用户名: 密码: 验证码:
杂交竹梢枯病菌蛋白毒素及其精确作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
暗孢节菱孢菌是引起四川栽培区杂交竹梢枯病的新病原,其致病机理研究不深入,特别在该菌蛋白毒素方面的研究尚为空白。本论文以该病原为对象,在研究其蛋白毒素诱导因子基础上,对蛋白毒素进行分离纯化、组分和分子结构、基本性质的分析,探索蛋白毒素对杂交竹生理代谢影响规律,弄清其作用浓度临界值,比较病菌与蛋白毒素对杂交竹伤害的生理学差异;并通过毒素免疫化学方法标记分析蛋白毒素结合位点和探索蛋白毒素对杂交竹嫩枝离体线粒体生物物理特性及呼吸作用的影响。获得以下主要研究结果:
     1.在采用单因素筛选最佳培养基及其成分的基础上,运用正交试验确定诱导暗孢节菱孢产蛋白毒素的温度、时间、pH、光照、瓶装量、接种量六个因素,从而得出最优诱导方案为:在改良Fries培养基+杂交竹煎汁为基础培养基中,乳糖等量代替葡萄糖;温度25℃,pH7,黑暗条件下,1块菌丝块(5mm)接种于80mL培养液(300mL三角瓶)振荡培养15d。在此诱导方案下,梢枯病菌产毒能力显著提高,杂交竹嫩枝感病指数在96h时高达85.69%。
     2.采用硫酸铵分级沉淀法对暗孢节菱孢的发酵上清液进行盐析,生测结果显示上清液没有活性,沉淀有活性,其盐析的最适饱和度为50%。此粗提物经SephadexG-50分子筛层析、High Q Sepharose Fast Flow强阴离子交换层析和Sephadex G-75分子筛层析后获得1个活性峰,SDS-PAGE电泳检测该峰为单一条带,以相对迁移率(mR)算得该蛋白的分子量为34.5kDa。将该峰进一步用RP-HPLC的方法进行纯度检验,经洗脱后得到2个峰,活性检测表明出峰时间为21min的峰2具有致萎活性,并命名为AP-toxin。采用Edman降解法成功测定了AP-toxin的N端13个氨基酸序列,即H2N-Pro-Pro-Ser-Gln-Val-Gln-Arg-Ala-Pro-Glu-Leu-Thr-Ser。经NCBI蛋白质数据库比对分析,推断该蛋白毒素与Phytophthora sojae的hypothetical protein PHYSODRAFT_563177氨基酸残基序列100%同源。对AP-toxin'性质研究的结果表明,该毒素耐温度范围为0-80℃、耐酸碱的范围为pH4-10、耐白炽光却不耐紫外线照射,对蛋白酶K和胰蛋白酶具有较好的耐受性,有一定专化性、介于专化性与非专化性毒素之间。
     3.采用针刺法对AP-toxin进行田间致病力检测,结果显示不同浓度AP-toxin处理的杂交竹针刺处均出现不同大小的褐色菱形病斑,与用A.phaeospermum菌悬液处理的一致,但反应快于病原菌;40、80μg/mL AP-toxin处理从15d开始与A.phaeospermum菌悬液处理的差异不显著。在不同杂交竹品种中,AP-toxin有效起始作用浓度不同:对抗病品种(3号和6号杂交竹)的有效起始作用浓度为10-20μg/mL;对感病品种(8号和30号杂交竹)的有效起始作用浓度为5-10μg/mL。
     4.采用浸渍法测定AP-toxin对4个杂交竹品种生理代谢的影响。毒素处理后,酚代谢的总酚和类黄酮含量先上升后下降,大小顺序均为6#>3#>30#>8#;核酸代谢中的总核酸、DNA、RNA含量均下降且DNase和RNase活性增加,但抗病品种中二者的降幅和增幅小于感病品种;蛋白质代谢中的可溶性蛋白含量先上升后下降,抗病品种增幅明显大于感病品种,4个品种蛋白酶活性均升高;糖代谢中4个品种可溶性糖含量均呈显著下降趋势,但6#>3#>30#>8#,但还原糖含量变化规律相反,均不同程度升高,且大小顺序为8#>30#>3#>6#。同时,测定了毒素对杂交竹防御酶系(POX、 SOD、PAL、PPO、几丁质酶、p-1,3葡聚糖酶)活性的影响,抗病品种的POX活性先升高到峰值然后下降后又上升,后期趋于稳定;感病品种均显著下降。SOD、PAL活性动态变化的规律均为初期升高而后期下降的趋势,大小顺序为6#>3#>30#>8#。抗病品种PPO活性0-72h大幅增加,之后下降保持一定水平;感病品种在36h时达到峰值,随即下降,在96h已低于无菌水对照组。4个品种几丁质酶活性均在0-36h内显著升高,但感病品种和抗病品种间差异显著。抗病品种p-1,3葡聚糖酶活性在0-240h内该酶活性迅速升高,至240h均达到峰值,之后有所下降但始终高于初始阶段;感病品种在整个测试期内其酶活均缓慢下降,但8号下降趋势更为明显。
     5.结合AP-toxin处理后杂交竹的症状表现及感病指数,以及AP-toxin伤害与杂交竹生理代谢的相关性分析,结果显示,总酚和类黄酮含量与抗性显著相关,而与感病指数显著负相关,但类黄酮含量与时间不相关;核酸代谢的五项指标与时间和抗性均显著相关,总核酸含量和RNA含量与感病指数呈显著负相关;蛋白质代谢中的蛋白酶活性与感病指数相关性不显著外,其余均达到显著水平;可溶性糖含量与时间、抗性、感病指数相关性达到极显著水平,而还原糖除与抗性极显著负相关外,与时间和感病指数相关性不显著。在6种防御酶活性中,与抗性呈显著或极显著正相关,而与感病指数呈负相关,但仅POX和β-1,3葡聚糖酶与时间显著正相关。另外,感病指数与时间呈极显著正相关,与品种抗性之间为极显著负相关。
     6.以AP-toxin免疫新西兰白兔制备毒素特异性抗血清,并将该蛋白用不同浓度的抗体吸附后处理杂交竹幼嫩枝条。结果表明,毒素所引起的症状有不同程度的减轻,说明所制备的抗体在与毒素发生特异性免疫学反应的同时,可部分封闭毒素分子上与毒素受体结合的位点;利用竞争酶联免疫吸附试验(ELISA)测定杂交竹嫩枝的质膜制剂与毒素蛋白的结合活性显示,质膜制剂与毒素结合后能部分阻断毒素与其抗体的免疫学反应,即质膜制剂中含有毒素的结合位点,且不同品种的结合活性有差异;胰蛋白酶和加热处理质膜制剂后,质膜制剂对毒素与其抗体反应的抑制作用消失,证实质膜制剂中与毒素结合的是蛋白类物质。
     7.采用不同检测技术(如荧光偏振法、中性红法、氧电极法等)测定AP-toxin对杂交竹嫩枝线粒体膜的流动性、表面电位、肿胀度、聚集度及脂质过氧化物MDA、 H2O2、辅酶Q10(COQ1O)含量、线粒体呼吸功能的影响。结果表明,蛋白毒素胁迫使线粒体膜流动性减弱、表面电位减低、肿胀度增大、聚集度降低;CoQ10含量下降,H2O2、MDA含量的增加,细胞色素C氧化酶(CCO)、ATPase活性亦下降,呼吸控制率(RCR)和磷氧比(P/O)明显降低,说明蛋白毒素对杂交竹嫩枝线粒体膜造成损伤,线粒体脂质过氧化程度增加,膜完整性被破坏,呼吸作用受抑制。
Arthrinium phaeospermum is the new pathogen causing Bambusa pervaiabilis xDendrocalamopsis daii blight in Sichuan cultivating area, whose pathogenic mechanism is still in infancy, especially in protein toxin produced from this pathogen is also lack. Based on the induced factors of protein toxin produced from this pathogen, the protein toxin was isolated and purified, its component, molecular structure and basic characteristic were analysed. The influence of protein toxin on the physiological metabolism of B. pervaiabilis×D. daii was explored, the critical value of activated concentration was clarified, and the physiological difference in damage of B. pervaiabilis×D. daii between the protein toxin and the pathogen. The binding site of the protein toxin was analysed by the immunochemical method to label toxin, and the effects of the protein toxin on biophysical characteristic and respiration of the mitochondrion of B. pervaiabilis×D. daii shoot were explored. The results were as follows:
     1. On the basis of screening the optimum culture medium and culture composition by the univariate analysis, the temperature, time, pH, light, bottle volume and inoculated amount of inducing the protein toxin produced from A. phaeospermum were comfirmed by orthogonal test. The optimal inducing scheme was including as below:in modified Fries medium+B. pervaiabilis×D. daii shoot juice, the glucose was replaced with the equal amounts of lactose; one mycelium mass (5mm) was inoculated into80mL culture medium in300mL triangular flask (pH7) and shaking cultured15d at25℃in dark condition. Under this sheme, the ability of produced toxin of A. phaeospermum enhanced siginificantly, and the disease index of B. pervaiabilis×D. daii shoot was85.69%at96h.
     2. The fermented supernatant of A. phaeospermum was salted out by ammonium sulfate precipitation, the bioassay results showed that the supernatant liquid had not activity, the precipitation had activity, and the optimum saturation was50%. One active peak was obtained by Sephadex G-50chromatography, High Q Sepharose Fast Flow chromatography and Sephadex G-75chromatography, which was one single band tested by SDS-PAGE analysis, and the molecular weight was34.5kDa calculated by the relative move rate (mR). The two elution peaks were further collected for purity of RP-HPLC, the activity analysis indicated that peak2with the peak time of21min had wilting acitivity, and it was named as AP-toxin. The sequencing result of AP-toxin showed13amino acids sequence of N-terminal end from the beginning was H2N-Pro-Pro-Ser-Gln-Val-Gln-Arg-Ala-Pro-Glu-Leu-Thr-Ser, which had100%homology with the hypothetical protein PHYSODRAFT_563177from Phytophthora sojae by the homophyly retrieval in NCBI. Characteristics of AP-toxin showed that this toxin temperature-resistant range was0-80℃, acid-base resistant was pH4-10, as well as it could resist incandescent light but not resist ultraviolet ray. In addition, it had stability against protease K and trypsin, and had some specialization which meant it was between the specialization and non-specialization toxin.
     3. The puncture method was used to assay the pathogenicity of AP-toxin in field, the results showed that the different sizes of brown diamond disease spots appeared in the acupuncture places of bamboos treated with different concentration of AP-toxin, as the same as the treatment of Aphaeospermum suspension, although the reaction was quicker than the pathogen. AP-toxin treatments of40and80μg/mL had no significant difference with the pathogen treatment from15d. In different varieties, the dose-response concentrations were different:the dose-response concentration of5-10μg/ml for the resistant varieties (No.3and No.6), and10-20μg/ml for the susceptible varieties (No.8and No.30) were observed.
     4. The effects of AP-toxin on the physiological metabolisms in four bamboo varieties were determinated by the impregnation method. After treated by toxin, the total phenol and flavonoid contents in phenolic metabolism increased and then decreased, the order was6#>3#>30#>8#. Total nucleic acid, DNA, and RNA contents in nucleic acid metabolism decreased but DNase and RNase activities increased, the decline and increase amplitudes of resistant varieties were less than the susceptible varieties. The soluble protein contents increased first and then decreased, the increase amplitude of resistant varieties was significantly more than the susceptible varieties, and the protease activity in four varieties rose. The soluble sugar contents in four varieties significantly declined, the order was6#>3#>30#>8#; but the change rule of reducing sugar was opposite, which had different degree of increase, and the order was8#>30#>3#>6#. Moreover, the effects of toxin on the activities of the defense enzymes (POX, SOD, PAL, PPO, chitinase and β-1,3-glucanse) were determined. POX activity of resistant varieties increased first until the peak value and then decreased and increased, and maintained the stability at the later period; but the susceptilble varieties significantly decreased. The dynamic change trends of SOD and PAL activities were initial increase and the later decrease, the order was6#>3#>30#>8#. PPO activities of resistant varieties increased drastically during0to72h followed by a decrease and then remained stable; the activities of suscepitible varieties reached their peaks at36h followed by a decrease, and the values at96h were lower than the respective control. Chitinase activities in four bamboo varieties increased dramatically and reached a relatively high value at36h, but the difference between suscepitible varieties and resistant varieties was significant. β-1,3glucanse activity in the resistant varieties showed a growing trend until activity peak formation at240h, which was followed by a decline; the activities in the susceptible ones declined in the whole testing period, particularly in No.8.
     5. Combined with the symptom and disease index of B. pervaiabilis×D. daii treated by AP-toxin, the correlation analysis between damage of AP-toxin and physiological metabolisms of bamboo, which indicated that the correlation of total phenol and flavonoid contents was significant to the resistance, but negatively significant to disease index, the correlation between flavonoid content and time was not significant. The nucleic acid metabolism had significant correlation with time and resistance, total nucleic acid content had negative correlation with disease index. Except the correlation between protease activity and disease index was not significant, the others were significant in protein metabolism. The correlations between soluble sugar content and time, resistance, disease index were remarkably significant, but it was remarkably negatively significant between reducing sugar content and resistance, and was not significant to time and disease index. The correlations of defense enzymes were significant or remarkably significant to the resistance, and were negative significant to disease index, but only POX and P-1,3glucanse activities had positively significant correlation with time. In addition, the disease index had remarkably positively significant correlation with time, and remarkably negatively significant correlation with the reisistance.
     6. The specific antiserum against the toxin was prepared by injecting the New Zealand white rabbit with AP-toxin. The results showed that the symptom was alleviated to different degree when the toxin absorbed by different concentration antibodies was inoculated B. pervaiabilis×D. daii shoot, illuminating that the prepared antibody not only immunologically reacted with the toxin, but also partly blocked some sites of toxin molecular which could recognize the binding sites on the hybrid bamboo cells. The binding activity of plasmalemma preparation of tender branches with protein toxin was determined by a competitive enzyme-linked immunosorbent assay (ELISA). The results revealed that the immunological reaction of the toxin and the antibody could be inhibited by the plasmalemma preparation, which hinted that the plasmalemma preparation contained the binding sites of the toxin. But the binding activities of different varieties had different. After treated by trypsin or heating, the plasmalemma preparation could not inhibit the immunological reaction of the toxin and the antibody, which verified the protein in the plasmalemma preparation was responsible for binding with the toxin.
     7. The effects of AP-toxin on the membrane fluidity, surface electronic potential, swelling, aggregation and the contents of lipid peroxide substance MDA, H2O2, Coenzyme Q10(CoQ10), and respiration function of the mitochondrion in B. pervariabilis×D. grandis shoot were determined by the different detection techniques (fluorescence polarization method, neutral red method, oxygen electrode method, etc.). The results showed that the protein toxin made the membrane fluidity weakening, surface electronic potential and aggregation decrease, swelling increase. It also made CoQ10content decrease, the contents of H2O2and MDA increase, the activities of cytochrome c oxidase (CCO) and ATP decrease, respiration control rate (RCR) and oxidative phosphorilation ratio (P/O) having significant reduction. The above results demonstrated that the protein toxin might damage the mitochondrial membrane, the lipid peroxidation of mitochondrion increased, the membrane integrality was destroyed, and the respiration was inhibited.
引文
[1]朱天辉,黄宗超,高强章,等.撑×绿杂交竹梢枯病病原及发生规律研究[J].中国森林病虫,2009,28(2):10-12,31.
    [2]朱天辉,黄宗超,高强章,等.撑×绿杂交竹梢枯病调查及空间分布型研究[J].四川林业科技,2009,30(1):29-31,37.
    [3]Evelyn A A, Koichi T, Yasunori A, et al. Detection of fungi producing infection-inhibiting metabolites against Alternaria alternata Japanese pear pathotype from fungi inhabiting internal tissues of Japanese pear shoots[J]. Journal of General Plant Pathology,2004,70(2):139.
    [4]Tomoko S, Takeshi S, Yoshihiro N. Infection behavior of Alternaria alternata Japanese pear pathotype and localization of 1,3-β-D-glucan in compatible and incompatible interactions between the pathogen and host plants[J]. Journal of General Plant Pathology,2003,69:91-100.
    [5]Rieko H, Kaoru I, Yoshitsugu H, et al. A conditionally dispensable chromosome controls host-specific pathogenicity in the fungal plant pathogen Alternaria alternata[J]. Genetics,2002, 161(1):59.
    [6]Praveen S, Kumar V R. Effect of nutritional factors on toxin production in Alternaria triticina; A foliar Pathogen of wheat[J]. Plant Diseases,2002,10(1):103-105.
    [7]瘳天仁.毛竹枯梢病研究综述[J].林业科学研究,1994,7(专刊):66-71.
    [8]邱子林,黄建河,林强,等.毛竹枯梢病症状、病原形态与生物学研究[J].福建林学院学报,1991,11(4):411-417.
    [9]马桂莲,胡国良,俞彩珠,等.高节竹梢枯病病原菌及其生物学特性研究[J].浙江林学院学报,2003,20(1):44-48.
    [10]马英玲.浅谈杂交竹枯萎病[J].广西林业,2001,4:38.
    [11]吕康生,陆小妹.撑×绿杂交竹枯死原因研究初报[J].广西植保,2004,17(2):1-3.
    [12]徐梅卿,戴玉成,范少辉,等.中国竹类病害记述及其病原物分类地位[J].林业科学研究,2006,19(6):692-699.
    [13]林长春.毛竹枯梢病的研究进展[J].竹子研究汇刊,2003,22(2):25-29.
    [14]朱建华.毛竹枯梢病普遍率与严重度关系初步探讨[J].福建林业科技,1997,24(3):43-46.
    [15]胡国良,俞彩珠,楼君芳,等.高节竹梢枯病发生规律及防治试验[J].中国森林病虫,2005,24(5):38-41.
    [16]杨芹.撑绿杂交竹研究现状及其效益探讨[J].山东林业科技,2007,3:101-103.
    [17]杨佐忠,叶健仁.杂交竹枯梢病的病原鉴定[J].四川农业大学学报,2004,22(3):225-227.
    [18]张素轩.毛竹枯梢病菌属喙球壳属一新种[J].南京林产工业学院学报,1982,(2):154-158.
    [19]姚筱羿,刘素芬,董月发,等.杨歧山毛竹枯梢病发生规律及综合防治技术[J].江西林业科技,2001,(6):26-27.
    [20]杨政.毛竹枯梢病的发生与防治简述[J].安徽林业科技,2009,(3):3.
    [21]林强,邱子林,黄建河,等.毛竹梢病的发生发展规律研究[J].南京林业大学学报,1993,17(2):61-62.
    [22]欧兆胜,张文勤,黄祖清.毛竹枯梢病测报方法研究[J].福建林学院学报,1993,13(2):141-146.
    [23]林强.毛竹林分结构与毛竹枯梢病的关系[J].福建林学院学报,2002,22(4):361-365.
    [24]林庆源,林强,黄吉力,等.毛竹枯梢病发生与林分及立地条件的关系[J].林业科学研究,1999,12(6):628-632.
    [25]林强.毛竹枯梢病性的土壤条件分析[J].南京林业大学学报,1999,23(4):43-46.
    [26]毛石禧.毛竹轻度枯梢病防治效果研究[J].竹藤保护,2007,5(1):43-44.
    [27]黄宗超,朱天辉.杂交竹枯梢病菌的室内杀菌剂筛选[J].中国森林病虫,2007,26(3):35-38.
    [28]郭晓军,李潞滨,李术娜,等.毛竹枯梢病拮抗细菌巨大芽孢杆菌6-59菌株的产芽孢条件优化[J].植物保护学报,2008,35(5):443-447.
    [29]李潞滨,李术娜,李佳,等.毛竹枯梢病拮抗细菌分离鉴定及其拮抗物质[J].林业科学,2009,45(7):63-69.
    [30]何进东,洪伟,吴承祯.人工神经网络在毛竹枯梢病预测预报的应用研究[J].植物病理学报,1998,28(4):353-357.
    [31]何世民.毛竹枯梢病综合防治技术研究[J].湖南林业科技,1998,25(2):87-88.
    [32]蒋捷,张文勤.毛竹枯梢病综合防治的研究[J].经济林研究,2000,18(4):7-8.
    [33]林庆源.毛竹枯梢病的综合治理技术[J].南京林业大学学报,2001,25(1):39-43.
    [34]谯天敏,朱天辉,李姝江.铜绿假单胞菌ZB27的定殖能力及对杂交竹梢枯病的防控作用[J].植物保护学报,2011,38(2):133-138.
    [35]张丽娜,朱天辉,张继甫.绛红褐链霉菌YSSPG3的发酵条件及其发酵滤液对杂交竹梢枯病的防治作用[J].植物保护学报,2012,39(3):237-245.
    [36]耿锐梅,张建萍,余柳青.植物病原菌毒素的种类、作用机理和应用前景[J].浙江农业学报,2007,19(5):393-398.
    [37]Latif Z, Strange R N, Bilton J, et al. Production of the phytotoxins, solanapyrones A and C and cytochalasin D among nine isolates of Ascochyta rabiei[J]. Plant Pathology,1993,42(2):172-180.
    [38]白涛.AT-毒素诱导烟草细胞死亡及对TMV抗性机制的研究[D].硕士论文,山东农业大学,2006.
    [39]董金皋,李树正.植物病原真菌毒素研究进展[M].北京:中国科学技术出版社,1978.
    [40]韩珊.寄生隐丛赤壳菌毒素化学及其致病机理的研究[D].博十论文,四川农业大学,2009.
    [41]罗孟军,朱天辉.植物病原真菌毒素[J].四川林业科技,2001,22(3):45-49.
    [42]Scheffer R P, Pringle R B. A selective toxin produced by Periconia circinata[J]. Nature,1961,191: 912-913.
    [43]Scheffer R P, Nelson R R, Ullstrup A J. Inheritance of toxin production and pathogenicity in Cochliobolus carbenum and Cochliobolus victoriae [J]. Phytopathology,1967,57:1288-1291.
    [44]Yoder, C. Toxins in pathogenesis[J]. Annual Review Phytopathology,1980,18:103-129.
    [45]Park P, UNNO K. Temporary acceleration of exocytosis of polysaccharides in susceptible strawberry leaves by AF-toxin 1 from Alternaria alternata strawberry pathotype[J]. Annual Phytopathology Society,1999,65:515-520.
    [46]马振国,董金皋,樊慕贞,等.芸苔链格孢毒素致病机理及钝化初步研究[J].河北农业大学学报,2000,23(1):64-66.
    [47]祁高富,杨斌,叶建仁.植物病原真菌毒素研究进展[J].南京林业大学学报,2000,24(2):66-70.
    [48]Park, P. Origin of inclusive materials between cell walls and invaginated plasma membranes in cells of susceptible leaves of Japanese pear treated with a host-specific toxin from Alternaria kikuchiana Tanaka[J]. Physiological Plant Pathology,1977,11(1):39-42.
    [49]Otani H, Kohnobe A, Kodama M, et al. Production of a host-specific toxin by germinating spores of Alternaria brassicicola[J]. Physiological and Molecular Plant Pathology,1998,52(5):285-295.
    [50]叶建仁,祈高富,包宏,等.松针褐斑病菌毒素对寄主细胞质膜伤害机理的研究[J].林业科学,2000,36(2):82-86.
    [51]张锐,晁开,刘锦霞.利用植物次生代谢产物开发生物农药[J].甘肃科学学报,1998,10(3):52-54.
    [52]张利辉,董金皋,刘云惠.植物病原真菌毒素的分离与纯化技术[J].现代科学仪器,2001,(2):56-62.
    [53]匡开源,陆仕华,史士英,等.脱氧雪腐镰刀菌烯醇产毒菌株的筛选和产毒条件[J].上海农业学报,1987,3(4):57-62.
    [54]万佐玺,周光来,强胜.链格孢菌产毒菌株及产毒培养基的筛选[J].湖北民族学院学报(自然科学版),2001,19(3):7-10.
    [55]Nukina M, Ikeda M, Sassa T. Two new pyrenolides, fungal morphogenic substances produced by Pyrenophora teres (Diedicke) Drechsler[J]. Agricultural and Biological Chemistyr,1980,44(11): 2761-2762.
    [56]王裕中,Miller J D, Neish G A中国南京三个禾谷镰刀菌菌株所产生的毒素[J].植物病理学报,1989,19(1):40.
    [57]王裕中,Miller J D.中国小麦赤霉病菌优势种——禾谷镰刀菌产毒素能力的研究[J].真菌学报,1994,13(3):229-234.
    [58]王桂清.玉米灰斑病菌致病性的稳定性研究[J].西北农业学报,2009,18(3):259-262,288.
    [59]左豫虎,康振生,李振岐,等.雪腐格氏霉产毒培养基的筛选及培养条件[J].西北农业大学学报,1996,24(4):6-9.
    [60]胡颖慧,龚束芳,李彩华,等.枯萎病菌毒素培养滤液对唐菖蒲幼苗毒性的初步研究[J].植物病理学报,2012,42(5):497-504.
    [61]Biljana A, Igor J, Verica J, et al. Optimization of the determination of deoxynivalenol in corn samples by liquid chromatography and a comparison of two clean-up principles[J]. Journal of The Serbian Chemical Society,2005,70(7):1005-1013.
    [62]郑凌凌,朱天辉.枯斑拟盘多毛孢的培养条件对其产毒的影响[J].北京林业大学学报,2006,28(3):115-118.
    [63]张笑宇,刘正垣,杨海明,等.影响向日葵菌核菌(Sclerotinia sclerotiorum)生长和毒素产生的条件研究[J].中国油料作物学报,2009,31(1):65-69.
    [64]张志强.大蒜叶枯病病原生物学及病菌毒素培养条件研究[J].硕士论文,西北农林科技大学,2007.
    [65]张志强,程智慧,沈永杰.大蒜叶枯病菌毒素产生条件的研究[J].西北农林科技大学学报(自然科学版),2007,35(12):186-190.
    [66]Miller J D. Production of deoxynivalenol and related compounds in liquid culture by Fusarium graminearum[J]. Canadian Journal of Microbiology,1983,29:1171-1178.
    [67]董金皋,康绍兰,王艳霞,等.玉米大斑病菌Helminthosporium turcicum致病毒素产生的条件及其特性[J].河北农业大学学报,1993,16(2):13-17.
    [68]卢同,种藏文,李本金.甘薯青枯病菌毒素产生条件的研究[J].植物病理学报,1999,29(4):339-344.
    [69]杨军玉,藏少先,刘淑香.玉米黄斑病菌产毒条件及毒素稳定性研究[J].玉米科学,2000,8(4):82-84.
    [70]刘亚光,杨庆凯,李海英,等.大豆灰斑病菌毒素的产生条件研究[J].菌物系统,2000,19(1):137-138.
    [71]黄永辉,李瑜婷,范家平,等.香蕉枯萎病菌4号生理小种产生毒素条件的优化[J].华中农业大学学报,2011,30(5):594-598.
    [72]梁军,魏淑花,叶建仁,等.溃疡病菌Botryosphaeria dothidea粗毒素产生的条件及特性[J].浙 江林学院学报,2008,25(5):559-564.
    [73]蒋继志,李向彬,桂春爽,等.石楠拟盘多毛孢毒素产生条件初探[J].微生物学通报,2009,36(1):46-50.
    [74]陆宁海,房振宏,高扬帆,等.黄瓜褐斑病菌产毒培养条件的研究[J].安徽农业科学,2006,34(11):2444-2445.
    [75]陆宁海,齐尚红,吴利民,等.番茄褐斑病菌产毒培养条件及其毒素的致病范围[J].微生物学杂志,2006,26(4):36-38.
    [76]李荣金,强胜.百日草链格孢菌粗毒素的生产、提取及稳定性的研究[J].中国生物工程杂志,2006,26(8):67-71.
    [77]郭霞,黄晓亚,李瑞华,等.红豆草黑腐病菌菌丝生长和产毒培养条件的优化[J].草地学报,2009,17(2):255-258.
    [78]陆仕华,魏春妹.禾谷镰孢菌株产毒--脱氧雪腐镰孢菌烯醇的液体培养条件[J].上海农业学报,1988,4(2):57-64.
    [79]郑露.大蒜白斑病病原学、防治技术及其毒素致病机理研究[D].博土论文,华中农业大学,2010.
    [80]Brian P W, Curtis P J, Hemming H G, et al. Altemaric acid, a biologically active metabolic product of the fungus Alternaria solani[J]. Nature,1949,164:534.
    [81]Alam M, SattarA, Chandhuri P K, et al. Isolation, purification and charaeterization of a phytotoxin produced by Curvularia andropogonis[J]. Plant Science,1997,123:47-55.
    [82]郝丽梅,王立安,马春红,等.玉米小斑病菌c小种毒素的分离纯化新方法[J].河北农业科学,2001,5(1):31-32.
    [83]朱建兰,郭霞,王国利,等.红豆草黑腐病病原鉴定及毒素组分研究[J].草地学报,2011,19(1):171-176.
    [84]崔洋,陈永丽,魏建昆,等.反相高效液相色谱法制备HMC毒素纯品[J].微生物学通报,1999,26(1):47-49.
    [85]梁颖,刘邻渭,张春晖.液质联用同时检测小麦中三种镰刀菌毒素[J].中国粮油学报,2006,21(6):160-162.
    [86]朱晞,黄梧芳.玉米圆斑病菌(Helminthosporium carbonum)致病毒素研究初报[J].河北农业大学学报,1991,14(2):45-49.
    [87]Uemura I, Miyagawa H, Ueno T. A symmetric total synthesis of AK-toxin Tetrahedron[J]. Phytochemistry,2002,58:2351-2358.
    [88]Quayyum H A, Gijzen M, Traquair J A. Purification of a necrosis-inducing, host-specific protein toxin from spore germination kluid of Alternariapanax[J]. Phytopathology,2003,93(3):323-328.
    [89]Palmer C S, Saleeba J A, Lyon B R. Phytotoxicity on cotton ex-plant of an 18.5 kDa protein from culture filtrates of Verticillium dahlia[J]. Physiological and Molecular Plant Pathology.2005,67(6): 308-318.
    [90]Sarma G N, Manning V A, Ciuffetti L M, et al. Structure of Ptr ToxA:an RGD-containing host-selective toxin from Pyrenophora tritici-repentis[J]. Plant Cell,2005,17(11):3190-3202.
    [91]陈夕军,潘存红,孟令军,等.水稻纹枯病菌毒素提纯及其组分初步分析[J].扬州大学学报(农业与生命科学版),2011,32(1):44-49.
    [92]Bournival B L, Ginoza H S, Schenck. S. Chraracterization of sugarcane response to Bipolaris sacchari:Inoculations and host-specific HS-toxin[J]. Phytopathology,1994,84:672-676.
    [93]董金皋,李正平.寄主选择性植物病原真菌的毒素化学[J].微生物学通报,1997,24(4):230,247-250.
    [94]Arnone A, Nasini G, Merlini L, et al. Secondary mould metabolites. Part 41. Structure and biosynthesis of Cercospora beticola toxin (CBT)[J]. Journal of the Chemical Society, Perkin Transactions 1,1993,1:145-151.
    [95]Rattan R S. Mechanism of action of insecticidal secondary metabolites of plant origin[J]. Crop Protection,2010,29(9):913-920.
    [96]Johnson R D, Johnson L, ltoh Y, et al. Cloning and characterization of a cyclic peptide synthetase gene from Alternaria alternate apple pathotype whose product is involved in AM-Toxin synthesis and pathogenicity [J]. Molecular plant-microbe interactions,2000,13(7):742-753.
    [97]Klotz M G. The action of tentoxin on membrane processes in plants[J]. Physiologia Plantarum, 1988,74(3):575-582.
    [98]Kwon C Y, Rasmussen J B, Francl L J, et al. A quantitative bioassay for necrosis toxin from Pyrenophora tritici-repentis based on electrolyte leakage[J]. Phytopathology,1996,86:1360-1363.
    [99]Nakajina H, Nishimura K, Hamasaki, T, et al. Structure of neovasin, a new metabolite produced by fungus, Neocosmospora vasinfecta E. F. Smith, and its biological activity to lettuce seedling[J]. Agricultural Biological Chemistry,1987,51:2831-2833.
    [100]Jones W T, Harvey D, Sutherland P W, et al. Production of anti-idiotypic monoclonal antibodies that mimic the phytotoxin Dothistromin[J]. Food and Agricultural Immunology,1998,10(1): 67-68.
    [101]刘凤权,胡白石.棉花黄萎病菌毒素结合位点初探[J].棉花学报,2005,17(1): 29-32.
    [102]Damann K E, Gardner JR J M, Scheffer R P. An assay for Helminthosporium victoriae toxin based on induced leakage of electrolytes from oat tissue[J]. Phytopathology,1974,64:652-654.
    [103]Holden J H, Sze H. Helminthosporium maydis T toxin increased membrane permeability to Caz in susceptible corn mito chondria[J], Plant Physiology,1984,75:235-237.
    [104]Park P, Fukutomi M, Akai S, et al. Effect of the host-specific toxin from Alternaria kikuchiana on the ultrastructure of plasma membranes of cells in leaves of Japanese pear[J]. Physiological Plant Pathology,1976,9(2):167-174.
    [105]Park P, Ohno T, Nishimura S, et al. Leakage of sodium ions from plasma membrane modification, associated with permeability, in host cells treated with a host-specific toxin from a Japanese pear pathotype of Alternaria alternate [J]. Canadian Journal of Botany,1987,65:330-339.
    [106]Chil Y K, Rasmussen J B, Francl L J, et al. A quantitative bioassay for Necrosis toxin from Pyrenophora tritici-repentis based on electrolye leakage[J]. Phytopathology,1996,86:1360-1363.
    [107]左豫虎,康振生.雪腐格氏霉粗毒素导致小麦叶组织膜渗透透性和超微结构的变化初报[J].植物病理学报,1998,28(2):172-173.
    [108]马丽艳,张俊华,崔崇.南瓜疫病菌(Phytophthora capsici)毒素对寄主超微结构的影响[J].东北农业大学学报,2006,37(4):468-472.
    [109]Johnson R D, Johnson L, ltoh Y, et al. Cloning and characterization of a cyclic peptide synthetase gene from Alternaria alternate apple pathotype whose product is involved in AM-Toxin synthesis and pathogenicity[J]. The American Phyotopathological Society,2000,13(7):742-753.
    [110]Zemanek A B, Ko T S, Thimmapuram J, et al. Changes in β-1,3-glucanase mRNA levels inpeach in response to treatment with pathogen culture filtrates, wounding, and other elicitors[J]. Journal of Plant Physiology,2002,159:877-889.
    [111]Goyer C, Charest P M, Toussaint V, et al. Ultrastructural effects of thaxtomin A produced by Streptomyces scabies on mature potato tuber tissues[J]. Canadian Journal of Botany,2000,78(3): 374-380.
    [112]Daub M E. The fungal photosensitizer cercosporin and its role in plant disease[J]. ACS Symposium Series,1987,339:271-280.
    [113]王江柱,董金皋.寄主选择性植物病原真菌毒素致病机制研究现状[J].河北农业大学学报,1995,18(3):101-106.
    [114]李秀琴,陈捷,姚健闽南.玉米全蚀病菌毒素的初步研究[J].沈阳农业大学学报,1992,23(3):221-223.
    [115]陈捷.植物病原菌毒素的致病机理[M].北京:中国科技出版社,1997,32-50.
    [116]Pijut P M, Lineberger R D, Domir S C, et al. Ultrastructure of cells of Ulmus americana cultured in vitro and exposed to the culture filtrate of Ceratocystis ulmi[J]. Phytopathology,1990,80: 764-767.
    [117]Elzbieta B K, Arne H J, Thomas R, et al. Morphological, chemical and molecular differentiation of Fusarium equiseti isolated from Norwegian cereals[J]. International Journal of Food Microbiology,2005,99:195-206.
    [118]邱永祥,柯玉琴,代红军,等.甘薯抗蔓割病的酚类物质代谢的研究[J].中国生态农业学报,2007,15(5):167-170.
    [119]傅雪琳,何平,张志胜,等.禾谷镰刀菌培养滤液对小麦种子萌发代谢的影响[J].华南农业大学学报,2001,22(1):60-62.
    [120]陈茹,刘钟滨.黄曲霉菌aflR基因启动子序列变异与黄曲霉毒素产生相关联[J].细胞生物学杂志,2006,28(6):912-916.
    [121]康振生,黄丽丽,Buchenauer H.小麦穗组织中脱氧镰刀菌烯醇毒素的免疫细胞化学定位[J].植物病理学报,2004,34(5):419-424.
    [122]台莲梅,许艳丽,闫凤云.尖孢镰刀茵毒素对大豆幼根生理生化的影响[J].中国农业通报,2005,21(11):193-196.
    [123]郑莉,杨斌,胡小龙.灰葡萄孢毒素诱发紫茎泽兰电解质渗漏化学物质的研究一可溶性蛋白质和可溶性糖含量变化[J].西南林学院学报,2006,26(6):29-32.
    [124]田雪亮,刘鸣韬,杨家荣.黄瓜枯萎菌粗毒素对不同抗性黄瓜种子萌发及幼苗胁迫作用研究[J].中国生态农业学报,2008,16(6):1495-1498.
    [125]田雪亮,郎剑锋,周建,等.串珠镰刀菌粗毒素对玉米根系细胞膜的影响[J].广东农业科学,2012,(6):87-88,99.
    [126]Suzuki T, Shinogi T, Unno K, et al. β-1,3-D-glucan transported from golgi apparatus of Japanese pear leaves is a component of extracellular polysaccharides accumulated after AK-toxin I Treatment[J]. Journal of General Plant Pathology,2002,68(4):267-276.
    [127]Suzuki T, Shinogi T, Narusaka Y, et al. Infection behavior of Alternaria alternata Japanese pear pathotype and localization of 1,3-β-D-glucan in compatible and incompatible interactions between the pathogen and host plants[J]. Journal of General Plant Pathology,2003,69(2): 91-100.
    [128]马旭俊,朱大海.植物超氧化物歧化酶(SOD)的研究进展[J].遗传,2003,25(2):225-231.
    [129]Avdiushko S A, Ye X S, Kuc J. Detection of several enzymatic activities in leaf prints of cucumber plants[J]. Physiological and Molecular Plant Pathology,1993,42:441-454.
    [130]万佐玺,朱晶晶,强胜.链格孢菌毒素对紫茎泽兰的致病机理[J].植物资源与环境学报,2001,10(3):47-50.
    [131]赵明敏,刘正坪,胡俊.茄子黄萎病菌毒素对茄子体内几种酶活性的影响[J].华北农学报,2003,18(2):70-73.
    [132]Geimba M P, Corbellini V A, Scroferneker M L. Chemical and immunological differentiation of exoantigens from four Bipolaris sorokiniana strains[J]. Process Biochemistry,2005,40: 2051-2057.
    [133]徐艳.水稻纹枯病菌毒素的致病机理及对寄主防御酶活性的影响[D].硕士论文,扬州大学,2006.
    [134]李萌.稻瘟菌粗毒素相关理化性质及致病机理研究[D].硕士论文,华中农业大学,2009.
    [135]任嘉红,张晓刚,张桂萍.利用溃疡菌毒素对抗溃疡病杨树品种的筛选[J].晋东南师范专科学校学报,2003,20(5):11-13.
    [136]卢同,谢世勇,李本金,等.双抗性甘薯新品系的抗病力鉴定和生产力评价[J].江西农业学报,2004,(2):33-37.
    [137]杨继芝,龚国淑,陈华保,等.禾谷镰刀菌粗毒素在小麦抗赤霉病性鉴定中的应用[J].麦类作物学报,2011,(6):1164-1167.
    [138]高卫时,张立明,刘华君,等.不同品种甜菜褐斑病抗性分析及早期鉴定方法[J].中国糖料,2011,(4):25-27.
    [139]翟国英,黄梧芳.玉米大斑病菌致病毒素及其应用的初步研究[J].河北农业大学学报,1991,14(4):65-71.
    [140]Carlson P S. Methionine sulfoximine-resistant mutants of tobacco[J]. Science,1973,180(93): 1366-1368.
    [141]程智慧,牛青,.孟焕文.大蒜抗叶枯病变异系的离体筛选及其抗性分析[J].西北农林科技大学学报(自然科学版),2012,40(2):109-120.
    [142]杨媚,舒灿伟,陈健仪,等.利用甲基磺酸乙酯和枯萎病菌毒素诱变筛选香蕉抗毒素突变体[J].园艺学报,2012,39(8):1465-1470.
    [143]程智慧,邢宇俊.利用马铃薯晚疫病菌粗毒素离体筛选马铃薯抗晚疫病无性系[J].西北植物学报,2005,25(12):2402-2407.
    [144]Chand R, Sen D, Prasad K D, et al. Screening for disease resistance in barley cultivars against Bipolaris sorokiniana using callusculture method[J]. Indian Journal of Experimental Biology, 2008,46(4):249-253.
    [145]敖世恩,杨媚,周而勋,等.离体筛选的水稻抗纹枯病突变体的生理生化特性分析[J].华南农业大学学报,2006,27(2):39-41.
    [146]李大伟,黄伟,巩振辉.辣椒抗枯萎病体细胞变异无性系筛选粗毒素适宜剂量的研究[J].西北农业学报,2006,15(6):130-134.
    [147]刘进平,郑成木.利用辣椒疫霉培养滤液体外筛选胡椒抗瘟病无性系研究[J].热带亚热带植物学报,2004,12(6):528-532.
    [148]曹有龙,贾勇炯,赵军,等.应用组织培养技术离体筛选枸杞抗根腐病变异体的研究[J].植物病理学报,1999,29(2):163-168.
    [149]马璐琳,张艺萍,丁鲲,等.百合抗镰刀菌资源鉴定及抗病相关基因筛选[J].园艺学报,2012,39(6):1141-1150.
    [150]吴纯仁,刘后利.油菜菌核病的致病机制[J].植物病理学报,1991,21(2):135-140.
    [151]Bolla R L, haheen P, Winter R E K. Effect of phytotoxin from nematode-induced pine wilt on Bursaphelenchus xylophilus and Ceratocystis[J]. Journal of Nematology,1984,16:297-303.
    [152]Triole E, Lorenzini G. Some characteristics of culture filtrates of seiridium cardinale causal agent of cupressus canker [J]. Rivista di Patologia Vegetable Ⅳ,1980,16(3):87-94.
    [153]王裕中,Milier J D.中国小麦赤霉病菌优势种--禾谷镰刀菌产毒素能力的研究[J].菌物系统,1994,(3):71-76.
    [154]Alias H K, Tanaka T, Duke S V, et al. Susceptibility of various crop and weed species to AAL-toxin, a natual herbicide[J]. Weed Technology,1995,9(1):125-130.
    [155]王朝华,张立新,董金皋.植物病原真菌毒素中除草活性物质的筛选[J].河北农业大学学报,2002,25(2):65-70.
    [156]李树正,东霞,刘准,等.交链孢酸的抗菌活性及除草活性的研究[M].北京:中国科学技术出版社,1997,227-232.
    [157]苏少泉.生物除草剂的研究与开发[J].农药,2004,43(3):97-100.
    [158]Abbas H k, Boyette C D. Bioherbicidal potential of Fusarium monoliforme and its phytotoxin, furnonisin[J]. Weed Science,1991,39(4):673-677.
    [159]Kim K W, Cho K Y. Identification of phytotoxins produced by Drechslera porturlacae, a pathogen of purslane (Portulaca oleracea), Isolation of methyldihydroxy-zearalenone and its herbicidal activity[J]. Korean Jouranal of Weed Science,1994,14(3):184-191.
    [160]Jones R W, Hancock D G. Soilborne fungi for biological control of weeds[J]. In R.E. Hoagland (ed.), Microbes and Microbial Products as Microbial Herbicides, American Chemical Society, Washington, DC,1990,276-286.
    [161]Vorro M, Zonno M C, Evidente A, et al. Enhancement of eficacy of Ascochyta caulina to control Chenopodium albulmn by use of phytotoxins and reduced rates ofherbicides[J]. Biological Control,2001,21 (2):182-190.
    [162]杨莉.暗孢节菱孢菌对撑×绿杂交竹致病机理的研究[D].硕十论文,四川农业大学,2009.
    [163]卢同,种藏文,李本金,等.甘薯青枯病菌毒素产生条件的研究[J].植物病理学报,1999,29(4):339-344.
    [164]Asis R, Barrionuevo D L, Giorda L M, et al. Aflatoxin production in six peanut(Arachis hypogaea L.) genotypes infected with Aspergillus flavus and Aspergillus parasiticus, isolated from peanut production areas of Cordoba, Argentina[J]. Journal of Agricultural and Food Chemistry, 2005,53(23):9274-9280.
    [165]张林青,程智慈.大蒜白腐病病原菌产毒素培养条件的优化[J].园艺学报,2008,35(6):841-846.
    [166]Evelyn A A, Koichi T, Yasunori A, et al. Detection of fungi producing infection-inhibiting metabolites against Alternaria alternata Japanese pear pathotype from fungi inhabiting internal tissues of Japanese pear shoots[J]. Journal of General Plant Pathology,2004,70(2):139-142.
    [167]Tomoko S, Takeshi S, Yoshihiro N. Infection behavior of Alternaria Alternata Japanese pear pathotype and localization of 1,3-p-D-glucan in compatible and incompatible interactions between the pathogen and host plants[J]. Journal of General Plant Pathology,2003,69:91-100.
    [168]Rieko H, Kaoru I, Yoshitsugu H, et al. A conditionally dispensable chromosome controls host-specific pathogenicity in the fungal plant pathogen Alternaria alternate[J]. Genetics,2002, 161(1):59-70.
    [169]Nielsen P, Sorensen J. Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere[J]. FEMS Microbiology Ecology,1997,22:183-192.
    [170]Ho S H, Koh L, Ma Y, et al. The oil of garlic, Allium sativum L. (Amaryllidaceae), as a potential grain protectant against Tribolium castaneum (Herbst) and Sitophilus zeamais Motsch [J]. Postharvest Biology and Technology,1996,9(1):41-48.
    [171]明道绪.田间试验与统计分析[M].北京:科学出版社,2005.
    [172]曹丹玥,高红亮,常忠义,等.谷氨酰胺转胺酶发酵培养基的响应面分析优化[J].华东师范大学学报(自然科学版),2007,(2):93-97.
    [173]冉淦侨,朱吕雄,田云龙,等.防治青枯病工程菌Hrp-菌株的发酵培养基配方优化[J].中国生物防治,2010,26(1):73-79.
    [174]鹿秀云,李社增,栗秋生,等.玉米叶斑病拮抗细菌的筛选及其发酵培养基优化[J].中国生物防治,2006,22(增刊):47-53.
    [175]李小波,康立功,路盼,等.番茄叶霉病菌产毒条件研究[J].植物保护,2010,36 (1):83-86.
    [176]李永艳,陈玉惠,敖新宇.茶藨生柱锈重寄生木霉产毒条件的优化[J].尔北林业大学学报,2011,39(5):102-104.
    [177]叶建仁,杨斌,包宏,等.松针褐斑病菌的产毒培养和毒素粗提方法[J].南京林业大学学报(白然科学版),2001,25(5):6-10.
    [178]陈玉惠,杨艳红,李永和,等.3株木霉(Trichoderma spp.)对华山松疱锈病菌锈孢子的破坏作用[J].植物保护,2006,32(6):62-65.
    [179]叶茂,罗宽,何昆,等.毛竹枯梢病病原菌产毒条件及其对植物的影响[J].湖南农业大学学报(自然科学版),2001,29(6):449-452.
    [180]彭建华,郑春耀,潘羡心,等.橡胶树多主棒孢病菌强致病菌株的筛选及产毒条件优化[J].热带作物学报,2009,30(4):520-524.
    [181]罗雪云,刘兴玢,李玉伟,等.变质甘蔗中毒的病因研究Ⅲ菱孢产毒培养基的研究[J].卫生研究,1987,(5):25-27.
    [182]李云,周应揆,李文鹏.黄曲霉毒素M1高产菌株的选育及产毒条的的研究[J].吉林农业大学学报,1998,(增刊):75.
    [183]Watanabe M F, Oishi S. Effects of environmental factors on toxicity of a Cyanobacterium (Microcystis aeruginosa) under culture conditions[J]. Applied Environmental Microbiology.1985, 49(5):1342-1344.
    [184]Karlsson S, Burman L G, Akerlund T. Induction of toxins in Clostridium difficile is associated with dramatic changes of its metabolism[J]. Microbiology.2008,154(11):3430-3436.
    [185]张涛.Pilidium concavum毒素产生条件及致病机理研究[D].硕士论文,河南科技大学,2011.
    [186]于莉,陈捷,李赤,等.黑斑毒素对感病和抗病向日葵叶组织超微结构的影响[J].植物病理学报,2002,32(3):252-256.
    [187]张利辉,刘云惠,董金皋,等.玉米大斑病菌特异性毒素组分的分离与纯化[J].植物病理学报,2003,33(1):67-71.
    [188]Aremu E A, Tanaka K, Akagi Y, et al. Detection of fungi producing infection-inhibiting metabolites against Alternaria alternata Japanese pear pathotype from fungi inhabiting internal tissues of Japanese pear shoots[J]. Journal of General Plant Pathology,2004,70(2):139-142.
    [189]Hatta R, Ito K, Hosaki Y, et al. A conditionally dispensable chromosome controls host-specific pathogenicity in the fungal plant pathogen Alternaria alternata[J]. Genetics,2002,161(1):59-70.
    [190]Horbach R, Nacarro-Quesada A R, Knogge W, et al. When and how to kill a plant cell:Infection strategies of plant pathogenic fungi[J]. Journal of Plant Physiology,2011,168(1):51-62.
    [191]Tsuge T, Harimoto Y, Akimitsu K, et al. Host-selective toxins produced by the plant pathogenic fungus Alternaria alternata[J]. FEMS Microbiology Reviews,2013,37(1):44-66.
    [192]杨斌,叶建仁,包宏,等.松针褐斑病菌毒素LA-Ⅰ的分离纯化及其化学结构[J].林业科学,2005,41(2):86-90.
    [193]朱天辉,罗孟军,叶华智.枯斑盘多毛孢Pf-毒素活性组分的研究Ⅰ,活性组分Ⅰ的结构分析[J].菌物学报,2005,24(1):112-125.
    [194]Shimizu N, Hosogi N, Hyon G S, et al. Reactive oxygen species (ROS) generation and ROS-induced lipid peroxidation are associated with plasma membrane modifications in host cells in response to AK-toxin I from Alternaria alternata Japanese pear pathotype[J]. Journal of General Plant Pathology,2006,72(1):6-15.
    [195]Rasmussen J B, Kwon C Y, Meinhardt S W. Requirement of host signaling mechanisms for the action of Ptr ToxA in wheat[J]. European Journal of Plant Pathology,2004,110(3):333-335.
    [196]Abang M M, Abraham W R, Asiedu R, et al. Secondary metabolite profile and phytotoxic activity of genetically distinct forms of Colletotrichum gloeosporioides from yam(Dioscorea spp.)[J]. Mycological Reasearch,2009,113(1):130-140.
    [197]Li Y Y, Lu C H, Hu Z Y, et al. Secondary metabolites of Tubercularia sp. TF5, an endophytic fungal strain of Taxus mairei[J]. Natural Product Research:Formerly Natural Rroduct Letters, 2009,23(1),70-76.
    [198]Higashiguchi F, Nakamura H, Hayashi H, et al. Purification and structure determination of glucosides of capsaicin and dihydrocapsaicin from various Capsicum fruits[J]. Journal of Agricultural and Food Chemistry,2006,54(16):5948-5953.
    [199]Lorenz N, Haarmann T, Pazoutova S, et al. The ergot alkaloid gene cluster:Functional analyses and evolutionary aspects[J]. Phytochemistry,2009,70(15-16):1822-1832.
    [200]Mehdi R B A, Sioud S, Fguira L F B, et al. Purification and structure determination of four bioactive molecules from a newly isolated Streptomyces sp[J].. TN97 strain. Process Biochemistry, 2006,41(7):1506-1513.
    [201]Xu L S, Jia J G, Lv J, et al. Characterization of the expression profile of a wheat aci-reductone-dioxygenase-like gene in response to stripe rust pathogen infection and abiotic stresses[J]. Plant Physiology and Biochemistry,2010,48(6):461-468.
    [202]Betts M F, Manning V A, Cardwell K B, et al. The importance of the N-terminus for activity of Ptr ToxB, a chlorosis-inducing host-selective toxin produced by Pyrenophora tritici-repentis. Physiological and Molecular Plant Pathology,2011,75(4):138-145.
    [203]夏黎明,张素轩,黄建河.毛竹基腐病菌{Arthrinium phaeospermum)的研究[J].南京林业大学学报,1995,16(2):23-28.
    [204]Vijayakumar E K S, Roy K, Chatterjee S. Arthrichitin, a new cell wall active metabolite from Arthrinium phaeospermum [J]. Journal of Organic Chemistry,1996,61(19):6591-6593.
    [205]Bloor, S. Arthrinic acid, a novel antifungal polyhydroxyacid from Arthrinium phaeospermum. Journal of Antibiotics,2008,61(8):515-517.
    [206]罗孟军,朱天辉.枯斑盘多毛孢菌粗毒素的基本性质研究[J].四川林业科技,2002,23(4):17-20.
    [207]李永艳,放新宇,陈玉惠.茶藨生柱锈重寄生木霉粗毒素的基本性质[J].天津农业科学,2011,17(2):11-15.
    [208]张伟,杨桂芳.大蒜白斑病菌(Stemphylium solani)毒素的基本性质分析[J].贵州农业科学,2012,40(7):111-114.
    [209]曹煜成,李卓佳,吴灶和,等.地衣芽孢杆菌胞外蛋白酶的纯化及特性分析[J].水生生物学报,2006,30(3):262-268.
    [210]吴士良.生物化学与分子生物学实验教程[M].北京:科学出版社,2004.
    [211]熊庆蛾.植物生理学实验教程[M].成都:四川科学技术出版社,2003.
    [212]汪家政,范明.蛋白质技术手册[M].北京:科学出版社,2001.
    [213]Pedras M S C, Chumala P B, Jin W, et al. The phytopathogenic fungus Alternaria brassicicola: phytotoxin production and phytoalexin elicitation[J]. Phytochemistry,2009,70(3):394-402.
    [214]张宝俊,张家榕,韩巨才,等.内生解淀粉芽孢杆菌LP-5抗菌蛋白的分离纯化及特性[J].植 物保护学报,2010,37(2):143-147.
    [215]周利娟,焦阳,姚正颖,等.海洋链霉菌GB-2抗真菌物质的分离纯化和稳定性研究[J].中国海洋药物杂志,2009,28(4):35-39.
    [216]谢栋,彭憬,王津红,等.枯草芽孢杆菌抗菌蛋白X98Ⅲ的纯化与性质[J].微生物学报,1998,38(1):13-19.
    [217]袁铸,王忠彦,胡承.地衣芽孢杆菌JF-UN122碱性蛋白酶的分离纯化与性质[J].工业微生物,2003,33(3):25-29.
    [218]陆婕.家蝇蛆抗菌肤的分离纯化和性质研究[D].硕十论文,华中科技大学,2005.
    [219]Tyler B M, Tripathy S, Zhang X, et al. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis[J]. Science,2006,313(5791):1261-1266.
    [220]王重,赵德标BTB/POZ蛋白质家族的结构和功能[J].生命的化学,1997,17(6):10-12.
    [221]韩珊,朱天辉.寄生隐丛赤壳菌致病毒素Cp-I的分离纯化和结构分析[J].菌物学报,2009,28(4):535-540.
    [222]朱天辉,罗孟军,叶华智.枯斑盘多毛孢Pf-毒素活性组分的分离纯化[J].植物病理学报,2003,33(6):541-545.
    [223]甘莉,吕金殿,汪沛洪.棉花黄萎病菌分泌的糖蛋白毒素与其致病力的关系[J].中国农业科学,1995,28(2):58-65.
    [224]陈桂平,客绍英,陈玉芹.菘蓝根腐病菌毒素最适浓度的筛选及其对菘蓝幼苗可溶性蛋白的影响[J].安徽农业科学,2009,37(33):16392-16394.
    [225]Ostry, Anderson. Genetics and ecology of the Entoleuca mammata-Populus pathosystem: implications for aspen improvement and management[J]. Forest Ecology and Managenment,2009, 257(2):390-400.
    [226]骆军,刘应高,黄晓丽,等.四川松针上散斑壳菌致病毒素的确定及其致病性差异研究[J].林业科学研究,2010,23(5):685-689.
    [227]郑华英,解春霞,刘云鹏,等.杨树新造林黑斑型溃疡病病原菌代谢产物对寄主的生理影响[J].江苏林业科技,2011,38(6):19-21.
    [228]张文勤.毛竹枯梢病的一些生理生化指标研究[J].福建林学院学报,1998,18(1):83-86.
    [229]陈捷,蔺瑞明,高增贵,等.玉米弯抱叶斑病菌毒素对寄主防御酶系活性的影响及诱导抗性效应[J].植物病理学报,2002,32(1):43-48.
    [230]房保海,张广民,迟长凤,等.烟草低头黑病菌毒素对烟草丙二醛含量和某些防御酶的动态影响[J].植物病理学报,2004,34(1):27-31.
    [231]Prusky D and Keen N T. Involvement of preformed antifungal compounds in the resistance of subtropical fruits to fungal decay[J]. Plant Disease,1993,77(2):114-118.
    [232]Engelhardt S, Lee J, Gabler Y, et al. Separable roles of the Pseudomonas syringae pv. phaseolicola accessory protein HrpZl in ion-conducting pore formation and activation of plant immunity[J]. The Plant Journal,2009,57(4):706-717.
    [233]邓艳,吴耀军,黄乃秀,等.杂交竹3号主要病虫害及防治[J].广西林业科学,2007,36(1):44-46.
    [234]Djeridane A, Yousfi M, Nadjemi B. Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds[J]. Food Chemistry,2006,97(4):654-660.
    [235]许峰,朱俊,张风霞,等.国槐苯丙氨酸解氨酶基因的克隆、反义表达载体构建及遗传转化[J].林业科学研究,2008,21(5):611-618.
    [236]朱广廉,钟海文,张爱琴.植物生理学实验[M].北京:北京大学出版社,1990:130-140.
    [237]Kunitz M. Crystalline desoxyribonuclease I.Isolation and general properties[J]. Journal of General Physiology,1950,33 (4):349-362.
    [238]肖祥希,刘星辉,杨宗武,等.铝胁迫对龙眼幼苗蛋白质和核酸含量的影响[J].林业科学,2006,42(10):24-30.
    [239]邹琦主编.植物生理学实验指导[M].北京:中国农业出版社,2004.
    [240]刘永军,郭守华,杨晓玲.植物生理生化实验[M].北京:中国农业科技出版社,2002.
    [241]秦国政,田世平,刘海波,等.拮抗菌与病原菌处理对采后桃果实多酚氧化酶、过氧化物酶及苯丙氨酸解氨酶的诱导[J].中国农业科学,2003,36(1):89-93.
    [242]Moersehbaeher B M, Noll U M, Flott B E. Lignin biosynthetic enzymes in stem rust infected, resistant and susceptible near-isogenic wheat lines[J]. Physiological and Molecular Plant Pathology, 1988,33(1):33-46.
    [243]Mandal S, Mitra A, Mallick N. Time course study on accumulation of cell wall-bound phenolics and activities of defense enzymes in tomato roots in relation to Fusarium wilt[J]. World Journal of Microbiology & Biotechnology,2009,25:795-802.
    [244]Flurkey W H. In vitro biosynthesis of Vicia faba polyphenoloxidase[J]. Plant Physiology,1985, 79(2):564-567.
    [245]Boller T, V6geli U. Vacuolar localization of ethylene-induced chitinase in bean leaves[J]. Plant Physiology,1984,74(2):442-444.
    [246]Joosten M H A J, De Wit P J G M.. Identification of several pathogenesis-related proteins in tomato leaves inoculated with Cladosporium fulvum (syn. Fulvia fulva) as 1,3-β-glucanases and chitinases[J]. Plant Physiology,1989,89(3):945-951.
    [247]晏娟,黎定军.筛选烟草抗黑胫病细胞突变体的粗毒素浓度的初步研究[J].湖南农业科学,2011,(5):66-68.
    [248]李路,王玲,刘连盟,等.水稻纹枯病菌毒素提取及其对水稻的毒性[J].浙江农业科学,2013,(1):60-62.
    [249]杨斌,叶建仁,包宏,等.松针褐斑病菌毒素LA-Ⅰ和LA-Ⅱ致毒活性研究[J].林业科学,2002,38(4):84-88.
    [250]Nicholson R L, Hammerschmidt R. Phenolic compounds and their role in disease resistance[J]. Annual Review of Phytopathology,1992,30:369-389.
    [251]Matern U, Kneusal R E. Phenolic compounds in plant disease resistance[J]. Phytoparasitica,1988, 16(2):153-170.
    [252]Gogoi R, Singh D V, Srivastava K D. Phenols as a biochemical basis of resistance in wheat against kamal bunt[J]. Plant Pathology,2001,50(4):470-476.
    [253]Dicko M H, Gruppen H, Barro C, et al. Impact of phenoilc compounds and related enzymes in sorghum varieties for resistance and susceptibility to biotic and abiotic stresses[J]. Journal of Chemical Ecology,2005,31(11):2671-2688.
    [254]Hartwig U A, Joseph C M, Phillips D A. Flavonoids released naturally from alfalfa seeds enhance growth rate of Rhizobium meliloti[J]. Plant Physiology,1991,95(3):797-803.
    [255]Mabrouk Y, Simier P, Arfaoui A, et al. Induction of phenolic compounds in pea (Pisum sativum L.) inoculated by Rhizobium leguminosarum and infected with Orobanche crenata[J]. Jornal of Phytopathology,2007,155(11-12):728-734.
    [256]Treutter D. Significance of flavonoids in plant resistance:a review[J]. Environmental Chemistry Letters,2006,4(3):147-157.
    [257]Morefield H, Goodman T V, Hamissou M. The effects of aluminum toxicity on the protein expression of Arabidopsis thaliana[J]. BIOS,2005,76(2):84-88.
    [258]Sasaki T, Yamamoto Y, Ezaki B, et al. A wheat gene encoding an aluminum-activated malate transporter[J]. Plant Journal,2004,37(5):645-653.
    [259]Ashry N A, Mohamed H I. Impact of secondary metabolites and related enzymes in flax resistance and or susceptibility to powdery mildew[J]. World Journal of Agricultural Sciences,2011,7 (1): 78-85.
    [260]郑海霞,王建明.西瓜枯萎病菌毒素培养滤液对西瓜幼苗可溶性蛋白含量的影响[J].山西农业科学,2009,37(2):13-15.
    [261]Ashfaq M, Khan M A, Javed N, et al. Effect of urdbean leaf crinkle virus infection on total soluble protein and antioxidant enzymes in blackgram plants[J]. Pakistan Journal of Botany,2010,42(1): 447-454.
    [262]Thind S K, Monga P K, Kaur N, et al. Analysis of some biochemical and micro-nutrient constituents of yellow mosaic virus infected moong[J]. Indian Journal of Virology,1996,12(2): 157-159.
    [263]Taiwo M A, Akinjogunla J. Cowpea viruses:Quantitative and qualitative effects of single and mixed viral infections[J]. African Journal of Biotechnology,2006,5(19):1749-1756.
    [264]Mullet J E, Klein P G, Klein R R. Chlorophyll regulates accumulation of the plastid-encoded chlorophyll apoproteins CP43 and Dl by increasing apoprotein stability[J]. Proceedings of The National Academy of Sciences of The United States of America,1990,87:4038-4042.
    [265]Madsen J P, Hodges C F. Soluble sugar and free amino acids of Poa pratensis exposed to chlorophenoxy herbicides and pathogenesis by Drechslera sorokiniana[J]. Phytopathology,1983, 73(5):737-740.
    [266]Scarpari L M, Meinhardt L W, Mazzafera P, et al. Biochemical changes during the development of witches' broom:the most important disease of cocoa in Brazil aused by Crinipellis perniciosa[J]. Journal of Experimental Botany,2005,56(413):865-877.
    [267]Hidalgo O, Echandi E. Effect of temperature and storage of Solanum tuberosum sp. tuberosum and Solanum tuberosum sp. andigena on soft rot caused by Erwinia chrysanthemi[J]. Phytopathology,1981,71:224-225.
    [268]王金生,张学君,方中达.马铃薯品种对细菌软腐病抗性生理指标的研究Ⅱ.品种还原糖含量及其与软腐病抗性的关系[J].南京农业大学学报,1990,13(2):69-75.
    [269]韩珊,朱天辉.不同抗性板栗品种的防御酶系对栗疫菌Cp-毒素的响应[J].植物保护学报,2009,36(4):305-309.
    [270]Dixon R A, Achiogyne L, Kota P. The phenylpropanoid pathway and plant defense a genomic perspective[J]. Physiological and Molecular Plant Pathology,2002,3:371-390.
    [271]Paczkowska M, Kozlowska M, Golinski P. Oxidative stress enzyme activity in Lemna minor L exposed to cadmium and lead[J]. Biologica Cracoviensia Series Botanica,2007,49(2):33-37.
    [272]Borsani O, Valpuesta V, Botella M A. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings[J]. Plant Physiology,2001,126: 1024-1030.
    [273]Ma X J, Zhu D H. Functional roles of the plant superoxide dismutase[J]. Hereditas,2003,25(2): 225-231.
    [274]Cai K Z, Gao D, Luo S, et al. Physiological and cytological mechanisms of silicon-induced resistance in rice against blast disease[J]. Plant Physiology,2008,134:324-333.
    [275]Mandal S, Malick N, Mitra A. Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato[J]. Plant Physiology and Biochemistry,2009,47:642-649.
    [276]王保通,梁耀琦,袁文焕.雪霉叶枯病菌毒素对小麦叶片PAL活性的影响[J].西北农业大学学报,1996,24(1):37-40.
    [277]李赤,黎永坚,于莉.香蕉枯萎病菌对不同香蕉品种防御酶系的影响[J].中国农学通报,2010,26(17):251-255.
    [278]Ebrahim S, Usha K, Singh B. Pathogenesis-related (PR)-proteins:Chitinase and β-1,3-glucanase in defense mechanism against malformation in mango(Mangifera indica L.)[J]. Scientia Horticulturae,2011,130:847-852.
    [279]Bokshi A I, Morris S C, Deverall B J. Effects of benzothiadiazole and acetylsalicylic acid on (3-1, 3-glucanase activity and disease resistance in potato. Plant Pathology,2003,52:22-27.
    [280]Cohen Y R. β-aminobutyric acid-induced resistance against plant pathogens. Plant Disease,2002, 86(5):448-457.
    [281]Pajot E, Le Corre D, Silue D. Phytogard(?) and DL-β-amino butyric acid (BABA) induce resistance to downy mildew (Bremia lactucae) in lettuce (Lactuca sativa L). European Journal of Plant Pathology,2001,107:861-869.
    [282]商闯,贾银锁,马春红,等.HMC毒素培养滤液对专化寄主玉米叶片诱导抗病性及相关酶的影响[J].中国农业科学,2008,41(12):4307-4313.
    [283]Ueno Y, Hsieh D P H. The toxicology of mycotoxins[J]. Critical Reviews in Toxicology,1985, 14:99-132.
    [284]钱琼秋,宰文姗,何勇,等.外源硅和辅酶Q10对盐胁迫下黄瓜根系线粒体的保护作用[J].中国农业科学,2006,39(6):1208-1214.
    [285]陈靠山,刘世名,周燮.脱落酸对植物线粒体膜生物物理特性的影响[J].生物物理学报,1995,11(3):314-318.
    [286]王立安,郝丽梅,马春红,等.HMC毒素对雄性不育玉米线粒体结构和功能的影响[J].植物病理学报,2004,34(3):221-224.
    [287]张云霞,范兰兰,施祖荣,等.莲子草假隔链格孢毒素对空心莲子草叶片和根尖组织超微结构的影响[J].华中农业大学学报,2011,30(1):84-88.
    [288]李赤,黎永坚,于莉.香蕉枯萎病菌毒素对香蕉叶片超微结构的影响[J].吉林农业大学学报,2011,33(2):158-164.
    [289]陈兰明,陈永萱.黄曲霉毒素B1间接竞争抑制ELISA定量分析法的建立和应用[J].南京农业大学学报,1998,21(2):65-72.
    [290]Jones W T, Harvey D, Sutherland P W, et al. Production of anti-idiotypic monoclonal antibodies that mimic the phytotoxin dothistromin[J]. Food and Agricultural Immunology,1998,10(1):67-68.
    [291]Dubery I A, Meyer R. Specific binding of a Verticillium dahliae phytotoxin to protoplasts of cotton, Gossypium hirsutum[J]. Plant Cell Reports,1996,5(10):777-780.
    [292]Lin T Y, Marhart A H. Temperature effect on mitochondria respiration in Phaseolus acatifulias A. Gray and Phaseolus valgaris L.[J]. Plant Physiology,1990,94(1):54-58.
    [293]钱琼秋,朱祝军,何勇.硅对盐胁迫下黄瓜根系线粒体呼吸作用及脂质过氧化的影响[J].植物营养与肥料学报,2006,12(6):875-880.
    [294]朱明晏,宋力群,初建设,等.大鼠心肌线粒体内、外膜磷脂动态结构的研究[J].生物物理学报,1993,9(2):220-225.
    [295]张志鸿,刘文龙.生物物理学实验[M].上海:复旦大学出版社,1991,140-145.
    [296]Halestrap A P, Davidson M. Inhibition of Ca2+-induced large amplitude swelling of liver and heart mitochondria by cyclosporin A is probably caused by the inhibitor binding to mitochondria-matrix peptidyl-proly I-cis-trans-isornerase and preventing it from interacting with adenine nucleotide translocase[J]. Biochemical Journal,1990,268(1):153-160.
    [297]Stillwell W, Brengle B, Belcher D, et al. Comparison of effects of ABA and IAA on phospholipid bilayers[J]. Phytochemistry,1987,26(12):3145-3150.
    [298]桑庄特罗A主编,北京农业大学植物生物教研组译.植物生理学研究法[M].北京:科学出版社,1980,191-204.
    [299]Rasmusson A G, Mφller I M. NADP-utilizing enzymes in the matrix of plant mitochondria[J]. Plant Physiology,1991,94:1012-1018.
    [300]Takada M, Ikenoya S, Yuzuriha T, et al. Simultaneous determination of reduced and oxidized ubiquinones[J]. Methods in Enzymology,1984,105:147-155.
    [301]Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascrobate peroxidase, and glutathione reductase in bean leaves[J]. Plant Physiology,1992,98(4):1222-1227.
    [302]Patterson B D, Mackae E A, Ferguson I B. Estimation of hydrogen peroxide in plant extracts using Titanium(IV)[J]. Analytical Biochemistry,1984,139(2):487-492.
    [303]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biology,1976,72:248-254.
    [304]王金生.寄主—病原物互作[J].植物病理学报,1992,22(4):289-292.
    [305]邢继红,董金皋.玉米大斑病菌菌丝蛋白单克隆抗体制备[J].植物病理学报,2006,36(2):174-176.
    [306]高志环,薛永彪,戴景瑞.玉米小斑病菌C小种毒素的致病作用位点[J].科学通报,2000,45(6):617-621.
    [307]王绍新,刘颖超,李正平,等.玉米大斑病菌HT-毒素特异性组分与原生质膜蛋白互作研究[J].河北大学学报(自然科学版),2006,26(1):66-69,76.
    [308]Marohnic C C, Barber M J. Arginine 91 is not essential for flavin incorporation in hepatic cy to chrome b(5) reductase[J]. Archines of Biochemistry and Biophysics,2001,389(2):223-233.
    [309]王苏华,张薇,邢光伟,等.细胞色素C氧化酶活力测定方法概况[J].毒理学杂志,2010,24(5):412-414.
    [310]Stocker R, Bowry V W, Frei B. Ubiquinol-10 protects human low-density liprotein more efficiently against lipid peroxidation than does alpha-tocopherol[J]. Proceedings of the National Academy of Sciences of the United State America,1991,88:1646-1650.
    [311]郑燕,展永,韩英荣,等. ATPase旋转催化运动的随机跃迁动力学研究[J].生物学杂志,2007,24(3):20-24.
    [312]Miller J D, Arnison P G. Degradation of deoxynivalenol by suspension cultures of the fusarium head blight resistant wheat cultivar Frontana[J]. Canadian Journal of Plant Pathology,1986,8(2): 147-150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700