用户名: 密码: 验证码:
不同碳源条件下功能菌共代谢降解典型PPCPs的效能与机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
药品及个人护理用品(pharmaceuticals and personal care products, PPCPs)是一类新兴痕量有机污染物,在人类的日常生活中被频繁使用并通过污水排放、地表径流等途径进入自然环境,于土壤、地下水和地表水中均有检出。PPCPs通过食物链富集后可能对人类健康产生潜在影响,因此为广大研究者所重视,并采取各种手段对环境中的PPCPs进行处理。已有研究表明,共代谢是难降解有机污染物的重要去除途径之一,此方法在PPCPs的处理中同样有效,然而共代谢的作用基础是以外加碳源作为生长基质给微生物提供能量来源后,微生物再进一步降解以非生长基质形式存在的有机污染物,因此外加碳源对共代谢过程十分重要。本研究的目的就在于讨论宏观和微观程度上不同的碳源对典型PPCPs共代谢过程中功能菌的影响。本研究选取碘普罗胺(iopromide, IOP)、碘美普尔(iomeprol, IOM)和苯扎贝特(bezafibrate, BZF)三种药品作为典型PPCPs,利用课题组前期分离得到的可分别高效降解IOP和BZF的功能菌Pseudomonas SP.I-24(I-24)和Pseudomonas putida B-31(B-31)进行研究,分析了不同碳源对共代谢过程中多因素的作用,研究了酶学调控机制,建立了酶活力表征方法,并以此为基础,探讨降解酶的最佳作用条件及其各项性质,同时通过蛋白质差异表达的测定明确不同碳源对降解酶诱导过程的影响,并将功能菌和降解酶应用于曝气生物滤池(biological aerated filter, BAF)中,观察PPCPs和常规污染指标的去除情况,对比静态实验效果,验证本研究的实际应用价值。研究结果如下:
     (1)探明了外加碳源与目标污染物的共同降解过程以及该过程中功能菌生长和代谢活性的变化趋势
     结合已有的碳源检测方法,建立了葡萄糖、麦芽糖、淀粉和甘油在本实验过程中的优化浓度测定方法。分析了不同碳源条件下,功能菌I-24对IOP和IOM以及功能菌B-31对BZF的共代谢特性,发现淀粉和葡萄糖分别为功能菌I-24和B-31的最佳碳源。以淀粉为外加碳源时,功能菌I-24对IOP和IOM的最高降解率分别为92.70%和38.43%;以葡萄糖为外加碳源时,功能菌B-31对BZF的最高降解率为76.98%,然而功能菌I-24和B-31分别在葡萄糖和淀粉条件下生长情况最佳,故表观生长情况并非影响目标污染物降解率的决定性因素,但仍可作为降解率的指示因子之一。通过对不同碳源下功能菌电子传递系统活性(electron transport system activity, ETSA)的研究,得出麦芽糖对功能菌ETSA的促进效果最强,在IOP、IOM和BZF条件下,培养第一日分别为32.12μg/(g·h)、100.92μg/(g·h)和215.54μg/(g·h),显著高于无外加碳源的样品ETSA值,推测功能菌的表面需要先被外加碳源的电子活化后才会易于与目标污染物接触,因此ETSA可作为外加碳源参与共代谢过程中释放电子效率高低的表征数值。
     (2)建立了便捷而有效的酶提取及活力表征方法
     建立并优化功能菌I-24和B-31所分泌的降解酶活力表征方法,得出超声破碎运行时间20min,超声功率150W时,工作3s,休息2s和工作3s,休息1s分别可从功能菌B-31和I-24中提取最高浓度的降解酶。同时明确降解酶属于胞内酶,它们的测定条件为:反应时间2h,培养温度30℃,缓冲液pH=7,IOP降解酶和IOM降解酶浓度80~100mg/L,灭活温度80℃,BZF降解酶浓度90mg/L,灭活温度100℃。
     (3)探讨了环境影响因子对酶促反应过程的作用
     针对从I-24和B-31两种功能菌中所提取降解酶的性质进行了研究和测定,得出IOP降解酶在pH7-8、10-40℃,IOM降解酶在pH6-8、0-60℃,BZF降解酶在pH6-7、10~40℃时具有较好的pH和温度稳定性,IOP降解酶、IOM降解酶和BZF降解酶的米氏常数Km和最大反应速度Vm分别为136.70μmol/L、91.08μmol/L、41.85μmol/L和0.05μmol/(L·min)、0.04μmol/(L·min)、0.074gmol/(L·min).虽然IOP、IOM和BZF并非功能菌正常生长的必须因子,却是与PPCPs相关的降解酶的诱导因子之一。无外加碳源的条件下,降解酶通过内源呼吸保证菌体活性,诱导过程受到强烈抑制而导致其活力较低。不同外加碳源与PPCPs共同诱导的降解酶有活力差异,其中淀粉作为外加碳源时,IOP降解酶和IOM降解酶活力最高,分别为0.182mU和0.143mU,葡萄糖作为外加碳源时,BZF降解酶活力最高,达到0.188mU,但是培养3d后三种降解酶的活力都会逐渐减小,其原因可能包括代谢产物毒性累积和酶的自身老化。无机盐培养基中淀粉和葡萄糖的最佳投加浓度为1g/L和3g/L,淀粉浓度过高将与目标污染物产生竞争性抑制,减少降解酶的诱导量。虽然在1-3g/L的葡萄糖范围内其竞争性抑制尚未发生,但不代表更高浓度的葡萄糖不会抑制酶活力。对降解酶进行双底物条件的活力测定表明反应时间2h内IOP降解酶、IOM降解酶和BZF降解酶均无法测得酶活力,说明共代谢降解酶具有非专一特性,在反应体系中存在两种底物时,将优先降解结构简单的底物。
     (4)分析了功能菌I-24蛋白质受碳源影响所产生的差异表达
     碳源对功能菌及降解酶共代谢过程和降解特性的表观影响已有所研究,但其对功能菌蛋白质的影响尚未明确,因此本研究进一步着眼于功能菌I-24蛋白质受碳源影响所产生的差异表达,通过对碳源条件分别为IOP、IOP+淀粉和IOP+葡萄糖这三组不同培养基条件下的功能菌蛋白质进行双向电泳测试,发现在只有IOP的样品中蛋白质等电点在4.5-6.0之间,其他两种蛋白质为4.5-8.5,三组蛋白质分子量均位于25kDa和45kDa之间。对淀粉和葡萄糖条件下的蛋白质进行差异点分析,得出28个差异点,相对于葡萄糖条件下的蛋白质,淀粉条件下的蛋白质共有23个点位上调表达,5个点位下调表达。MALDI-TOF MS成功鉴定了其中24个点位,经过分析得出淀粉通过ATP合成、蛋白质转录和运输等重要生理环节提高了降解酶的诱导水平,它对于谷氨酸盐利用效率高于葡萄糖,由此获得更为显著的ATP合成作用,与此同时,在细胞蛋白代谢过程和超氧化物代谢水平上淀粉都有所提升。
     (5)检测了功能菌和降解酶在曝气生物滤池反应器中的处理效果
     本研究采用实验室设计的小型BAF装置,选择两种微污染水进行小试研究,将两种功能菌及其提取的降解酶投加到两组滤池中,与一组只接种活性污泥的滤池对照,分析比较常规工况和碳源种类对三组滤池(空白,投加功能菌,投加降解酶)中常规污染指标和三种PPCPs的处理情况,分析功能菌和降解酶的实际应用效能。结果显示功能菌和降解酶对CODMn、氨氮、UV254等常规污染指标的去除无明显提升作用,但是对于IOP、IOM和BZF则体现出了较好的去除效果和抗负荷性能。降解酶由于存在酶的流失现象,因此其处理效率会产生较大的波动。相对于复杂的自然水体,模拟污水条件下,滤池对各种污染物指标的去除更加有效,水力负荷越低,PPCPs与生物膜及滤料的接触机会越多;溶解氧在一定范围内逐渐增高可促进PPCPs去除,但若持续增高,将可能破坏生物膜,影响去除效果;碳源种类同样影响滤池运行状况,且最佳碳源与静态实验一致,表明在复杂的环境中,功能菌和降解酶同样。IOP和IOM的最佳处理条件为:水力负荷0.08m3/m2-h,DO9.5mg/L,碳源淀粉,BZF最佳处理条件为:水力负荷0.08m3/m2-h,DO7.5mg/L,碳源葡萄糖,三组滤池的PPCPs平均去除率分别为IOP:97.21%、98.12%和98.68%,IOM:97.15%、96.53%和98.50%,BZF:90.04%、90.26%和93.08%。自然水体下,三组滤池的常规污染指标和PPCPs的去除率均低于模拟污水,但是向其投加碳源后,各项PPCPs去除率均得到提升,接近模拟污水的去除水平。由于曝气生物滤池反冲洗会影响装置运行效果,因此对反冲洗方式进行了选择,其最适运行方式如下:以模拟污水作为来源时,反冲洗周期为10d,运行方式为气冲,时间1min,强度9-12L/(m2·s),间歇时间1min,频率3次。20d后改为气水联合反冲,时间2min,气体强度3-4L/(m2.s),水力强度7-8L/(m2·s)。以自然水体作为来源时,反冲洗周期为5d,运行方式为气水联合反冲,时间2min,气体强度4-5L/(m2·s),水力强度7-8L/(m2.s)。
Pharmaceuticals and personal care products (PPCPs) are one kind of emerging micropollutant, which are used frequently in daily life and discharged into the environment via sewage and surface runoff. In recent years, many PPCPs were detected in soil, ground water, surface water, etc. In fact, PPCPs can be concentrated through food chains, potentially threatening human health. As a result, various methods have been used to remove PPCPs from different environmental media. The existing studies reported that co-metabolism was one of the most important removal pathways for the persistent organic pollutants and PPCPs as well. However, co-metabolism relied on the additional carbon sources for providing energy to microorganisms as growth substrate to degrade the organic pollutants. Therefore, this research aimed at both the macroscopic and microcosmic influences of different carbon sources on the typical PPCPs co-metabolic processes. Iopromide (IOP), iomeprol (IOM) and bezafibrate (BZF) were chosen as the target PPCPs and two pre-isolated functional strains named Pseudomonas SP.1-24(1-24) and Pseudomonas putida B-31(B-31), were investigated. The effects of different carbon sources on the co-metabolic processes were studied. Also, the enzymology regulatory mechanism was investigated and the enzymatic activity detection methods were established. The optimal reactive conditions and characteristics were discussed. The differential expression of proteome studies revealed inducement of various proteins by different carbon sources. In order to verify the practical applicability of the functional strains and degradation enzymes, biological aerated filters (BAF) were used to compare their performance for the removal of PPCPs and conventional pollution indicators. The results are shown as follows:
     (1) The investigation of degradation processes of additional carbon sources and target pollutants, as well as the tendency of growth and metabolic activity of functional strains.
     Methods for the detection of glucose, malt sugar, starch and glycerol were optimized according to the established pathways. The tests of co-metabolism process using different carbon sources indicated that starch and glucose were the most suitable carbon sources for I-24and B-31, respectively. Removal efficiencies of92.70%and38.43%for IOP and IOM by I-24, respectively, were obtained by using starch. While using glucose, B-31degraded BZF by76.98%. However, I-24grew best under glucose condition, indicating that growth condition did not determine degradation efficiency, but it could still exist as one of indicative factors for degradation efficiency. The observation of electron transport system activity (ETSA) of functional strains suggested that malt sugar promoted ETSA mostly. ETSA values of I-24in IOP and IOM, and B-31in BZF were32.12μg/(g·h),100.92μg/(g·h) and215.54μg/(g·h) in the first cultivation day, respectively. From the comparison between non-growth substrate and growth substrate, we guess that the functional strains can hardly get in touch with target pollutants until their surface are activated by carbon electron. As a result, ETSA was useful for evaluating electron releasing efficiency of additional carbon sources in co-metabolism conditon.
     (2) Establishment of effective and easy detection methods for enzymatic activity
     The degradation enzyme excreted by I-24and B-31were defined as IOP enzyme, IOM enzyme and BZF enzyme according to their substrate. The optimum conditions for IOP enzyme and IOM enzyme extraction were:ultrasonic power of150W, running time of20min, working time of3s and resting time of1s. The optimum conditions for BZF enzyme extraction were: ultrasonic power of150W, running time of20min, working time of3s and resting time of2s. The detection methods for enzymatic activity were established and optimized as pH7, reaction temperature of30℃, reaction time of2h and enzyme concentration of80~100mg/L for both IOP and IOM enzymes, and90mg/L for BZF enzyme. The inactivation temperature for IOP and IOM enzymes was80℃, while for BZF enzyme was100℃. Based on the activity tests, the degradation enzymes were found to be intracellular enzyme.
     (3) Influence of environmental factors on enzyme reactive processes
     The characteristics of IOP enzyme, IOM enzyme and BZF enzyme were studied as follows: the pH stability ranges were7~8for IOP enzyme,6~8for IOM enzyme and6~7for BZF enzyme, the temperature stability ranges were10~40℃for IOP enzyme,0~60℃for IOM enzyme and10~40℃for BZF enzyme. Michaelis constant tests indicated that Km of IOP enzyme, IOM enzyme and BZF enzyme were136.70μmol/L,91.08μmol/L and41.85μmol/L, respectively, while the Vm were0.05μmol/(L·min),0.04μmol/(L·min) and0.074μmol/(L·min), respectively. Though IOP, IOM and BZF were not the limiting factors of strain growth, they were still found to be one of inductors of the degradation enzymes. Once there was other carbon source, both of them would induce degradation enzyme in union. However, enzyme inducement was supposed to be strongly restrained in poor energy environment. Enzymatic activities induced by different additional carbon sources verified that starch accelerated the activities of IOP enzyme and IOM enzyme to0.182mU and0.143mU, while glucose accelerated BZF enzyme activity to0.188mU. Due to the accumulation of intermediate products and enzyme aging, their activities decreased. The suitable dosage of starch and glucose were determined as1g/L and3g/L. Excessive starch might result in competitive inhibition with target pollutants and reduced enzyme inducement. Though there was no circumstance suggesting glucose in the concentration between1and3g/L induced inhibition, it did not represent that no inhibition would occur by high concentration of glucose. Double-substrate enzyme reaction method was also established, which showed no IOP, IOM and BZF enzyme activity during2h reaction time, demonstrating the non-specific characteristic of co-metabolic enzymes. Once there was two substrates, the substrate with simple structure would be superior to be degraded.
     (4) The differential expression of functional strain1-24influenced by verified carbon sources
     In order to see the influence of verified carbon sources (IOP, IOP+starch and IOP+glucose) on strain, the differential expression of1-24was studied. By means of two-dimensional gel electrophoresis tests, the isoelectric point (pI) of protein in IOP condition was suggested to be between4.5and6.0, while the pIs of the other two proteins were both between4.5and8.5. Nevertheless, the molecular mass ranges were all between25kDa and45kDa. The analysis of protein pages between IOP+starch and IOP+glucose samples pointed out28different spots, of which23spots up regulated and5spots down regulated in IOP+starch sample according to IOP+glucose sample. MALDI-TOF MS analysis of these spots showed that ATP synthesis, protein transcription and transportation were involved in carbon influence. Starch utilized glutamate more efficiency than glucose, therefore, ATP synthesis process was much more outstanding. In the mean time, starch was superior in cell protein metabolism and superoxide metabolism processes.
     (5) The application of functional strains and degradation enzyme in BAFs
     The functional strains and degradation enzymes were applied to two BAF separately to compare the removal efficiencies of conventional pollution indicators and PPCPs under different operating conditions and carbon sources. The results showed that the functional strains and degradation enzymes did not exhibit any acceleration on CODMn, NH3-N and UV254removal, but it showed favorable removal efficiency and load resistance of IOP, IOM and BZF. The BAF exhibited fluctuant removal efficiencies because degradation enzymes could be washed away easily. Compared to complex natural water, simulated micro-polluted water was easier to treat. Carbon sources affected PPCPs removal in accordance with static tests. The lower the hydraulic load was, the contact opportunity the PPCPs would get with biological membrane and filter materials. However, if the DO was too high, the biological membrane might be destroyed and the removal efficiency would be restrained as well. Under the optimum treatment conditions of hydraulic load of0.08m3/m2-h, DO of9.5mg/L and carbon source of starch for IOP and IOM, in simulated micro-polluted water, the IOP and IOM removal rates of three BAF (no functional strain and degradation enzyme, functional strains, degradation enzymes) were97.21%,98.12%and98.68%(IOP),97.15%,96.53%and98.50%(IOM), respectively. Under the optimum treatment conditions of hydraulic load of0.08m3/m2-h, DO of7.5mg/L and carbon source of glucose for BZF, the removal rates in three BAF were90.04%,90.99%and93.08%for simulated micro-polluted water. The removal efficiencies of both conventional pollution indicators and PPCPs in natural water were lower than that in simulated micro-polluted water. However, once the additional carbon sources were added to the natural water, the target pollutants were biodegraded closed to the simulated water. In addition, backwashing parameters were optimized as below:as the simulated micro-polluted water was used as influent, the backwashing period was10d. The mode was air washing of1min with an intensity of9-12L/(m2-s) and the intermittent time was set at min for three cycles. If BAFs run over20days, the backwash mode had to be changed as air and water washing of2min with an air intensity of3-4L/(m2-s) and water intensity of7-8L/(mz·s). Furthermore, when natural water was used as influent, the backwashing period was5d, the mode was air combined with water washing of2min with an air intensity of4-5L/(m2·s) and water intensity of7-8L/(m2·s).
引文
[1]Daughton C G, Ternes T A. Pharmaceuticals and personal care products in the environment: agents of subtle change[J]. Environmental Health Perspectives,1999,107(6):907.
    [2]Abshagen U, Bablok W, Koch K, Lang P D, Schmidt H A E, Senn M, Stork H. Disposition pharmacokinetics of bezafibrate in man[J]. European Journal of Clinical Pharmacology,1979, 16(1):31-38.
    [3]安婧,周启星.药品及个人护理用品(PPCPs)的污染来源、环境残留及生态毒性[J].生态学杂志,2009,28(9):1878-1890.
    [4]Pickering T D, Gurwitz J H, Zaleznik D, Noonan J P, Avorn J. The appropriateness of oral fluoroquinolone-prescribing in the long-term care setting[J]. Journal of the American Geriatrics Society,1994,42(1):28-32.
    [5]McArdell C S, Molnar E, Suter M J F, Giger W. Occurrence and fate of macrolide antibiotics in wastewater treatment plants and in the Glatt Valley Watershed, Switzerland[J]. Environmental Science & Technology,2003,37(24):5479-5486.
    [6]Loganathan B, Phillips M, Mowery H, Jones-Lepp T L. Contamination profiles and mass loadings of macrolide antibiotics and illicit drugs from a small urban wastewater treatment plant[J]. Chemosphere,2009,75(1):70-77.
    [7]Jones-Lepp T L, Alvarez D A, Petty J D, Huckins J N. Polar organic chemical integrative sampling and liquid chromatography-electrospray/ion-trap mass spectrometry for assessing selected prescription and illicit drugs in treated sewage effluents[J]. Archives of Environmental Contamination and Toxicology,2004,47(4):427-439.
    [8]Jones-Lepp T L, Stevens R. Pharmaceuticals and personal care products in biosolids/sewage sludge:the interface between analytical chemistry and regulation[J]. Analytical and Bioanalytical Chemistry,2007,387(4):1173-1183.
    [9]Ramirez A J, Mottaleb M A, Brooks B W, Chambliss C K. Analysis of Pharmaceuticals in fish using liquid chromatography-tandem mass spectrometry [J]. Analytical Chemistry,2007,79(8): 3155-3163.
    [10]Behera S K, Kim H W, Oh J E, Park H S. Occurrence and removal of antibiotics, hormones and several other Pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea[J]. Science of the Total Environment,2011,409(20):4351-4360.
    [11]Hartmann A, Golet E M, Gartiser S, Alder A C, Roller T, Widmer R M. Primary DNA damage but not mutagenicity correlates with ciprofloxacin concentrations in German hospital wastewaters[J]. Archives of Environmental Contamination and Toxicology,1999,36(2):115-119.
    [12]Kummerer K. Drugs in the environment:emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources-a review[J]. Chemosphere,2001,45(6): 957-969.
    [13]周雪飞,张亚雷,代朝猛.城市污水处理系统去除药物和个人护理用品(PPCPs)的机理研究[J].环境保护科学,2009,35(2):77-80.
    [14]Carballa M, Omil F, Ternes T, Lema J M. Fate of pharmaceutical and personal care products (PPCPs) during anaerobic digestion of sewage sludge[J]. Water Research,2007,41(10): 2139-2150.
    [15]Gebauer H, Bouter T. Moschus[J]. Euro Cosmetics,1997,5:30-35.
    [16]Chuanchuen R, Schweizer H P. Global transcriptional responses to triclosan exposure in Pseudomonas aeruginosa[J]. International Journal of Antimicrobial Agents,2012,40(2):114-122.
    [17]张丽珍,牛伟,戎宏立.三氯卡班对土壤微生物数量和酶活性的影响[J].华北农学报,2009,24(1):203-206.
    [18]Ying G G, Williams B, Kookana R. Environmental fate of alkylphenols and alkylphenol ethoxylates-a review[J]. Environment International,2002,28(3):215-226.
    [19]Vazquez-Duhalt R, Marquez-Rocha F, Ponce E, Licea A F, Viana M T. Nonylphenol, an integrated vision of a pollutant[J]. Applied Ecology and Environmental Research,2005,4(1): 1-25.
    [20]Correa-Reyes G, Viana M T, Marquez-Rocha F J, Licea A F, Ponce E, Vazquez-Duhalt R. Nonylphenol algal bioaccumulation and its effect through the trophic chain[J]. Chemosphere, 2007,68(4):662-670.
    [21]伍筱琳,刘仁沿,李红霞,那广水,姚子伟,关道明.三氯生对小球藻的生长效应研究[J].海洋通报,2009,28(3):117-120.
    [22]Flippin J L, Huggett D, Foran C M. Changes in the timing of reproduction following chronic exposure to ibuprofen in Japanese medaka, Oryzias latipes[J]. Aquatic Toxicology,2007,81(1): 73-78.
    [23]Zhang Y, Geiβen S U. In vitro degradation of carbamazepine and diclofenac by crude lignin peroxidase[J]. Journal of Hazardous Materials,2010,176(1):1089-1092.
    [24]Li Z H, Zlabek V, Grabic R, Velisek J, Machova J, Randak T. Enzymatic alterations and RNA/DNA ratio in intestine of rainbow trout, Oncorhynchus mykiss, induced by chronic exposure to carbamazepine[J]. Ecotoxicology,2010,19(5):872-878.
    [25]Wollenberger L, Halling-S(?)rensen B, Kusk K O. Acute and chronic toxicity of veterinary antibiotics to Daphnia magna[J]. Chemosphere,2000,40(7):723-730.
    [26]Kim J W, Ishibashi H, Yamauchi R, Nobuhiro I, Yuji T, Masashi H, Minoru K, Koji A. Acute toxicity of pharmaceutical and personal care products on freshwater crustacean (Thamnocephalus platyurus) and fish (Oryzias latipes)[J]. The Journal of Toxicological Sciences,2009,34(2): 227-232.
    [27]陈春,周启星,刘潇威,李松.多环麝香对蚯蚓的急性和亚急性毒性效应[J].生态毒理学报,2012,4(7):401-407.
    [28]施嘉琛,张晶,邵兵.人工合成麝香对胚胎干细胞发育毒性的初步研究[J].毒理学杂志,2012,26(6):412-414.
    [29]Tyler C R, Beresford N, van der Woning M, Sumpter J P, Tchorpe K. Metabolism and environmental degradation of pyrethroid insecticides produce compounds with endocrine activities[J]. Environmental Toxicology and Chemistry,2000,19(4):801-809.
    [30]范飞,周启星,王美娥.基于小麦种子发芽和根伸长的麝香酮污染毒性效应[J].应用生态学报,2008,19(6):1396-1400.
    [31]陈苏,孙丽娜,孙铁珩,晁雷,孙维科,娄阳.人工合成麝香对小麦种子发芽的生态毒性[J].环境科学,2011,32(5):1477-1481.
    [32]王朋,温蓓,张淑贞.诺氟沙星对芽期玉米的毒性和氧化损伤研究[J].生态毒理学报,2010,5(6):849-856.
    [33]Migliore L, Civitareale C, Cozzolino S, Casoria P, Brambilla G, Gaudio L. Laboratory models to evaluate phytotoxicity of sulphadimethoxine on terrestrial plants[J]. Chemosphere,1998,37(14): 2957-2961.
    [34]Bardini M, Labra M, Winfield M, Sala F. Antibiotic-induced DNA methylation changes in calluses of Arabidopsis thaliana[J]. Plant Cell, Tissue and Organ Culture,2003,72(2):157-162.
    [35]Ternes T A. Occurrence of drugs in German sewage treatment plants and rivers[J]. Water Research,1998,32(11):3245-3260.
    [36]Ternes T A, Herrmann N, Bonerz M, Knacker T, Siegrist H, Joss A. A rapid method to measure the solid-water distribution coefficient (Kd) for pharmaceuticals and musk fragrances in sewage sludge[J]. Water Research,2004,38(19):4075-4084.
    [37]Clara M, Strenn B, Gans O, Martinez E, Kreuzinger N, Kroiss H. Removal of selected Pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants[J]. Water Research,2005,39(19):4797-4807.
    [38]Kasprzyk-Hordern B, Dinsdale R M, Guwy A J. The removal of Pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters[J]. Water Research,2009,43(2):363-380.
    [39]Van De Steene J C, Stove C P, Lambert W E. A field study on 8 pharmaceuticals and 1 pesticide in Belgium:Removal rates in waste water treatment plants and occurrence in surface water[J]. Science of the Total Environment,2010,408(16):3448-3453.
    [40]Sim W J, Kim H Y, Choi S D, Kwon J H, Oh J E. Evaluation of pharmaceuticals and personal care products with emphasis on anthelmintics in human sanitary waste, sewage, hospital wastewater, livestock wastewater and receiving water[J]. Journal of Hazardous Materials,2013, 248:219-227.
    [41]Kosma C I, Lambropoulou D A, Albanis T A. Occurrence and removal of PPCPs in municipal and hospital wastewaters in Greece[J]. Journal of Hazardous Materials,2010,179(1): 804-817.
    [42]Reif R, Santos A, Judd S J, Lema J M, Omil F. Occurrence and fate of pharmaceutical and personal care products in a sewage treatment works[J]. Journal of Environmental Monitoring, 2011,13(1):137-144.
    [43]Sui Q, Huang J, Deng S, Yu G, Fan Q. Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China[J]. Water Research,2010,44(2): 417-426.
    [44]Zearley T L, Summers R S. Removal of trace organic micropollutants by drinking water biological filters[J]. Environmental Science & Technology,2012,46(17):9412-9419.
    [45]Heidler J, Halden R U. Fate of organohalogens in US wastewater treatment plants and estimated chemical releases to soils nationwide from biosolids recycling[J]. Journal of Environmental Monitoring,2009,11(12):2207-2215.
    [46]Sim W J, Lee J W, Oh J E. Occurrence and fate of pharmaceuticals in wastewater treatment plants and rivers in Korea[J]. Environmental pollution,2010,158(5):1938-1947.
    [47]Camacho-Munoz D, Martin J, Santos J L, Aparicio I, Alonso E. Effectiveness of conventional and low-cost wastewater treatments in the removal of pharmaceutically active compounds[J]. Water, Air, & Soil Pollution,2012,223(5):2611-2621.
    [48]Gao D, Li Z, Wen Z, Ren N. Occurrence and fate of phthalate esters in full-scale domestic wastewater treatment plants and their impact on receiving waters along the Songhua River in China[J]. Chemosphere,2014,95:24-32.
    [49]周雪飞,陈家斌,张亚雷.膜处理和活性炭吸附去除水环境中的PPCPs[J]给水排水,2009,35(2):8]-84.
    [50]兰涛.活性炭吸附技术去除水中氯贝酸和磺胺甲恶唑的研究[D].华东理工大学,2011.
    [51]吕婧,封莉,张立秋.不同活性炭对水中微量药物萘普生的吸附规律研究[J].环境科学 学报,2012,32(10):2443-2449.
    [52]Snyder S A, Adham S, Redding A M, Cannon, F S, DeCarolis J, Oppenheimer J, Wert E C, Yoon Y. Role of membranes and activated carbon in the removal of endocrine disrupters and pharmaceuticals[J]. Desalination,2007,202(1):156-181.
    [53]Vieno N M, Harkki H, Tuhkanen T, Kronberg L. Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant[J]. Environmental Science & Technology,2007,41(14):5077-5084.
    [54]Westerhoff P, Yoon Y, Snyder S, Wert E. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes[J]. Environmental Science & Technology,2005,39(17):6649-6663.
    [55]Adams C, Wang Y, Loftin K, Meyer M. Removal of antibiotics from surface and distilled water in conventional water treatment processes[J]. Journal of Environmental Engineering,2002, 128(3):253-260.
    [56]Garcia N, Moreno J, Cartmell E, Rodriguez-Roda I, Judd S. The application of microfiltration-reverse osmosis/nanofiltration to trace organics removal for municipal wastewater reuse[J]. Environmental Technology,2013,34(24):3183-3189.
    [57]Lee C O, Howe K J, Thomson B M. Ozone and biofiltration as an alternative to reverse osmosis for removing PPCPs and EDCs from wastewater[J]. Report to:New Mexico Environment Department. Title:Ozone and Biofiltration for PPCP and EDC Removal,2010.
    [58]Yoon Y, Westerhoff P, Snyder S A, Wert E C, Yoon J. Removal of endocrine disrupting compounds and pharmaceuticals by nanofiltration and ultrafiltration membranes[J]. Desalination, 2007,202(1):16-23.
    [59]Kim I, Tanaka H. Photodegradation characteristics of PPCPs in water with UV treatment[J]. Environment International,2009,35(5):793-802.
    [60]Sui Q, Huang J, Lu S, Deng S, Wang B, Zhao W, Qiu Z, Yu G. Removal of pharmaceutical and personal care products by sequential ultraviolet and ozonation process in a full-scale wastewater treatment plant[J]. Frontiers of Environmental Science & Engineering,2014,8(1): 62-68.
    [61]Chang E E, Liu T Y, Huang C P, Liang C H, Chiang P C. Degradation of mefenamic acid from aqueous solutions by the ozonation and O3/UV processes[J]. Separation and Purification Technology,2012,98:123-129.
    [62]Li W, Lu S, Qiu Z, Lin K. UV and VUV photolysis vs. UV/H2O2 and VUV/H2O2 treatment for removal of clofibric acid from aqueous solution[J]. Environmental Technology,2011,32(10): 1063-1071.
    [63]Lopez-Penalver J J, Sanchez-Polo M, Gomez-Pacheco C V, Rivera-Utrilla J. Photodegradation of tetracyclines in aqueous solution by using UV and UV/H2O2 oxidation processes[J]. Journal of Chemical Technology and Biotechnology,2010,85(10):1325-1333.
    [64]Shirazi E, Torabian A, Nabi-Bidhendi G. Carbamazepine Removal from Groundwater: Effectiveness of the TiO2/UV, Nanoparticulate Zero-Valent Iron, and Fenton (NZVI/H2O2) Processes[J]. CLEAN-Soil, Air, Water,2013,41(11):1062-1072.
    [65]Li W, Nanaboina V, Zhou Q, Korshin G V. Effects of Fenton treatment on the properties of effluent organic matter and their relationships with the degradation of pharmaceuticals and personal care products[J]. Water Research,2012,46(2):403-412.
    [66]陈家斌,周雪飞,张亚雷.水环境中PPCPs的臭氧氧化和高级氧化技术[J].给水排水,2009,35(2):85-90.
    [67]Zhou X, Shao T. Comparison of UV/PDS and UV/H2O2 processes for the degradation of atenolol in water[J].环境科学学报:英文版,2013(008):1519-1528.
    [68]Kim J K. Removal of pharmaceutical and personal care products using a novel UV/TCNSP composite process in water[D]. University College London,2012.
    [69]Pi Y, Feng J, Sun J, Sun J. Facile, effective, and environment-friendly degradation of sulfamonomethoxine in aqueous solution with the aid of a UV/Oxone oxidative process[J]. Environmental Science and Pollution Research,2013,20(12):8621-8628.
    [70]王卓群.SBR法与Oxone/Co2+氧化法联合技术处理PPCPs废水的研究[D].河南师范大学,2012.
    [71]王惠英.介质阻挡放电等离子体对水中双氯芬酸的去除研究[D].南京大学,2011.
    [72]Leadbetter E R, Foster J W. Oxidation products formed from gaseous alkanes by the bacterium Pseudomonas methanica[J]. Archives of Biochemistry and Biophysics,1959,82(2): 491-492.
    [73]罗玮.难降解污染物微生物共代谢作用研究进展[J].土壤通报,2012,43(6):1515-1521.
    [74]陈绍华,龚文琪,梅光军,鄢恒珍.共基质条件下黄药的生物降特性研究[J].水处理技术,2010,36(9):60-64.
    [75]魏晓雪,郝文静,张云飞,郭栋生.共代谢深度处理焦化废水研究[J].水处理技术,2010,36(10):70-72.
    [76]徐友海,刘姜,金刚,吕继萍,刘海军,谭湛洁,刘淑玲,于东.基于共代谢的接触氧化法处理碳纤维生产废水的研究[J].化工科技,2012,20(4):37-40.
    [77]张为.不同基质共代谢降解废水中靛蓝的研究[D].广东工业大学,2013.
    [78]李莹,朱文亭,潘艳艳.共代谢在制药废水好氧处理中的应用研究[J].工业水处理,2004,24(12):31-33.
    [79]Onesios K M, Jim T Y, Bouwer E J. Biodegradation and removal of pharmaceuticals and personal care products in treatment systems:a review[J]. Biodegradation,2009,20(4):441-466.
    [80]Julinova M, Kupec J, Houser J, Slavik R, Marusincova H, Cervefiakova L, Klivar S. Removal of polyvinylpyrrolidone from wastewater using different methods[J]. Water Environment Research, 2012,84(12):2123-2132.
    [81]Drewes J E, Fox P, Jekel M. Occurrence of iodinated X-ray contrast media in domestic effluents and their fate during indirect potable reuse[J]. Journal of Environmental Science and Health, Part A,2001,36(9):1633-1645.
    [82]刘世亮,骆永明,吴龙华,曹志洪.真菌对苯并[a]芘污染土壤共代谢降解研究[C]土壤资源持续利用和生态环境安全——中国土壤学会第十一届二次理事扩大会议暨学术会议论文集.2009.
    [83]宋立超,刘灵芝,李培军,刘宛,张玉龙.盐碱土壤多环芳烃降解菌群筛选及其降解特性[J].石油学报(石油加工),28(1):161-166.
    [84]潘淑颖,马光辉,常勇,胥慧真,马玉洪.土壤中DDT的微生物修复研究[J].安徽农业科学,2013,3:1058-1060.
    [85]田连生,陈菲.T2-2菌株对多菌灵的降解特性及生物修复试验[J].微生物学报,2009(7):925-930.
    [86]齐云,赵林,胡滨,谭欣.不同温度下红球菌降解氯代苯甲酸及共代谢作用[J].天津大学学报,2006,39(12):1428-1433.
    [87]张祥胜,李军辉,康怡军,董珊珊.三氯乙烯好氧共代谢降解菌鉴定和降解特性研究[J].环境科学与技术,2013,36(1):61-64.
    [88]厉阗,钱坤,肖伟,王进军,邓新平.嗜盐拟香味菌Y6降解硝基苯的特性研究[J].环境科学,2013,34(2):753-759.
    [89]崔静岚.多氯联苯降解菌的筛选,降解特性研究及其应用[D].浙江大学,2013.
    [90]张姝,李晓豹,侯珍.杨君君.2,2’,4,4’-四溴联苯醚的好氧微生物降解[J].环境科学,2013,34(5):1945-1950.
    [91]蔡瀚,尹华,叶锦韶,常晶晶,彭辉,张娜,何宝燕.1株苯并[a]芘高效降解菌的筛选与降解特性[J].环境科学,2013,34(5):1937-1944.
    [92]任大军,鲍欣,瞿晶晶,张元元,许琴,张淑琴,吴高明.白腐真菌对受吲哚污染模拟土壤的修复研究[J].环境污染与防治,2013,35(8):5-8.
    [93]朱生凤,李红芳,宫小明,尤学一,梁生康.一株源自海洋环境多环芳烃降解菌的筛选、鉴定及适宜降解条件研究[J].海洋环境科学,2013,32(1):58-62.
    [94]Ambrosio S T, Campos-Takaki G M. Decolorization of reactive azo dyes by Cunninghamella elegans UCP 542 under co-metabolic conditions[J]. Bioresource Technology,2004,91(1):69-75.
    [95]Brungard K L, Munakata-Marr J, Johnson C A, Mandernack K W. Stable carbon isotope fractionation of trans-1,2-dichloroethylene during co-metabolic degradation by methanotrophic bacteria[J]. Chemical Geology,2003,195(1):59-67.
    [96]Mai P, Jacobsen O S, Aamand J. Mineralization and co-metabolic degradation of phenoxyalkanoic acid herbicides by a pure bacterial culture isolated from an aquifer[J]. Applied Microbiology and Biotechnology,2001,56(3-4):486-490.
    [97]Baggi G, Andreoni V, Bernasconi S, Cavalca L, Zangrossi M. Co-metabolic degradation of mixtures of monochlorophenols by phenol-degrading microorganisms[J]. Annals of Microbiology, 2002,52(2):133-144.
    [98]张锡辉,Bajpai R.微生物共降解动力学模型解析[J].环境科学学报,2000,1:58-63.
    [99]Habe H, Omori T. Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria[J]. Bioscience, Biotechnology, and Biochemistry,2003,67(2):225-243.
    [100]孙雪景,王静,焦岩,王占华.微生物共代谢作用的研究与应用[J].农业与技术,2010,30(4):57-60.
    [101]石成春.有机污染物微生物共代谢降解及其动力学研究[J].化学工程与装备,2010,7:164-167.
    [102]刘和,沈超峰,王侃,陈英旭.多食鞘氨醇杆菌共代谢降解五氯酚[J].中国环境科学,2004,24(3):294-298.
    [103]Xie S, Liu J, Li L, Qiao C. Biodegradation of malathion by Acinetobacter johnsonii MA 19 and optimization of cometabolism substrates[J]. Journal of Environmental Sciences,2009,21(1): 76-82.
    [104]Tobajas M, Monsalvo V M, Mohedano A F, Rodriguez J J. Enhancement of cometabolic biodegradation of 4-chlorophenol induced with phenol and glucose as carbon sources by Comamonas testosterone[J]. Journal of Environmental Management,2012,95:S116-S121.
    [105]鄢恒珍,龚文琪,梅光军,陈绍华,陈晓东.共代谢条件下丁基黄药的生物降解实验研究[J].环境污染与防治,2010,32(4):1-5.
    [106]胡凤钗,苏振成,孙健,李旭,张惠文,孙军德.高效芘降解菌N12的分离鉴定与降解特性[J].应用生态学报,2011,22(6):1566-1572.
    [107]唐顺,杨琦,尚海涛,郝春博.苯为好氧共代谢基质的,二氯乙烯的生物降解研究[J].环境科学学报,2011,31(10):2146-2153.
    [108]何腾腾.海洋微生物降解多环芳烃的研究[D].汕头大学,2009.
    [109]Loh K C, Cao B. Paradigm in biodegradation using Pseudomonas putida- A review of proteomics studies[J]. Enzyme and Microbial Technology,2008,43(1):1-12.
    [110]王呈玉,孙玉成,曲迪,李成龙,王玉军,王继红,胡耀辉.恶臭假单胞菌好氧降解高氯联苯的蛋白质组.分析[J].环境科学学报,2012,32(9):2097-2103.
    [111]邓伟光,谌建宇,李小明,黄荣新,杨麒,罗琨,易欣.壬基酚和双酚A降解菌株的分离,鉴定和特性研究[J].环境科学学报,2013,33(3):700-707.
    [112]吴海珍,韦朝海,周盛.典型POPs的生物降解修复技术研究与发展[J].生态环境学报,21(1):166-171.
    [113]李晶,饶婷,李巍,李轶.恶臭假单胞菌(Pseudomonas putida LY1)共代谢降解苯酚和4-氯苯酚系统的降解动力学研究[J].环境科学学报,2011,31(10):2109-2116.
    [114]Fakhruddin A N M, Quilty B. The influence of glucose and fructose on the degradation of 2-chlorophenol by Pseudomonas putida CP1[J]. World Journal of Microbiology and Biotechnology,2005,21(8-9):1541-1548.
    [115]Hamed T A, Bayraktar E, Mehmetoglu T, Mehmetoglu U. Cometabolic Degradation of Trichloroethylene by Single-and Two-Phase Systems[J]. Soil and Sediment Contamination:An International Journal,2013,22(1):85-94.
    [116]杜宁.甲胺磷降解菌株的筛选及降解性能研究[D].上海师范大学,2012.
    [117]Chen K, Liu X M, Li R, Liu Y, Hu H, Li S P, Jiang J D. Isolation of a buprofezin co-metabolizing strain of Pseudomonas sp. DFS35-4 and identification of the buprofezin transformation pathway[J]. Biodegradation,2011,22(6):1135-1142.
    [118]Zhang J J, Chen Y F, Fang T, Zhou N Y. Co-metabolic degradation of tribenuron methyl, a sulfonylurea herbicide, by Pseudomonas sp. strain NyZ42[J]. International Biodeterioration & Biodegradation,2012,76:36-40.
    [119]李青云,顾宝群,刘幽燕,周茂钟,李婵,覃益民,钟善锦.氯氰菊酯降解菌GF31的分离鉴定及其降解特性[J].微生物学通报,2009,36(9):1334-1339.
    [120]Ali'O, Namane A, Hellal A. Use and recycling of Ca-alginate biocatalyst for removal of phenol from wastewater[J]. Journal of Industrial and Engineering Chemistry,2013,19: 1384-1390.
    [121]Larcher S, Yargeau V. Biodegradation of 17a-ethinylestradiol by heterotrophic bacteria[J]. Environmental Pollution,2013,173:17-22.
    [122]曾祥玲.石油污染土壤中芘,荧蒽降解菌的筛选鉴定及降解特性研究[D].东北大学,2009.
    [123]Kurzbaum E, Kirzhner F, Sela S, Zimmels Y, Armon R. Efficiency of phenol biodegradation by planktonic Pseudomonas pseudoalcaligenes (a constructed wetland isolate) vs. root and gravel biofilm[J]. Water Research,2010,44(17):5021-5031.
    [124]史江红,韩蕊,宿凌燕,曹金玲,呼丽娟.某污水处理厂中17α-乙炔基雌二醇降解菌的分离鉴定及其降解特性[J].环境科学学报,2010,30(12):2414-2419.
    [125]浦雪.地下水硝基甲苯降解菌的筛选及降解特性[D].南京理工大学,2013.
    [126]Graves P R, Haystead T A J. Molecular biologist's guide to proteomics [J]. Microbiology and Molecular Biology Reviews,2002,66(1):39-63.
    [127]王英超,党源,李晓艳.蛋白质组学及其技术发展[J].生物技术通讯,2010,21(1):139-144.
    [128]Gorg A, Weiss W, Dunn M J. Current two-dimensional electrophoresis technology for proteomics[J]. Proteomics,2004,4(12):3665-3685.
    [129]郭健,唐志毅.高效液相色谱法测定血浆同型半胱氨酸[J].中华检验医学杂志,2000,23(4):217-219.
    [130]赵欣,蒲小平.蛋白质组学在药物研究中的应用[J].中国药理学通报,2009,25(8):988-91.
    [131]Ryu J W, Kim H J, Lee Y S, Myong N H, Hwang C H, Lee G S, Yom H C. The proteomics approach to find biomarkers in gastric cancer[J]. Journal of Korean Medical Science,2003,18(4): 505.
    [132]孙成荣,唐建武,孙明忠,刘淑清,张宏颖,王波,宋波,张亚楠,张竹清,赵志英.采用定量蛋白质组学技术筛选小鼠肝癌淋巴道转移相关蛋白[J].生物化学与生物物理进展,2007,34(8):856-864.
    [133]张伟,曾园山,汪洋,刘炜,程进军,陈穗君.灵芝孢子促进大鼠受损伤脊髓运动神经元存活及其轴突再生相关蛋白质组学的初步研究[J].中西医结合学报,2006,4(3):298-302.
    [134]Chang W W P, Huang L, Shen M, Webster C, Burlingame A L, Roberts J K M. Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment, and identification of proteins by mass spectrometry[J]. Plant Physiology, 2000,122(2):295-318.
    [135]Barreneche T, Bahrman N, Kremer A. Two dimensional gel electrophoresis confirms the low level of genetic differentiation between Quercus robur L. and Quercus petraea (Matt.) Liebl[J]. International Journal of Forest Genetics,1996,3.
    [136]Eixarch H, Constanti M. Biodegradation of MTBE by Achromobacter xylosoxidans MCM1/1 induces synthesis of proteins that may be related to cell survival[J]. Process Biochemistry,2010,45(5):794-798.
    [137]张春杨,李超,李睿,聂彩辉,徐晓晖,宋关玲,马汇泉.降解多环芳烃芽孢杆菌NAPZ的萘诱导蛋白研究[J].生态环境学报,21(12):1980-1984.
    [1]Perez S, Barcelo D. Fate and occurrence of X-ray contrast media in the environment[J]. Analytical and Bioanalytical Chemistry,2007,387(4):1235-1246.
    [2]Ener R A, Georgakis A, Jin J, Kunapuli S, Topolsky D L, Styler M J. The effect of iomeprol on platelet aggregation and potential risk of thrombogenecity[J]. The Internet Journal of Hematology, 2012,8(1):1-1.
    [3]Lorusso V, Taroni P, Alvino S, Spinazzi A. Pharmacokinetics and safety of iomeprol in healthy volunteers and in patients with renal impairment or end-stage renal disease requiring hemodialysis[J]. Investigative Radiology,2001,36(6):309-316.
    [4]Rosal R, Rodea-Palomares I, Boltes K, Fernandez-Pinas F, Leganes F, Gonzalo S, Petre A. Ecotoxicity assessment of lipid regulators in water and biologically treated wastewater using three aquatic organisms[J]. Environmental Science and Pollution Research,2010,17(1):135-144.
    [5]Echeverria S, Borrull F, Fontanals N, et al. Determination of iodinated X-ray contrast media in sewage by solid-phase extraction and liquid chromatography tandem mass spectrometry[J]. Talanta,2013,116:931-936.
    [6]Contardo-Jara V, Lorenz C, Pflugmacher S, Nutzmann G, Kloas W, Wiegand C. Exposure to human pharmaceuticals Carbamazepine, Ibuprofen and Bezafibrate causes molecular effects in Dreissenapolymorpha[J]. Aquatic Toxicology,2011,105(3):428-437.
    [7]Steger-Hartmann T, Lange R, Schweinfurth H. Environmental risk assessment for the widely used iodinated X-ray contrast agent iopromide (Ultravist)[J]. Ecotoxicology and Environmental Safety,1999,42(3):274-281.
    [8]Krause H, Schweiger B, Schuhmacher J, Scholl S, Steinfeld U. Degradation of the endocrine disrupting chemicals (EDCs) carbamazepine, clofibric acid, and iopromide by corona discharge over water[J]. Chemosphere,2009,75(2):163-168.
    [9]刘凯英.碘普罗胺及其类似物降解菌的筛选及其强化生物去除研究[D].东华大学,2012.
    [10]杨兴,薛罡,赵晓祥,刘亚男.苯扎贝特降解菌的筛选及降解特性[J].微生物学报,2010,50(6):797-802.
    [11]邵锦挺,应国清,王琦,梅建凤,王鸿,易喻.微型化DNS法测定多糖水解液中还原糖的质量浓度[J].浙江工业大学学报,2012,40(3):250-252.
    [12]齐香君,苟金霞,韩戌珺,闫博.3,5-二硝基水杨酸比色法测定溶液中还原糖的研究[J].纤维素科学与技术,2004,12(3):17-19.
    [13]王俊丽,聂国兴,李素贞,谢艳敏,曹香林.DNS法测定还原糖含量时最适波长的确定[J].河南农业科学,2010,4:115-118.
    [14]余志坚,陈传红,赵晋宇.DNS法检测食用菌多糖含量条件优化研究[J].江苏农业科学,2012,40(1):259-260.
    [15]孙伟伟,曹维强,王静.DNS法测定玉米秸秆中总糖[J].食品研究与开发,2006,27(6):120-123.
    [16]邓伟光,谌建宇,李小明,黄荣新,杨麒,罗琨,易欣.壬基酚和双酚A降解菌株的分离,鉴定和特性研究[J].环境科学学报,2013,33(3):700-707.
    [17]李剑,谢春娟.废水中苯胺的好氧共代谢降解实验研究[J].环境工程学报,2007,1(6): 51-55.
    [18]朱婷婷,倪晋仁.不同碳源对苯并[a]芘降解菌生长和降解性能影响的研究[J].北京大学学报(自然科学版),2012,48(2):343-346.
    [19]Liang Y, Zeng F, Qiu G, Lu X, Liu X, Gao H. Co-metabolic degradation of dimethoate by Raoultella sp. X1[J]. Biodegradation,2009,20(3):363-373.
    [20]Nie M, Yin X, Ren C, Wang Y, Xu F, Shen Q. Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3[J]. Biotechnology Advances,2010,28(5):635-643.
    [21]张锡辉,白志俳.难降解有机污染物共降解机理解析[J].上海环境科学,2000,19(7):297-301.
    [22]尹军,谭学军,任南琪.用TTC与INT-电子传递体系活性表征重金属对污泥活性的影响[J].环境科学,2005,26(1):56-62.
    [23]尹军.消化污泥脱氢酶活性检测的若干问题[J].中国给水排水,2000,16(10):47-49.
    [24]雷欢,黄栩,田蕴,郑天凌.一株菲降解细菌的筛选及其降解条件的优化[J].海洋科学集刊,2009,49:104-111.
    [25]曲艳慧.基于不同碳源类型条件下倒置A2/O工艺与常规A2/O工艺脱氮除磷机理及微生物代谢活性对比研究[D].青岛理工大学,2011.
    [26]尹军,付瑶,王翠兰,荐志远,韩键,闫钰.活性污泥的基质代谢脱氢酶活性测定[J].中国给水排水,2002,18(9):50-52.
    [27]Kalsch W. Biodegradation of the iodinated X-ray contrast media diatrizoate and iopromide[J]. Science of the Total Environment,1999,225(1-2):143-153.
    [1]郑穗平,郭勇,潘力.酶学(第二版)[M].北京:科学出版社.2009:3.
    [2]路福平,刘逸寒,薄嘉鑫.食品酶工程关键技术及其安全性评价[J].中国食品学报,2011,11(9):188-193.
    [3]孙丽娜.酶工程制药实用技术[J].医学信息,2011,24(7):4636-4637.
    [4]徐升运,赵文娟,陈卫锋.应用生物酶法提取黄姜皂素的清洁工艺研究[J].环境科学与技术,2011,34(2):162-164.
    [5]王强,曹省艳,王强,李波,黄谦,汪露,王钒.微生物胞外酶研究进展[J].中国畜牧兽医,2012,39(1):75-77.
    [6]Bumpus J A. Biodegradation of polycyclic hydrocarbons by Phanerochaete chrysosporium[J]. Applied and Environmental Microbiology,1989,55(1):154-158.
    [7]Bogan B W, Lamar R T. Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes[J]. Applied and Environmental Microbiology,1996,62(5):1597-1603.
    [8]Zeddel A, Majcherczyk A, Huttermann A. Degradation of polychlorinated biphenyls by white-rot fungi pleurotus ostreatus and trametes versicolor in a solid state system[J]. Toxicological & Environmental Chemistry,1993,40(1-4):255-266.
    [9]Novotny C, Vyas B R M, Erbanova P, Kubatova A, k V. Removal of PCBs by various white rot fungi in liquid cultures[J]. Folia Microbiologica,1997,42(2):136-140.
    [10]Cameron M D, Aust S D. Degradation of Chemicals by Reactive Radicals Produced by Cellobiose Dehydrogenase from Phanerochaete chrysosporium [J]. Archives of Biochemistry and Biophysics,1999,367(1):115-121.
    [11]时进纲.表面活性剂对堆肥过程中微生物胞外酶的作用及其机理研究[D].湖南大学,2007.
    [12]苑宝玲,陈彩云,李云琴,刘波,史怀.假单胞菌胞内酶粗提液对藻毒素MCLR的降解[J].环境化学,2009,28(6):854-858.
    [13]史广宇,尹华,叶锦韶,彭辉,张娜,何宝燕.铜绿假单胞菌胞内酶粗提液对十溴联苯醚的降解[J].环境科学,2013,34(004):1517-1523.
    [14]聂麦茜,吴蔓莉,王晓昌,林玲,王蕊,王学选.一株黄杆菌及其粗酶液对芘降解的动力学特征研究[J].环境科学学报,2006,26(2):181-185.
    [15]陈继章,张卫,施倬嘉,乔建江,徐圣友,张大年.菲的微生物酶促降解研究[J].农业环境科学学报,2008,27(4):1623-1626.
    [16]黄丽萍,周集体,包永明,杨凤林,张劲松,腾丽曼.动胶菌HP3及其胞外酶降解溴胺酸产物的分析[J].环境科学学报,2002,22(3):364-368.
    [17]李脉,杨继国,杨博.磷脂酶A1酶活测定方法的研究[J].现代食品科技,2007,23(8):80-82.
    [18]肖建军,华泽钊,徐斐,李保国.植物酶浓度对检测乐果灵敏度的影响研究[J].环境科学学报,2002,22(5):653-657.
    [19]陈颖萍,李延辉,李瑞芬.酪蛋白为底物测定豆豉溶栓酶活力的实验研究[J].中医药学刊,2003,21(6):924-925.
    [20]周志俊,邬红梅,胡云平,薛寿征.血清对氧磷酶活力测定方法研究[J].中国公共卫生,2000,16(4):303-304.
    [21]杨兴.典型PPCPs降解菌的筛选及其在曝气生物滤池中的应用[D].东华大学,2011.
    [1]王凡强,王正祥,邵蔚蓝,刘吉泉,徐成勇,诸葛健.重组大肠杆菌热稳定性过氧化氢酶的纯化及性质研究[J].微生物学报,2002,42(3):348-353.
    [2]薛勇.木瓜蛋白酶的化学修饰及固定化研究[D].东华大学,2010.
    [3]汪海波,黄爱妮,张含俊,刘良忠.固定化p-葡萄糖苷酶的酶学性质研究[J].食品科学,2011,32(9):159-163.
    [4]李超.白囊耙齿菌胞外漆酶的纯化及酶学性质的研究[D].东北林业大学,2009.
    [5]董怡华,胡筱敏,和英滇,李亮.共代谢条件下光合细菌对2-氯苯酚的生物降解[J].应用生态学报,2011,22(5):1280-1286.
    [6]张为,罗建中,苏德强,杨建林,张砾文.微生物共代谢降解难降解废水影响因素的研究进展[J].工业水处理,2013,33(3):9-13.
    [7]汤鸣强,尤民生.抗草甘膦酵母菌ZM-1的分离鉴定及其生长降解特性[J].微生物学通报,2010,37(9):1402-1409.
    [8]张锡辉,Bajpai R.以关键酶为基础共代谢模型的建立——以甲烷细菌共代谢三氯乙烯为例[J].环境科学学报,2000,20(5):558-562.
    [9]Chang H L, Alvarez-Cohen L. Model for the cometabolic biodegradation of chlorinated organics[J]. Environmental Science & Technology,1995,29(9):2357-2367.
    [10]薛罡,杨兴,赵晓祥,刘亚男.苯扎贝特好氧生物降解产物的GC-MS测定[J].环境化学,2010,6:1181-1182.
    [11]Tschantz M F, Bowman J P, Donaldson T L, Bienkowski P R, Strong-Gunderson J L, Palumbo A V, Herbes S E, Sayler G S. Methanotrophic TCE biodegradation in a multi-stage bioreactor[J]. Environmental Science & Technology,1995,29(8):2073-2082.
    [12]Joiner M C, Rojas A, Johns H. Renal damage in the mouse:repair kinetics at 2 and 7 Gy per fraction[J]. Radiation Research,1993,134(3):355-363.
    [13]宋卫锋,严明,孙水裕.浮选废水中苯胺黑药与外加基质的共代谢特性[J].中国有色金属学报,2012,22(7):2090-2096.
    [14]Boonchan S, Britz M L, Stanley G A. Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures[J]. Applied and Environmental Microbiology,2000,66(3):1007-1019.
    [15]赵天涛,高静,张丽杰,全学军.有机相中脂肪酶催化合成乳酸乙酯[J].催化学报,2006,27(6):537-540.
    [16]江红,蔡宁,乔传令.苯酚降解酵母Pd6的分离及对酚类化合物的降解[J].应用与环境生物学报,2010,16(3):385-389.
    [17]孙永利.固定化-共代谢技术处理五氯苯酚研究[D].天津大学,2007.
    [1]Gras D E, Silveira H, Peres N T A, Sanches P R, Martinez-Rossi N M, Rossi A. Transcriptional changes in the nuc-2A mutant strain of Neurospora crassa cultivated under conditions of phosphate shortage[J]. Microbiological Research,2009,164(6):658-664.
    [2]Eixarch H, Constanti M. Biodegradation of MTBE by Achromobacter xylosoxidans MCM1/1 induces synthesis of proteins that may be related to cell survival[J]. Process Biochemistry,2010, 45(5):794-798.
    [3]Yoshida M, Muneyuki E, Hisabori T. ATP synthase-a marvellous rotary engine of the cell[J]. Nature Reviews Molecular Cell Biology,2001,2(9):669-677.
    [4]Cao B, Loh K C. Physiological comparison of Pseudomonas putida between two growth phases during cometabolism of 4-chlorophenol in presence of phenol and glutamate:a proteomics approach[J]. Journal of Chemical Technology and Biotechnology,2009,84(8):1178-1185.
    [5]王卓群.SBR法与Oxone/Co2+氧化法联合技术处理PPCPs废水的研究[D].河南师范大学,2012.
    [1]林齐,宋永会,李冬,张杰.曝气生物滤池处理工业综合废水提标改造技术研究[J].中国工程科学,2013,15(3):95-102.
    [2]李燕飞,孙迎雪,田媛,高如泰.曝气生物滤池处理生活污水研究[J].环境工程学报,5(3):575-578.
    [3]李达宁,汪晓军,朱官平,刘剑玉.两级曝气生物滤池对垃圾渗滤液的脱氮效果[J].中国给水排水,2011,27(5):28-31.
    [4]陆少鸣,杨立,陈艺韵,刘哲.高速给水曝气生物滤池预处理微污染原水[J].中国给水排水,2009,25(18):65-70.
    [5]Shen J, He R, Yu H, Wang L, Zhang J, Sun X, Li J, Han W, Xu L. Biodegradation of 2,4, 6-trinitrophenol (picric acid) in a biological aerated filter (BAF)[J]. Bioresource Technology,2009, 100(6):1922-1930.
    [6]石为民.降解红霉素工程菌的构建及其在水源水曝气生物滤池预处理中的应用[D].东华大学,2012.
    [7]杨兴.典型PPCPs降解菌的筛选及其在曝气生物滤池中的应用[D].东华大学,2011.
    [8]姜娜,田博,刘志鹏.曝气生物滤池的填料选择[J].黑龙江科技信息,2012,11:46-46.
    [9]王荣,陈学民.不同流向对曝气生物滤池处理洗浴废水效果的影响[J].净水技术,2004,26(6):51-53.
    [10]朱步洲,唐志坚,郑璞,骆伟.曝气生物滤池及其处理效能因素分析[J].化学工程师,2008,22(2):38-41.
    [11]王晓阳,袁雅姝,刘军,苏锦明.两种运行方式对曝气生物滤池的影响[J].当代化工2004,33(3):175-178.
    [12]裴圣,程寒飞,陈祥宏.不同流向BAF硝化影响因素的对比试验[J].环境工程学报,3(2):285-288.
    [13]傅金祥,陈正清,赵玉华,朴芬淑,周晴,杨青.挂膜方式对曝气生物滤池的影响[J].水处理技术,2006,32(8):42-45.
    [14]李松礼,洪卫,杨海涛,谢益民.制浆造纸综合废水深度处理技术[J].中国造纸,2006,25(6):71-72.
    [15]孙永锋.曝气生物滤池处理微污染水源水的试验研究[D].东北林业大学,2012.
    [16]Li W, Recknagel F. In situ removal of dissolved phosphorus in irrigation drainage water by planted floats:preliminary results from growth chamber experiment[J]. Agriculture, Ecosystems & Environment,2002,90(1):9-15.
    [17]Kato Y, Kaminaga J, Matsuo R, Isogai A. TEMPO-mediated oxidation of chitin, regenerated chitin and N-acetylated chitosan[J]. Carbohydrate Polymers,2004,58(4):421-426.
    [18]Mendoza-Espinosa L, Stephenson T. A review of biological aerated filters (BAFs) for wastewater treatment[J]. Environmental Engineering Science,1999,16(3):201-216.
    [19]蒋绍阶,刘宗源.UV254作为水处理中有机物控制指标的意义[J].重庆建筑大学学报,2002,24(2):61-65.
    [20]刘金香,娄金生,陈春宁.沸石-陶粒曝气生物滤池处理微污染水源水试验[J].工业用水 与废水,2005,36(4):10-12.
    [21]施东文,陈健波,奚旦立,汪蕊,谢曙光,王占生.两种生物膜反应器对黄河微污染水处理[J].环境工程,2007,25(2):18-20.
    [22]方振东,刘文君,王占生.水力负荷对生物陶粒反应器运行的影响[J].环境科学,1998,19(2):43-46.
    [23]Lindqvist N, Tuhkanen T, Kronberg L. Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters[J]. Water Research,2005,39(11):2219-2228.
    [24]Clara M, Strenn B, Gans O, Martinez E, Kreuzinger N, Kroiss H. Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants[J]. Water Research,2005,39(19):4797-4807.
    [25]孙力平,侯红娟,林荣忱.改进的BAF工艺在工业废水处理中的应用[J].给水排水,2002,26(11):18-20.
    [26]章胜红.曝气生物滤池深度净化有机废水的研究[D].东华大学,2006.
    [27]Albuquerque A, Makinia J, Pagilla K. Impact of aeration conditions on the removal of low concentrations of nitrogen in a tertiary partially aerated biological filter[J]. Ecological Engineering, 2012,44:44-52.
    [28]Qi L, Wang X, Xu Q. Coupling of biological methods with membrane filtration using ozone as pre-treatment for water reuse[J]. Desalination,2011,270(1):264-268.
    [29]Ternes T A, Hirsch R. Occurrence and behavior of X-ray contrast media in sewage facilities and the aquatic environment[J]. Environmental Science & Technology,2000,34(13):2741-2748.
    [30]Seitz W, Weber W H, Jiang J Q, Lloyd B J, Maier M, Maier D, Schulz W. Monitoring of iodinated X-ray contrast media in surface water[J]. Chemosphere,2006,64(8):1318-1324.
    [31]Kargi F, Uygur A. Effect of carbon source on biological nutrient removal in a sequencing batch reactor[J]. Bioresource Technology,2003,89(1):89-93.
    [32]Miranda M P, Benito G G, Cristobal N S, Nieto C H. Color elimination from molasses wastewater by Aspergillus niger[J]. Bioresource Technology,1996,57(3):229-235.
    [33]张凯,雷梦婕,胡国元,袁军,杨洋,章建国.好氧反硝化细菌W1T-1的分离鉴定及其脱氨氮特性[J].武汉工程大学学报,2011,33(11):14-18.
    [34]Srinandan C S, D'souza G, Srivastava N, Nayak B B, Nerurkar A S. Carbon sources influence the nitrate removal activity, community structure and biofilm architecture[J]. Bioresource Technology,2012,117:292-299.
    [35]Fernandez-Nava Y, Maranon E, Soons J, Castrillon L. Denitrification of high nitrate concentration wastewater using alternative carbon sources[J]. Journal of Hazardous Materials, 2010,173(1):682-688.
    [36]Quintana J B, Weiss S, Reemtsma T. Pathways and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a membrane bioreactor[J]. Water Research,2005,39(12):2654-2664.
    [37]Moreira I S, Amorim C L, Carvalho M F, Castro P M L. Co-metabolic degradation of chlorobenzene by the fluorobenzene degrading wild strain Labrys portucalensis[J]. International Biodeterioration & Biodegradation,2012,72:76-81.
    [38]Wen J, Gao D, Zhang B, Liang H. Co-metabolic degradation of pyrene by indigenous white-rot fungus Pseudotrametes gibbosa from the northeast China[J]. International Biodeterioration & Biodegradation,2011,65(4):600-604.
    [39]Liang Y, Zeng F, Qiu G, Lu X, Liu X, Gao H. Co-metabolic degradation of dimethoate by Raonltella sp. XI[J]. Biodegradation,2009,20(3):363-373.
    [40]王淑红,马邕文,万金泉,王艳.不同基质共代谢降解2,4,6-三硝基苯酚的研究[J].环境工程学报,2009,3(3):479-484.
    [41]李亚静,陈修辉,孙力平,季民.不同碳源和泥龄对反硝化聚磷的影响[J].环境工程学报,2010,4(3):513-516.
    [42]王晨,马放,山丹,杨基先,蓝远东,高国伟.固定化生物活性炭处理含硝基苯微污染水的可行性研究[J].环境科学,2007,28(7):1490-1495.
    [43]刘建广,张晓健,王占生,沈莉萍,周聆,王春,徐兵UBAF处理高氨氮微污染水的特性[J].水处理技术,2005,31(11):30-33.
    [44]胡江泳,方振东,王占生.低温低浊微污染水源水的生物净化技术研究[J].环境科学,1996,17(1):54-56.
    [45]杨艳玲,李星,张晔,李圭白.生物滤池处理微污染水效能的试验研究[J].工业水处理,2007,27(4):17-20.
    [46]Chu W, Wang Y R, Leung H F. Synergy of sulfate and hydroxyl radicals in UV/S2O82-/H2O2 oxidation of iodinated X-ray contrast medium iopromide[J]. Chemical Engineering Journal,2011, 178(1):154-160.
    [47]Seitz W, Jiang J Q, Schulz W, Weber W H, Maier D, Maier M. Formation of oxidation by-products of the iodinated X-ray contrast medium iomeprol during ozonation[J]. Chemosphere, 2008,70(7):1238-1246.
    [48]Batt A L, Kim S, Aga D. Enhanced biodegradation of iopromide and trimethoprim in nitrifying activated sludge[J]. Environmental Science & Technology,2006,40(23):7367-7373.
    [49]Jelic A, Gros M, Ginebreda A, Cespedes-Sanchez R, Ventura F, Petrovic M, Barcelo D. Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment[J]. Water Research,2011,45(3):1165-1176.
    [50]Rosal R, Rodriguez A, Perdigon-Melon J A, Petre A, Garcia-Calvo E, Gomez M J, Aguera A, Fernandez-Alba A R. Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation[J]. Water Research,2010,44(2):578-588.
    [51]邱立平,王广伟,张守彬,陈京英,刘永正.上向流曝气生物滤池反冲洗实验研究[J].环境工程学报,2011,5(7):1522-1526.
    [52]Chipps M J, Bauer M J, Bayley R G. Achieving enhanced filter backwashing with combined air scour and sub-fluidising water at pilot and operational scale[J]. Filtration & Separation,1995, 32(1):55-54.
    [53]王劫,刘阳,江树志,白莹,胡筱敏.BAF反冲洗过程中悬浮物浓度的变化规律[J].中国给水排水,2011,27(8):99-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700