalysts for methanol tolerant oxygen reduction [J]. Electrochemistry Communications.2008,10 (9):1396-1399
    [134]Kinoshita K. Particle size effects for oxygen reduction on highly dispersed platinum in acid electrolytes [J]. Journal of the Electrochemical Society.1990,137:845-848
    [135]Zhao J, Manthiram A. Preleached Pd-Pt-Ni and binary Pd-Pt electrocatalysts for oxygen reduction reaction in proton exchange membrane fuel cells [J]. Applied Catalysis B: Environmental.2011,101 (3-4):660-668
    [136]Huang S Y, Ganesan P, Popov B N. Electrocatalytic activity and stability of niobium-doped titanium oxide supported platinum catalyst for polymer electrolyte membrane fuel cells [J]. Applied Catalysis B:Environmental.2010,96 (1-2):224-231
    [137]Jalan V, Taylor E. Importance of interatomic spacing in catalytic reduction of oxygen in phosphoric acid [J]. Journal of the Electrochemical Society.1983,130 (11):2299-2302

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700