用户名: 密码: 验证码:
铂钯及其合金薄膜的(电)化学沉积与电催化红外光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光谱电化学是应用各种光谱技术原位(in-situ)或非原位(ex-situ)地研究电化学体系的一门交叉学科。电化学红外反射光谱可获得电极表面吸附物种的取向、排列、覆盖度等状态信息,它是从分子水平研究电极过程的一种有效手段。其中,衰减全反射模式的表面增强红外光谱(ATR-SEIRAS),由于表面选律简单、表面信号强、传质容易以及受本体溶液干扰小的优点,特别适合实时检测电极表面动态过程,如电催化反应。
     铂、钯作为重要的贵金属催化剂在燃料电池中被广泛使用。由于单纯的铂、钯的局限性,有必要对其改性,以进一步提高其活性和利用率,降低其用量。常用的方法包括形成合金或者表面修饰其它金属等,通过由于金属协同效应、表面电子结构调整以及第三体效应共同作用,使多元金属组分一般具有比单一金属更为优秀的催化性质。另外,由于去合金化能够改变催化剂的元素组成、增加比表面积以及调整表面电子机构,有必要进一步探索去去合金化对合金催化活性的影响。
     本论文针对甲酸和CO的电氧化以及氧气的还原等体系,研究了铂基、铂基合金薄膜的制备和电催化性能,还研究了去合金化对电催化性能的影响。更重要的是,应用现场ATR-SEIRAS方法研究了部分合金、表面修饰电极的CO吸附性质以及甲酸电氧化反应。主要内容和结果如下:
     1.硅表面化学沉积铂钯及其合金以及表面增强红外光谱研究
     运用ATR-SEIRAS方法研究铂、钯及其合金表面的电催化的前提是在红外窗口硅表面沉积一层光亮、均匀且导电的纳米金属薄膜。我们采用酸性化学镀法成功地在硅表面沉积了一层具有SEIRA效应的铂、钯纳米薄膜。相比碱性专利镀铂技术,酸性化学镀法镀液不腐蚀硅基底;相比碱性镀钯技术,组分简单不使用有机络合剂(乙二胺)进而减少了镀层的污染。甚者,该方法可以通过控制前躯体金属盐的浓度沉积不同组分比的铂钯合金镀层。XPS以及ICP-AES分析测试表明,所镀铂钯合金铂在表面富集。使用CO作为探针分子进行ATR-SEIRAS测量发现:酸性化学镀法制备的铂、钯纳米薄膜具有较强的SEIRA效应,红外吸收峰峰形正常;而在铂钯合金中,随着钯组分的提高,红外谱峰逐渐减弱出现双极,并最终倒转。这种红外现象的转变可以由有效媒质理论(Effective medium theories;EMT)加以模拟解释。我们还进而研究了不同比例的铂钯合金对于甲酸电氧化性能的影响,发现Pt/Pd合金优化比例约为9/91。
     2.钯镍合金对于甲酸的电氧化以及去合金化效应
     通过合金材料部分去合金化,提高电极真实反应比表面和调节其表面电子特性,是获得各类高性能电催化材料新的重要方法。在甲酸的电氧化体系中,考虑到纯钯电极的性能以及稳定性皆差的不利因素,我们通过合金共沉积的方法制备钯镍合金薄膜电极,然后通过电位伏安扫描控制合金组分Ni的去合金化,并研究了不同程度镍的去合金化对氧化甲酸的影响。FE-SEM表征表明去合金化使得电极表面粗糙度提高,CO脱附实验进一步表明去合金化的Pd-Ni电极粗糙度提高16倍左右。XPS以及ICP-AES数据表明去合金化的Pd-Ni电极表面富集Pd。氧化甲酸测试结果发现去合金化的Pd-Ni电极的氧化甲酸电流密度与转速的平方根成正比,属于典型的扩散控制模式。
     3.铂表面修饰金对于甲酸的电氧化研究
     为提高铂在电氧化甲酸中的抗CO中毒能力,提高其氧化活性以及稳定性,我们使用欠电位沉积(UPD)的方法在Pt表面沉积单层Cu,然后将Cu置换成Au,重复两次得到亚单层的Au覆盖Pt的电极表面(Pt-Au2),研究了Pt-Au2电极的电氧化甲酸行为。电化学ATR-SEIRAS测量表明:与纯Pt电极不同,Pt-Au2电极经过CO毒性中间体路径电氧化甲酸的量大为降低,抗CO中毒能力明显提高。这为制备高性能铂基直接甲酸燃料电池阳极催化剂提供了新思路。
     4.铂钯铁三元合金用于氧气还原研究
     初步探索电沉积铂钯铁三元合金薄膜以用于氧气的电还原研究。采用恒电位合金共沉积的方法,在金电极表面制备铂钯铁三元合金。研究发现,铂钯铁三元合金表现出与铂铁合金相似的性能,性能好于纯铂。
Spectro-electrochemistry is an inter-discipline with the application of spectroscopic techniques to in situ or ex situ study of electrochemical systems. Electrochemical infrared reflection absorption spectroscopy can provide the information of the orientation, arrangement, and coverage for adsorbates on electrode, and thus is regarded as a useful tool for probing electrochemical interfaces at molecular level.In particular, attenuated total reflection-surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) has the advantages of simple surface selection rule, high surface sensitivity, and facile mass transport, facilitating the real-time monitoring of the dynamic electrode processes, including electrocatalytic reactions.
     As two important noble catalytic metals, Pt and Pd are widely used in fuel cells. However, pure Pt and Pd catalysts could not meet the performance needs. By means of alloying and surface modification with other metals, improved electrocatalysis with lower loading of Pt and Pd can be achieved owing to the synergy effect of alloys, the adjustment of surface electronic structure as well as the third-body effect. Not restricted to bimetallic alloy, ternary alloy was also usually designed to meet higher performance requirements.In addition, dealloying treatment could increase the surface area and adjust the surface electronic property, and it was also an effective approach to obtain better catalysts.
     Along this line, in this thesis work we not only investigated various platinum-based and platinum-based bimetallic or trimetallic films for formic acid and CO oxidation, and oxygen reduction, but also examined the dealloying effect on electrocatalytic properties for formic acid oxidation.Furthermore, in situ ATR-SEIRAS was applied to the study of the adsorption of CO or the oxidation of formic acid on Pd-Pt alloys and Au-modified Pt electrodes.
     The main contents and results of my research work are summarized as follows:
     1.Chemical deposition Pt, Pd and their alloys on silicon surface for SEIRAS
     The prerequisite of applying in situ ATR-SEIRAS to the electrocatalysis is to locate a facile process to deposit uniform and conductive Pt, Pd and their alloy films on the basal plane of a Si ATR element. To this end, we successfully developed a chemical plating method from simple acidic baths by using the hydrazine as the reductant. Compared to the deposition from complicated basic baths for plating Pt and Pd films in the literature, our new chemical deposition does not cause severe corrosion of Si, in addition, it is flexible and universal for fabricating Pt, Pd and their alloys of different compositions by changing the concentrations of precursor metal salts without the need of introducing organic complexing agents. XPS and ICP-AES analysis results indicated the enrichment of Pt on Pt-Pd alloys surface. ATR-SEIRAS measurements indicated that the as-deposited Pt and Pd nanofilms yield normally directed and enhanced infrared absorption for surface adsorbates. Increasing Pd component tunes the band shape, direction and intensity, which may be explained by effective medium theory (EMT).In addition, optimal electrocatalysis towards formic acid oxidations was pinpointed to the Pt9Pd91 alloy.
     2.Pd-Ni alloy for formic acid electro-oxidation and dealloy effect
     Dealloyment could increase the reaction surface area and adjust the surface electronic properties, which is an important approach to obtain high-performance electrocatalytic materials.Here, we first adopted the potentiostatic method to deposit Pd-Ni thin film on Au electrode, then partly dealloyed Ni by repetitive potential scans and studied the dealloying effect on the formic acid electro-oxidation.FE-SEM, and CO stripping results showed that the roughness factor increased up to 16 with the above dealloying treatment. XPS and ICP-AES data indicated that the dealloyed Pd-Ni electrode had the Pd enrichment on its surface. The current density of the formic acid oxidation on the dealloyed electrode was found to be proportional with the square root of rotation speed, suggesting a mass-transport-controlled process.
     3. Au decorated Pt surfaces for formic acid electro-oxidation
     For the sake of improving anti-CO poison ability and long-term stability of a Pt-based catalyst, we modified Au layer onto the platinum surface through initial Cu UPD on Pt followed by galvanic replacement of Au (and repeating the above process, the electrode thus obtained was denoted as Pt-Au2).In situ ATR-SEIRAS on the formic acid oxidation on Pt-Au2 electrode revealed that CO poisoning intermediate was significantly decreased compared to that on Pt electrode, attributable to the high efficiency and stability of Pt-Au2 towards formic acid oxidation.
     4. Pt-Pd-Fe ternary alloy for oxygen reduction
     Pt-Pd-Fe trimetallic alloys were prepared and examined for oxygen reduction. The trimetallic films on Au electrode were prepared by the potentiostatic deposition, and they showed significant electrocatalysis towards O2 reduction with a performance comparable to that of a Pt-Pd alloy film but better than that of a Pt film.
引文
[1]Heineman,W. R.;Hawkridge, F.M.;Blount, H.N.,Spectroelectrochemistry at Optically Transparent Electrodes.2.Electrodes under Thin-Layer and Semi-Infinite Diffusion Conditions and Indirect Coulometric Titrations.Electroanal Chem 1984, 13,1-113.
    [2]Durliat, H.;Comtat, M.,Investigation of Electron-Transfer between Platinum and Large Biological Molecules by Thin-Layer Spectroelectrochemistry.Anal Chem 1982,54(6),856-861.
    [3]Kaim, W.;Fiedler, J.,Spectroelectrochemistry:the best of two worlds. Chem Soc Rev 2009,38(12),3373-3382.
    [4]Ashley, K.;Pons, S.,Infrared Spectroelectrochemistry.Chem Rev 1988,88 (4), 673-695.
    [5]Holze, R.,Fundamentals and applications of near infrared spectroscopy in spectroelectrochemistry.J Solid State Electr 2004,8(12),982-997.
    [6]Hartstein, A.; Kirtley, J. R.; Tsang, J. C., Enhancement of the Infrared-Absorption from Molecular Monolayers with Thin Metal Overlayers.Phys Rev Lett 1980,45(3),201-204.
    [7]Wan,L.J.;Noda, H.;Wang, C.;Bai,C.L.;Osawa, M.,Controlled orientation of individual molecules by electrode potentials.Chemphyschem 2001,2(10), 617-619.
    [8]Diao, Y. X.;Han, M.J.;Wan, L. J.; Itaya, K.; Uchida, T.; Miyake, H.; Yamakata, A.;Osawa, M.,Adsorbed structures of 4,4'-bipyridine on Cu(111) in acid studied by STM and IR. Langmuir 2006,22 (8),3640-3646.
    [9]Pronkin,S.;Wandlowski,T., Time-resolved in situ ATR-SEIRAS study of adsorption and 2D phase formation of uracil on gold electrodes.J Electroanal Chem 2003,550,131-147.
    [10]Osawa, M.,Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS).B Chem Soc Jpn 1997,70(12),2861-2880.
    [11]Osawa,M.;Ataka,K.;Yoshii,K.;Nishikawa,Y.,Surface-Enhanced Infrared-Spectroscopy-the Origin of the Absorption Enhancement and Band Selection Rule in the Infrared-Spectra of Molecules Adsorbed on Fine Metal Particles.Appl Spectrosc 1993,47(9),1497-1502.
    [12](a)Hatta,A.;Ohshima,T.;Suetaka,W.,Observation of the Enhanced Infrared-Absorption of Para-Nitrobenzoate on Ag Island Films with an Atr Technique. Appl Phys α-Mater 1982,29 (2),71-75;(b) Hatta, A.;Suzuki, Y.; Suetaka, W.,Infrared-Absorption Enhancement of Monolayer Species on Thin Evaporated Ag Films by Use of a Kretschmann Configuration-Evidence for 2 Types of Enhanced Surface Electric-Fields.Appl Phys α-Mater 1984,35 (3), 135-140.
    [13]Cai, W. B.;Wan, L. J.; Noda, H.; Hibino, Y.;Ataka, K.;Osawa, M., Orientational phase transition in a pyridine adlayer on gold(111) in aqueous solution studied by in situ infrared spectroscopy and scanning tunneling microscopy. Langmuir 1998,14 (24),6992-6998.
    [14]Miyake, H.;Ye, S.;Osawa, M.,Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry.Electrochem Commun 2002,4(12),973-977.
    [15]Merklin, G.T.;Griffiths, P. R.,Influence of chemical interactions on the surface-enhanced infrared absorption spectrometry of nitrophenols on copper and silver films.Langmuir 1997,13 (23),6159-6163.
    [16]Suzuki,Y.;Sagisaka, K.;Hatta, A.,Evidence for Infrared-Absorption Enhancement of Species at the Lithium Metal Electrolytic Solution Interface.Appl Surf Sci 1995,84 (1),1-7.
    [17]Aroca, R.;Price, B.,A new surface for surface-enhanced infrared spectroscopy: Tin island films.JPhys Chem B 1997,101 (33),6537-6540.
    [18]Yoshidome, T.;Inoue, T.;Kamata, S.,Intensity enhancement of the infrared transmission spectra of p-nitrobenzoic acid by the presence of the Pb films.Chem Lett 1997,(6),533-534.
    [19]Krauth, O.;Fahsold, G.;Pucci, A.,Asymmetric line shapes and surface enhanced infrared absorption of CO adsorbed on thin iron films on MgO(001).J Chem Phys 1999,110(6),3113-3117.
    [20]Miki,A.;Ye, S.;Osawa, M.,Surface-enhanced IR absorption on platinum nanoparticles:an application to real-time monitoring of electrocatalytic reactions. Chem Commun 2002,(14),1500-1501.
    [21]Miyake, H.;Hosono, E.;Osawa, M.;Okada, T.,Surface-enhanced infrared absorption spectroscopy using chemically deposited Pd thin film electrodes.Chem Phys Lett 2006,428 (4-6),451-456.
    [22]Ortiz, R.;Cuesta, A.;Marquez, O.P.;Marquez, J.;Mendez, J. A.;Gutierrez, C.,Origin of the infrared reflectance increase produced by the adsorption of CO on particulate metals deposited on moderately reflecting substrates.J Electroanal Chem 1999,465(2),234-238.
    [23]Futamata, M.;Luo, L.Q.,Adsorbed water and CO on Pt electrode modified with Ru.J Power Sources 2007,164 (2),532-537.
    [24]Watanabe, M.;Zhu, Y. M.;Uchida, H.,Oxidation of CO on a Pt-Fe alloy electrode studied by surface enhanced infrared reflection-absorption spectroscopy.J Phys Chem B 2000,104(8),1762-1768.
    [25]Scheibe, H.J.;Siemroth, P.,Film Deposition by Laser-Induced Vacuum-Arc Evaporation.Ieee T Plasma Sci 1990,18 (6),917-922.
    [26]Aita, C.R.,Tailored ceramic film growth at low temperature by reactive sputter deposition.Crit Rev Solid State 1998,23 (3),205-274.
    [27]Zhu, Y.M.;Uchida, H.;Watanabe, M.,Oxidation of carbon monoxide at a platinum film electrode studied by Fourier transform infrared spectroscopy with attenuated total reflection technique.Langmuir 1999,75 (25),8757-8764.
    [28]Liu, H.Y.;Chen, D.;Tang, F.Q.;Ling, H.;Ren, X.L., Fabrication of silver nanoshells on modified polystyrene microspheres through electroless plating approach.Acta Phys-Chim Sin 2006,22 (5),644-648.
    [29]Wang, H.F.;Yan, Y.G.;Hu, S.J.;Cai, W. B.;Xu, Q. H.;Osawa, M.,Seeded growth fabrication of Cu-on-Si electrodes for in situ ATR-SEIRAS applications. Electrochim Acta 2007,52(19),5950-5957.
    [30]Yan, Y. G.;Li, Q. X.;Huo, S.J.;Ma, M.;Cai, W.B.;Osawa, M.,Ubiquitous strategy for probing ATR surface-enhanced infrared absorption at platinum group metal-electrolyte interfaces. JPhys Chem B 2005,109(16),7900-7906.
    [31]Kunimatsu,K.;Senzaki,T.;Samjeske, G.;Tsushima, M.;Osawa, M., Hydrogen adsorption and hydrogen evolution reaction on a polycrystalline Pt electrode studied by surface-enhanced infrared absorption spectroscopy. Electrochim Acta 2007,52(18),5715-5724.
    [32]Miyake, H.;Osawa, M.,Surface-enhanced infrared spectrum of CO adsorbed on Cu electrodes in solution.Chem Lett 2004,33(3),278-279.
    [33]Rodes, A.;Orts, J.M.;Perez, J.M.;Feliu, J. M.;Aldaz, A.,Sulphate adsorption at chemically deposited silver thin film electrodes:time-dependent behaviour as studied by internal reflection step-scan infrared spectroscopy. Electrochem Commun 2003,5(1),56-60.
    [34]Delgado, J.M.;Orts, J.M.;Rodes, A.,ATR-SEIRAS study of the adsorption of acetate anions at chemically deposited silver thin film electrodes.Langmuir 2005, 27(19),8809-8816.
    [35]Huo, S.J.;Li, Q. X.;Yan, Y. G.;Chen, Y.;Cai, W. B.;Xu, Q. J.;Osawa, M., Tunable surface-enhanced infrared absorption on Au nanofilms on Si fabricated by self-assembly and growth of colloidal particles.J Phys Chem B 2005,109 (33), 15985-15991.
    [36]Huo, S. J.;Xue, X.K.; Li, Q. X.; Xu, S. F.; Cai, W. B., Seeded-growth approach to fabrication of silver nanoparticle films on silicon for electrochemical ATR surface-enhanced IR absorption spectroscopy.J Phys Chem B 2006,110 (51), 25721-25728.
    [37]Antolini,E.,Palladium in fuel cell catalysis.Energ Environ Sci 2009,2 (9), 915-931.
    [38]Yu,X.W.;Pickup,P.G.,Recent advances in direct formic acid fuel cells (DFAFC).J Power Sources 2008,182 (1),124-132.
    [39]Wang, J.Y.;Kang, Y. Y.; Yang, H.;Cai, W. B.,Boron-Doped Palladium Nanoparticles on Carbon Black as a Superior Catalyst for Formic Acid Electro-oxidation.J Phys Chem C 2009,113 (19),8366-8372.
    [40]Yang, G.X.;Chen,Y.;Zhou,Y.M.;Tang, Y.W.;Lu, T.H.,Preparation of carbon supported Pd-P catalyst with high content of element phosphorus and its electrocatalytic performance for formic acid oxidation.Eletrrochem Commun 2010, 12(3),492-495.
    [41]Wang, X.M.;Xia, Y.Y.,Electrocatalytic performance of PdCo-C catalyst for formic acid oxidation.Eletrrochem Commun 2008,10(10),1644-1646.
    [42]Yi, Q. F.; Yu, W. Q.; Niu, F. J., Novel Nanoporous Binary Au-Ru Electrocatalysts for Glucose Oxidation.Electroanal 2010,22 (5),556-563.
    [43]Lang, X.Y.;Guo, H.;Chen, L. Y.;Kudo, A.;Yu, J.S.;Zhang, W.;Inoue, A.; Chen,M.W.,Novel Nanoporous Au-Pd Alloy with High Catalytic Activity and Excellent Electrochemical Stability.J Phys Chem C 2010,114 (6),2600-2603.
    [44]Kim,M;Ha, W.J.;Anh, J.W.;Kim, H.S.;Park, S.W.;Lee, D.,Fabrication of nanoporous gold thin films on silicon substrate by multilayer deposition of Au and Ag.J Alloy Compd 2009,484 (1-2),28-32.
    [45]Miyake, H.;Okada, T.;Samjeske, G.;Osawa, M.,Formic acid electrooxidation on Pd in acidic solutions studied by surface-enhanced infrared absorption spectroscopy.Phys Chem Chem Phys 2008,10 (25),3662-3669.
    [46]Samjeske, G.; Miki, A.;Ye, S.; Osawa, M., Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy.J Phys Chem B 2006,110(33),16559-16566.
    [47]Chen, Y.X.;Heinen, M.;Jusys, Z.;Behm,R. B.,Kinetics and mechanism of the electrooxidation of formic acid-Spectroelectrochemical studies in a flow cell. Angew Chem Int Edit 2006,45 (6),981-985.
    [48]Zhang, S.;Shao, Y.Y.;Yin, G.P.;Lin, Y.H.,Electrostatic Self-Assembly of a Pt-around-Au Nanocomposite with High Activity towards Formic Acid Oxidation. Angew Chem Int Edit 2010,49(12),2211-2214.
    [49]Xu, D.; Bliznakov, S.; Liu, Z. P.; Fang, J. Y.; Dimitrov, N., Composition-Dependent Electrocatalytic Activity of Pt-Cu Nanocube Catalysts for Formic Acid Oxidation.Angew Chem Int Edit 2010,49 (7),1282-1285.
    [50]Yu, X.W.;Pickup, P.G., Novel Pd-Pb/C bimetallic catalysts for direct formic acid fuel cells.J Power Sources 2009,192(2),279-284.
    [51]Clavilier, J.;Fernandezvega, A.;Feliu, J.M.;Aldaz, A.,Heterogeneous Electrocatalysis on Well Defined Platinum Surfaces Modified by Controlled Amounts of Irreversibly Adsorbed Adatoms.1.Formic-Acid Oxidation on the Pt (111)-Bi System.JElectroanal Chem 1989,258 (1),89-100.
    [52]Fernandezvega, A.;Feliu, J.M.;Aldaz, A.;Clavilier, J.,Heterogeneous Electrocatalysis on Well Defined Platinum Surfaces Modified by Controlled Amounts of Irreversibly Adsorbed Adatoms.2.Formic-Acid Oxidation on the Pt (100)-Sb System.J Electroanal Chem 1989,258 (1),101-113.
    [53]Clavilier, J.;Fernandezvega, A.;Feliu, J.M.;Aldaz, A.,Heterogeneous Electrocatalysis on Well-Defined Platinum Surfaces Modified by Controlled Amounts of Irreversibly Adsorbed Adatoms.3. Formic-Acid Oxidation on the Pt(100)-Bi System.J Electroanal Chem 1989,267(1),113-125.
    [54]Fernandezvega, A.;Feliu, J.M.;Aldaz, A.;Clavilier, J.,Heterogeneous Electrocatalysis on Well-Defined Platinum Surfaces Modified by Controlled Amounts of Irreversibly Adsorbed Adatoms.4.Formic-Acid Oxidation on the Pt(111)-as System.J Electroanal Chem 1991,305(2),229-240.
    [55]Baldauf, M.;Kolb, D.M.,Formic acid oxidation on ultrathin Pd films on Au(hkl)and Pt(hkl)electrodes.J Phys Chem-Us 1996,100(27),11375-11381.
    [56]Zhang, Z.G.;Zhou, X.C.;Liu, C.P.;Xing, W.,The mechanism of formic acid electro oxidation on iron tetrasulfophthalocyanine-modified platinum electrode. Electrochem Commun 2008,10 (1),131-135.
    [57]Koljadko, J.;Podlovchenko, B.I.;Wetzel,R.;Muller, L.,The Formation and Behavior of Ag Adsorbates at Pd Electrodes and Their Influence on Electrocatalytic Oxidation of Formic-Acid at Pd.J Electroanal Chem 1982,137(1),117-125.
    [58]Gojkovic, S.L.;Tripkovic, A.V.;Stevanovic, R. M.;Krstajic, N.V.,High activity of Pt4Mo alloy for the electrochemical oxidation of formic acid.Langmuir 2007,23(25),12760-12764.
    [59]Chen,Y.;Zhou,Y.M.;Tang, Y.W.;Lu, T. H.,Electrocatalytic properties of carbon-supported Pt-Ru catalysts with the high alloying degree for formic acid electrooxidation.J Power Sources 2010,195(13),4129-4134.
    [60]Lemos, S.G.;Oliveira, R.T. S.;Santos, M.C.;Nascente, P. A.P.;Bulhoes, L. O.S.;Pereira, E.C.,Electrocatalysis of methanol, ethanol and formic acid using a Ru/Pt metallic bilayer. J Power Sources 2007,163 (2),695-701.
    [61]Peng, B.;Wang, J.Y.;Zhang, H. X.;Lin, Y. H.;Cai, W. B.,A versatile electroless approach to controlled modification of Sb on Pt surfaces towards efficient electrocatalysis of formic acid.Electrochem Commun 2009,11 (4), 831-833.
    [62]Peng, B.;Wang, H.F.;Liu, Z.P.;Cai,W.B.,Combined Surface-Enhanced Infrared Spectroscopy and First-Principles Study on Electro-Oxidation of Formic Acid at Sb-Modified Pt Electrodes.J Phys Chem C 2010,114(7),3102-3107.
    [63]Greeley, J.;Norskov,J.K., Combinatorial Density Functional Theory-Based Screening of Surface Alloys for the Oxygen Reduction Reaction.J Phys Chem C 2009,113(12),4932-4939.
    [64]Zhang, J.;Sasaki, K.;Sutter, E.;Adzic, R. R., Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters.Science 2007,315 (5809), 220-222.
    [65]Yano, H.;Kataoka, M.;Yamashita, H.;Uchida, H.;Watanabe, M.,Oxygen reduction activity of carbon-supported Pt-M (M=V, Ni, Cr, Co, and Fe) alloys prepared by nanocapsule method.Langmuir 2007,23(11),6438-6445.
    [66]Stamenkovic, V.R.;Mun, B.S.;Arenz, M.;Mayrhofer, K.J.J.;Lucas, C.A. Wang, G.F.;Ross, P.N.;Markovic, N.M.,Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces.Nat Mater 2007,6(3),241-247.
    [67]Jalan, V.and E.J.Taylor(1983)."Importance of Interatomic Spacing in Catalytic Reduction of Oxygen in Phosphoric-Acid."Journal of the Electrochemical Society 130(11):2299-2301
    [68]Wei, Z. D.; Yin, F.; Li, L. L.; Wei, X. W.;Liu, X. A., Study of Pt/C and Pt-Fe/C catalysts for oxygen reduction in the light of quantum chemistry.J Electroanal Chem 2003,541,185-191.
    [1]Wada, M.,Observation of Dynamic Image of Pt/Ti Thin Film at High Temperature by In-Situ FE-SEM.J Jpn I Met 2009,73(12),943-947.
    [2]Zhang, Y.L.;Liu, Y.C.;Shi,S.M.;Chen, Z. F.;Liang, H.,Determination of Contents of Many Kinds of Metal Elements in Phellodendron by ICP-AES. Spectrosc Spect Anal 2009,29(10),2848-2850.
    [3]Waldvogel, H. P.; Scharli, M., Angle-Resolved X-Ray Photoelectron-Spectroscopy Study from It-Tase2 and from 2h-Tase2 Single-Crystals. JElectron Spectrosc 1984,34 (2),115-128.
    [4]Bloembergen, N.,Non-Linear Optics and Spectroscopy. Science 1982,216 (4550),1057-1064.
    [5]Prior, Y.;Bogdan, A.R.;Dagenais, M.;Bloembergen, N.,Pressure-Induced Extra Resonances in 4-Wave Mixing. Phys Rev Lett 1981,46 (2),111-114.
    [1]Ferrando, R.; Jellinek, J.;Johnston, R. L., Nanoalloys:From theory to applications of alloy clusters and nanoparticles.Chem Rev 2008,108 (3),845-910.
    [2]Li, H.Q.; Sun, G. Q.;Li, N.; Sun, S. G.; Su, D. S.; Xin, Q., Design and preparation of highly active Pt-Pd/C catalyst for the oxygen reduction reaction.J Phys Chem C 2007,111 (15),5605-5617.
    [3]Navarro, R.M.;Pawelec, B.;Trejo, J.M.;Mariscal,R.;Fierro, J.L.G., Hydrogenation of aromatics on sulfur-resistant PtPd bimetallic catalysts. J Catal 2000,189(1),184-194.
    [4]Samjeske, G.; Miki, A.; Ye, S.; Osawa, M., Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy.J Phys Chem B 2006,110(33),16559-16566.
    [5]Miyake, H.;Okada, T.;Samjeske, G.;Osawa, M.,Formic acid electrooxidation on Pd in acidic solutions studied by surface-enhanced infrared absorption spectroscopy. Phys Chem Chem Phys 2008,10 (25),3662-3669.
    [6]Miyake, H.;Hosono, E.;Osawa, M.;Okada, T.,Surface-enhanced infrared absorption spectroscopy using chemically deposited Pd thin film electrodes.Chem Phys Lett 2006,428 (4-6),451-456.
    [7]Miki, A.;Ye, S.;Osawa, M.,Surface-enhanced IR absorption on platinum nanoparticles:an application to real-time monitoring of electrocatalytic reactions. Chem Commun 2002,(14),1500-1501.
    [8]Nishikawa, Y.;Nagasawa, T.;Fujiwara, K.;Osawa, M.,Silver Island Films for Surface-Enhanced Infrared-Absorption Spectroscopy-Effect of Island Morphology on the Absorption Enhancement. Vib Spectrosc 1993,6(1),43-53.
    [9]Yan, Y. G.;Li, Q. X.;Huo,S.J.;Ma,M.;Cai, W. B.;Osawa, M.,Ubiquitous strategy for probing ATR surface-enhanced infrared absorption at platinum group metal-electrolyte interfaces.J Phys Chem B 2005,109(16),7900-7906.
    [10]Miyake, H.;Ye, S.;Osawa, M., Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry.Electrochem Commun 2002,4(12),973-977.
    [11]Wang, H. F.; Yan, Y. G.;Hu, S. J.;Cai, W. B.;Xu, Q. H.;Osawa, M.,Seeded growth fabrication of Cu-on-Si electrodes for in situ ATR-SEIRAS applications. Electrochim Acta 2007,52(19),5950-5957.
    [12]Lu, G.Q.;Sun, S.G.;Cai, L. R.;Chen, S.P.;Tian, Z. W.;Shiu, K. K., In situ FTIR spectroscopic studies of adsorption of CO, SCN-, and poly(o-phenylenediamine) on electrodes of nanometer thin films of Pt, Pd,and Rh: Abnormal infrared effects (AIREs).Langmuir 2000,16 (2),778-786.
    [13]Zheng, M.S.;Sun, S.G.;Chen, S. P., Abnormal infrared effects and electrocatalytic properties of nanometer scale thin film of PtRu alloys for CO adsorption and oxidation.J Appl Electrochem 2001,31 (7),749-757.
    [14]Miki,A.;Ye, S.;Senzaki, T.;Osawa, M.,Surface-enhanced infrared study of catalytic electrooxidation of formaldehyde, methyl formate, and dimethoxymethane on platinum electrodes in acidic solution.J Electroanal Chem 2004,563 (1),23-31.
    [15]Ma, C. L.; Ye, W. C.;Shi, X. Z.; Chang, Y. L.; Chen, Y.; Wang, C. M., Comparative study of electroless copper deposition based on the seed layers of Pd, PtPd and AuPd.Appl Surf Sci 2009,255 (6),3713-3718.
    [16]Radosavkic, D.;Barrett, N.;Belkhou, R.;Marsot, N.;Guillot, C.,CO adsorption on PtxPd1-x(111)single crystal alloy surfaces:a core level and valence band photoemission study.Surf Sci 2002,516 (1-2),56-68.
    [17]Duncan,H.;Lasia, A.,Separation of hydrogen adsorption and absorption on Pd thin films.Electrochim Acta 2008,53(23),6845-6850.
    [18]Gabrielli,C.;Grand, P.P.;Lasia, A.;Perrot, H.,Investigation of hydrogen adsorption and absorption in palladium thin films-Ⅱ.Cyclic voltammetry.J Electrochem Soc 2004,151(11),A1937-A1942.
    [19]Kunimatsu, K.;Senzaki, T.;Samjeske, G.;Tsushima, M.;Osawa,M., Hydrogen adsorption and hydrogen evolution reaction on a polycrystalline Pt electrode studied by surface-enhanced infrared absorption spectroscopy. Electrochim Acta 2007,52(18),5715-5724.
    [20]Grden, M.;Lukaszewski,M.;Jerkiewicz, G.;Czerwinski, A.,Electrochemical behaviour of palladium electrode:Oxidation, electrodissolution and ionic adsorption.Electrochim Acta 2008,53 (26),7583-7598.
    [21]Vidakovic, T.;Christov, M.;Sundmacher, K.,The use of CO stripping for in situ fuel cell catalyst characterization.Electrochim Acta 2007,52 (18),5606-5613.
    [22]Vidal-Iglesias, F.J.;Solla-Gullon, J.;Herrero, E.;Aldaz, A.;Feliu, J.M., Formic acid oxidation on Pd-modified Pt(100)and Pt(111) electrodes:A DEMS study.J Appl Electrochem 2006,36(11),1207-1214.
    [23]Kunimatsu,K.;Sato, T.;Uchida, H.;Watanabe, M.,Role of terrace/step edge sites in CO adsorption/oxidation on a polycrystalline Pt electrode studied by in situ ATR-FTIR method.Electrochim Acta 2008,53 (21),6104-6110.
    [24]Bjerke, A.E.;Griffiths, P.R.;Theiss, W.,Surface-enhanced infrared absorption of CO on platinized platinum.Anal Chem 1999,71 (10),1967-1974.
    [25]Su, Z. F.;Sun, S.G.;Wu, C.X.;Cai, Z. P., Study of anomalous infrared properties of nanomaterials through effective medium theory.J Chem Phys 2008, 129 (4),044707.
    [26]Pecharroman,C.;Cuesta, A.;Gutierrez, C.,Calculation of adsorption-induced differential external reflectance infrared spectra of particulate metals deposited on a substrate.J Electroanal Chem 2004,563(1),91-109.
    [27]Chen, Z.;Sun,S.G.;Ding, N.;Zhou, Z.Y.,Abnormal infrared effects of nanometer scale thin film material of PtPd alloy in CO adsorption.Chinese Sci Bull 2001,46(17),1439-1442.
    [28]Arenz,M.;Stamenkovic,V.;Schmidt,T. J.;Wandelt,K.;Ross,P. N.; Markovic, N.M.,The electro-oxidation of formic acid on Pt-Pd single crystal bimetallic surfaces.Phys Chem Chem Phys 2003,5 (19),4242-4251.
    [29]Wang, J.Y.;Peng, B.;Xie, H.N.;Cai,W.B.,In situ ATR-FFIR spectroscopy on Ni-P alloy electrodes.Electrochim Acta 2009,54 (6),1834-1841.
    [30]Squires, R. R.,Correlation of Electron and Hydrogen-Atom Binding-Energies for Transition-Metal Atoms.J Am Chem Soc 1985,707(15),4385-4390.
    [31]Zheng, M.S.;Sun, S.G.,In situ FTIR spectroscopic studies of CO adsorption on electrodes with nanometer-scale thin films of ruthenium in sulfuric acid solutions. JElectroanal Chem 2001,500(1-2),223-232.
    [32]Pecharroman, C.;Cuesta, A.;Gutierrez, C.,Comments on the paper by M.-S. Zheng and S.-G.Sun entitled'In situ FTIR spectroscopic studies of CO adsorption on electrodes with nanometer-scale thin films of ruthenium in sulfuric acid solutions'[J.Electroanal.Chem.500 (2001)223].J Electroanal Chem 2002,529 (2),145-154.
    [1]Yu, X.W.;Pickup, P. G.,Recent advances in direct formic acid fuel cells (DFAFC).J Power Sources 2008,182(1),124-132.
    [2]Zhu, Y.M.;Khan, Z.;Masel, R. I.,The behavior of palladium catalysts in direct formic acid fuel cells.J Power Sources 2005,139(1-2),15-20.
    [3]Samjeske, G.;Osawa, M.,Current oscillations during formic acid oxidation on a Pt electrode:Insight into the mechanism by time-resolved IR spectroscopy.Angew Chem Int Edit 2005,44(35),5694-5698.
    [4]Antolini, E.,Palladium in fuel cell catalysis.Energ Environ Sci 2009,2 (9), 915-931.
    [5]Wang, J.Y.;Kang, Y.Y.;Yang, H.;Cai, W. B.,Boron-Doped Palladium Nanoparticles on Carbon Black as a Superior Catalyst for Formic Acid Electro-oxidation.J Phys Chem C 2009,113(19),8366-8372.
    [6]Zhang, L.L.;Tang, Y.W.;Bao, J.C.;Lu, T. H.;Li, C.,A carbon-supported Pd-P catalyst as the anodic catalyst in a direct formic acid fuel cell.J Power Sources 2006,162(1),177-179.
    [7]Yang, G.X.;Chen, Y.;Zhou, Y. M.;Tang, Y. W.; Lu, T. H.,Preparation of carbon supported Pd-P catalyst with high content of element phosphorus and its electrocatalytic performance for formic acid oxidation.Electrochem Commun 2010, 12(3),492-495.
    [8]Morales-Acosta, D.;Ledesma-Garcia, J.;Godinez, L. A.;Rodriguez, H.G.; Alvarez-Contreras, L.;Arriaga, L.G.,Development of Pd and Pd-Co catalysts supported on multi-walled carbon nanotubes for formic acid oxidation.J Power Sources 2010,195(2),461-465.
    [9]Wang, X.M.;Xia, Y. Y.,Electrocatalytic performance of PdCo-C catalyst for formic acid oxidation.Electrochem Commun 2008,10(10),1644-1646.
    [10]Wang, X.;Tang, Y.;Gao, Y.;Lu, T. H.,Carbon-supported Pd-Ir catalyst as anodic catalyst in direct formic acid fuel cell.J Power Sources 2008,175 (2), 784-788.
    [11]Yu, X.W.;Pickup, P. G.,Novel Pd-Pb/C bimetallic catalysts for direct formic acid fuel cells. J Power Sources 2009,192(2),279-284.
    [12]Zhou, X. C.; Huang, Y. J.; Xing, W.; Liu, C. P.; Liao, J. H.; Lu, T. H., High-quality hydrogen from the catalyzed decomposition of formic acid by Pd-Au/C and Pd-Ag/C.Chem Commun 2008, (30),3540-3542.
    [13]Ge, J.J.;Zhang, Y.W.;Liu, C.P.;Lu, T. H.;Liao, J.H.;Xing, W.,Hydrogen Vanadate as an Effective Stabilizer of Pd Nanocatalysts for Formic Acid Electroxidation.J Phys Chem C 2008,112 (44),17214-17218.
    [14]Juodkazis, K.;Juodkazyte, J.;Sebeka, B.;Stalnionis, G.;Lukinskas, A., Anodic dissolution of palladium in sulfuric acid:An electrochemical quartz crystal microbalance study.Russ J Electrochem+ 2003,39 (9),954-959.
    [15]Kibler, L.A.;El-Aziz, A.M.;Hoyer, R.;Kolb, D. M.,Tuning reaction rates by lateral strain in a palladium monolayer. Angew Chem Int Edit 2005,44(14), 2080-2084.
    [16]Pavlic, A.A.;Adkins, H.,Preparation of a Raney Nickel Catalyst. J Am Chem Soc 1946,68(8),1471-1471.
    [17]Wittstock, A.;Zielasek, V.;Biener, J.;Friend, C.M.;Baumer, M.,Nanoporous Gold Catalysts for Selective Gas-Phase Oxidative Coupling of Methanol at Low Temperature. Science 2010,327 (5963),319-322.
    [18]Koh, S.;Strasser, P., Electrocatalysis on bimetallic surfaces:Modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. J Am Chem Soc 2007,129(42),12624-12625.
    [19]Yi, Q. F.; Huang, W.; Liu, X. P.; Xu, G. R.; Zhou, Z. H.; Chen, A. C., Electroactivity of titanium-supported nanoporous Pd-Pt catalysts towards formic acid oxidation.JElectroanal Chem 2008,619,197-205.
    [20]Demirci, U. B.,Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells. J Power Sources 2007,173(1), 11-18.
    [21]Wang, K.W.;Chung, S.R.;Liu, C.W.,Surface segregation of PdxNi100-x alloy nanoparticles. JPhys Chem C 2008,112 (27),10242-10246.
    [22]Pourovskii, L.V.;Ruban,A.V.;Abrikosov, I.A.;Vekilov, Y. K.;Johansson, B.,Bulk ordering and surface segregation in Ni50Pt50.Phys Rev B 2001,6403(3), 035421.
    [23]Hara, M.;Linke, U.;Wandlowski,T.,Preparation and electrochemical characterization of palladium single crystal electrodes in 0.1 M H2SO4 and HClO4 part I.Low-index phases.Electrochim Acta 2007,52(18),5733-5748.
    [24]Pavese,A.G.;Solis,V. M.;Giordano,M.C.,Oxidation of Formic-Acid on Palladium Anodes in Acidic Medium-Effect of Pd(Ii) Ions.Electrochim Acta 1987, 52(8),1213-1216.
    [25]Miyake, H.;Hosono, E.;Osawa, M.;Okada, T.,Surface-enhanced infrared absorption spectroscopy using chemically deposited Pd thin film electrodes.Chem Phys Lett 2006,428(4-6),451-456.
    [26]Wang, J.Y.;Peng, B.;Xie, H.N.;Cai, W. B.,In situ ATR-FFIR spectroscopy on Ni-P alloy electrodes. Electrochim Acta 2009,54 (6),1834-1841.
    [1]Cho, E.A.;Jeon,U.S.;Hong, S.A.;Oh, I.H.;Kang, S.G.,Performance of a 1 kW-class PEMFC stack using TiN-coated 316 stainless steel bipolar plates.J Power Sources 2005,142 (1-2),177-183.
    [2]Stevens, D. A.;Hicks, M.T.; Haugen, G.M.;Dahn, J. R., Ex situ and in situ stability studies of PEMFC catalysts. J Electrochem Soc 2005,152(12), A2309-A2315.
    [3]Yu, X.W.;Pickup, P. G.,Recent advances in direct formic acid fuel cells (DFAFC).J Power Sources 2008,182(1),124-132.
    [4]Yue, C.;Lim, K.H.,Adsorption of Formic Acid and its Decomposed Intermediates on(100) Surfaces of Pt and Pd:A Density Functional Study. Catal Lett 2009,128(1-2),221-226.
    [5]Chen,Y.X.;Heinen, M.;Jusys, Z.;Behm, R. B.,Kinetics and mechanism of the electrooxidation of formic acid-Spectroelectrochemical studies in a flow cell. Angew Chem Int Edit 2006,45 (6),981-985.
    [6]Watanabe, M.;Horiuchi,M.;Motoo, S.,Electrocatalysis by Ad-Atoms.23. Design of Platinum Ad-Electrodes for Formic-Acid Fuel-Cells with Ad-Atoms of the 4th-Group and the 5th-Group.J Electroanal Chem 1988,250 (1),117-125.
    [7]Yang, Y.Y.;Zhou, Z. Y.;Sun, S. G.,In situ FTIRS studies of kinetics of HCOOH oxidation on Pt(110) electrode modified with antimony adatoms. J Electroanal Chem 2001,500(1-2),233-240.
    [8]Lee, J.K.;Jeon, H.;Uhm, S.;Lee, J.,Influence of underpotentially deposited Sb onto Pt anode surface on the performance of direct formic acid fuel cells. Electrochim Acta 2008,53(21),6089-6092.
    [9]Yan, Y. G.;Li, Q. X.;Huo, S.J.;Ma, M.;Cai, W. B.;Osawa, M., Ubiquitous strategy for probing ATR surface-enhanced infrared absorption at platinum group metal-electrolyte interfaces. J Phys Chem B 2005,109(16),7900-7906.
    [10]Nakamura, M.;Endo, O.;Ohta, T.;Ito, M.;Yoda, Y.,Surface X-ray diffraction study of Cu UPD on Au(111)electrode in 0.5 M H2SO4 solution:the coadsorption structure of UPD copper, hydration water molecule and bisulfate anion on Au(111). Surf Sci 2002,514(1-3),227-233.
    [11]Liu, P. P.;Ge, X.B.;Wang, R. Y.;Ma, H.Y.;Ding, Y.,Facile Fabrication of Ultrathin Pt Overlayers onto Nanoporous Metal Membranes via Repeated Cu UPD and in Situ Redox Replacement Reaction.Langmuir 2009,25 (1),561-567.
    [12]Samjeske, G.; Miki, A.; Ye, S.; Osawa, M.,Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy.J Phys Chem B 2006,110(33),16559-16566.
    [1]Min,M.K.;Cho, J. H.;Cho, K.W.;Kim, H.,Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications. Electrochim Acta 2000,45 (25-26),4211-4217.
    [2]Chen, J.Y.;Lim, B.;Lee, E. P.;Xia, Y. N., Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications.Nano Today 2009,4(1),81-95.
    [3]Yano, H.;Inukai,J.;Uchida, H.;Watanabe, M.;Babu, P. K.;Kobayashi, T. Chung, J.H.;Oldfield, E.;Wieckowski, A.,Particle-size effect of nanoscale platinum catalysts in oxygen reduction reaction:an electrochemical and Pt-195 EC-NMR study.Phys Chem Chem Phys 2006,8 (42),4932-4939.
    [4]Markovic, N.M.;Ross, P. N.,Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 2002,45 (4-6),121-229.
    [5]Stamenkovic, V.R.;Mun, B.S.;Arenz, M.;Mayrhofer, K.J.J.;Lucas, C.A.; Wang, G.F.;Ross, P. N.;Markovic, N.M.,Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces.Nat Mater 2007,6(3),241-247.
    [6]Chen, S.;Ferreira, P. J.;Sheng, W.C.;Yabuuchi,N.;Allard, L.F.;Shao-Horn, Y.,Enhanced activity for oxygen reduction reaction on "Pt3CO"nanoparticles: Direct evidence of percolated and sandwich-segregation structures. J Am Chem Soc 2008,130(42),13818-13819.
    [7]Li, W. Z.;Zhou, W. J.;Li, H.Q.; Zhou, Z. H.;Zhou, B.;Sun, G. Q.;Xin, Q., Nano-stuctured Pt-Fe/C as cathode catalyst in direct methanol fuel cell.Electrochim Acta 2004,49(7),1045-1055.
    [8]Stamenkovic, V. R.;Fowler, B.;Mun, B.S.;Wang, G.F.;Ross, P. N.;Lucas, C. A.;Markovic, N. M.,Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability.Science 2007,315 (5811),493-497.
    [9]Lim, B.;Jiang, M.J.;Camargo, P. H.C.;Cho, E. C.;Tao, J.;Lu, X.M.;Zhu, Y. M.;Xia, Y.A.,Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction.Science 2009,324(5932),1302-1305.
    [10]Wakabayashi,N.;Takeichi, M.;Uchida, H.;Watanabe, M.,Temperature dependence of oxygen reduction activity at Pt-Fe, Pt-Co, and Pt-Ni alloy electrodes. J Phys Chem B 2005,109 (12),5836-5841.
    [11]Ma, Y.G.;Balbuena, P.B.,Pt surface segregation in bimetallic Pt3M alloys:A density functional theory study.Surf Sci 2008,602 (1),107-113.
    [12]Stamenkovic, V.;Schmidt, T. J.;Ross, P. N.;Markovic, N. M.,Surface composition effects in electrocatalysis:Kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces.J Phys Chem B 2002,106 (46), 11970-11979.
    [13]Anderson, A.B.;Roques, J.;Mukerjee, S.;Murthi,V.S.;Markovic, N.M.; Stamenkovic, V.,Activation energies for oxygen reduction on platinum alloys: Theory and experiment. JPhys Chem B 2005,109 (3),1198-1203.
    [14]Greeley, J.;Stephens, I.E.L.;Bondarenko, A.S.;Johansson, T. P.;Hansen, H. A.;Jaramillo, T. F.;Rossmeisl,J.;Chorkendorff, I.;Norskov,J.K.,Alloys of platinum and early transition metals as oxygen reduction electrocatalysts.Nat Chem 2009,1(7),552-556.
    [15]Greeley, J.;Norskov, J.K.,Combinatorial Density Functional Theory-Based Screening of Surface Alloys for the Oxygen Reduction Reaction.J Phys Chem C 2009,113 (12),4932-4939.
    [16]Adzic, R. R.;Zhang, J.;Sasaki,K.;Vukmirovic, M.B.;Shao, M.;Wang, J.X.; Nilekar, A.U.;Mavrikakis, M.;Valerio, J.A.;Uribe, F.,Platinum monolayer fuel cell electrocatalysts. Top Catal 2007,46 (3-4),249-262.
    [17]Zhang, J.;Sasaki,K.;Sutter, E.;Adzic, R.R.,Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters.Science 2007,315 (5809), 220-222.
    [18]Luo, J.;Kariuki, N.;Han, L.;Wang, L.Y.;Zhong, C.H.;He, T.,Preparation and characterization of carbon-supported PtVFe electrocatalysts. Electrochim Acta 2006,51(23),4821-4827.
    [19]Zhong, C.J.;Luo, J.;Njoki, P. N.;Mott, D.;Wanjala, B.;Loukrakpam, R.; Lim, S.;Wang, L.;Fang, B.;Xu, Z.C.,Fuel cell technology:nano-engineered multimetallic catalysts.Energ Environ Sci 2008,1 (4),454-466.
    [20]Tamizhmani, G.;Capuano, G.A.,Improved Electrocatalytic Oxygen Reduction Performance of Platinum Ternary Alloy-Oxide in Solid-Polymer-Electrolyte Fuel-Cells.J Electrochem Soc 1994,141 (4),968-975.
    [21]Tarasevich,M.R.;Novikov,D. V.;Zhutaeva, G.V.;Bogdanovskaya, V. A.; Reznikova, L.A.;Kapustina, N.A.;Batrakov,V.V.,Corrosion stability of nanosize Pd/C, PdCo/C,and PdCoCr/C catalytic systems in acidic media for fuel cell cathodes.Prot Met Phys Chem 2009,45(7),782-786.
    [22]Leistner, K.;Schaaf, P.;Voss, A.;Fahler, S.;Schultz, L.;Schlorb, H., Interfacial Fe(Ⅲ)-hydroxide formation during Fe-Pt alloy deposition.Electrochim Acta 2008,53(23),6973-6977.
    [23]Leistner, K.;Fahler, S.;Schlorb, H.;Schultz, L., Preparation and characterization of electrodeposited Fe/Pt multilayers.Electrochem Commun 2006, 5(6),916-920.
    [24]Miki,A.;Ye, S.;Senzaki, T.;Osawa, M.,urface-enhanced infrared study of catalytic electrooxidation of formaldehyde, methyl formate, and dimethoxymethane on platinum electrodes in acidic solution. J Electroanal Chem 2004,563(1),23-31.
    [25]Gasteiger, H.A.;Kocha, S.S.;Sompalli, B.;Wagner, F.T., Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B-Environ 2005,56(1-2),9-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700