用户名: 密码: 验证码:
DNA折纸术模板构建金属纳米图案及其表面等离子体性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实现自下而上具有纳米级精确度的组装贵金属纳米颗粒是纳米技术的一个重要目标,有序组装的金属纳米颗粒阵列,基于其独特的表面等离子体共振性质,在纳米光子学(nanophotonics)及纳米电子学(nanoelectronics)方面都有重要应用。DNA纳米技术能够在纳米级精确度上控制纳米颗粒的定位,调控其相互作用,是有效控制纳米颗粒自组装的重要途径。 DNA折纸术,由200多条短链将一条长链M13固定成形状各异的二维、三维结构,其中每一条短链在DNA折纸结构上的位置是独一无二的,这使得DNA折纸结构具有纳米级可寻址性,是定位组装金属纳米颗粒的优秀模板。
     本文就主要利用DNA折纸术的结构多样性及纳米级可寻址性构建多种金属纳米图案,主要内容包括以下几点:
     1.首先我们由现在的简单二维DNA折纸通过粘性末端杂交构建各种形状的较大DNA折纸模板。为了能够利用一种简单的DNA origami tiles粘性末端杂交来得到高产率超级DNA折纸结构,为下一步组装金属纳米图案做准备,我们通过调节单个DNA折纸上伸出的粘性末端的个数,能有效提高形成三角DNA折纸结构六聚体的产率,利用同样的设计,我们合成了三角DNA折纸结构的二聚体、三聚体。同时,我们还构建了可光控调节的DNA折纸模板。偶氮苯存在顺反异构现象,具有光致异构性,其构形会随着光波长的变化改变其结构。当照射光波长小于400nm时,其结构为反向,可使修饰有偶氮苯的双链DNA接连,当用白光照射时,其结构为顺向,又可形成DNA双链结构。利用偶氮苯修饰的DNA做桥连DNA,我们实现对方块二聚体、多聚体形成与分散的光控调节。
     2.利用DNA折纸的纳米级可寻址性可精确定位金属纳米颗粒,我们利用这一点,通过DNA折纸上伸出的粘性末端与纳米金上修饰的DNA杂交将纳米级自组装到DNA折纸的特定位置,纳米金颗粒的几何构形及颗粒之间的间距由粘性末端位置确定。金属等离子体共振的强弱与其空间构形、纳米金颗粒大小,颗粒间间距大小都密切密切相关,而且对于小粒径纳米金来说,由于其散射截面太小,光学仪器采集单独一个纳米结构的光谱是十分困难的。我们以DNA折纸为模板构建小粒径纳米金颗粒开始,最后实现了组装30nm、50nm到80nm纳米金颗粒,构建大粒径纳米金颗粒的二聚体、三聚体及六聚体为下一章构建具有特殊光学效应的纳米金阵列打下基础。
     3.亚波长金属结构具有表面等离子共振性质,能与电磁场发生相互作用,这个性质使得亚波长金属结构能够在纳米金别操纵电磁场。我们利用DNA折纸为模板,构建了80nm纳米金二聚体、三聚体及四聚体,同时还组装了50nm-80nm纳米金各向异性二聚体。并且通过飞秒光刻在导电玻璃上打出标记物的方法实现了暗场显微镜与扫面电子显微镜共定位,原位采集纳米金团簇的暗场散射光谱,得到了类Fano共振(Fano-like resonance)现象。
     4.以上都是通过自组装金纳米颗粒的方法构建金属纳米图案,我们有通过在DNA折纸特定位点伸出DNA单链的方法在DNA折纸平面上引入缺陷,实现了在DNA折纸上纳米级分辨率无需种子的选择性铜金属化,在DNA折纸上成功构建了七点数字8数字88等铜金属图形,为构建纳米电路及纳米电学器件提供了可靠方法。
The bottom-up organization of noble-metal nanoparticles (NPs) withnanometer-scale precision is an important goal in nanotechnology. Owing to theirunique surface-plasmon resonances,well-defind metal namoparticle arrys could beused to develop applications in nanophotonics and nanoelectronics. Enormousprogress has been made in the DNA guided organization of nanoparticles intodiscrete, one dimensional, two-dimensional and three-dimensional architectures.DNA nanotechnology is a vehicle for the controllable assembly of nanoparticles8because it enables the positioning of particles with nanoscale precision and thetailoring of their binding interactions. DNA origami, which is based on the folding along single-stranded DNA scaffold with the help of hundreds of short complementarystaple strands, can create almost any arbitrary2D even3D shapes.Every stable strandis unique on the DNA origami,which make it nano-addressable and a perfecttemplate for metal nanoparticles self-assembly.
     Here we constructed a variety of Metal nanopatterns using thenano-addressablity of DNA origami.1. First, we built a variety of shapes of superorigami using the simpletwo-dimensional DNA origami through the hybridization of the sticky ends. weadjusted the number of sticky ends projecting from the DNA origami, and getsuperorigami with high yield, which is prepared for the assembly of metalnanopatterns on DNA origami next step. We improved the yield of hexamer DNAorigami structures formed from the triangles effectively. Using the same design, wehave synthesized the triangular DNA origami dimer and trimer.2. The nano-addressablity of DNA origami made the self-assembly of metalnanoparticles (NPs) with nanometer-scale precision easily. We designed a strategy to organize gold nanopaticles that uses the hybirdization of sticky-ends projecting fromthe DNA origami with the DNA modified on gold nanoparticles. The positions of thepaticles and spacings between them were controlled by the positions of thesticky-ends. The plamonic coupling between the gold nanoparticles depend on thegeomitry of the nanostructures,the shap and size of the particles and the spacingbetween them. Especially with small particles, optical measurements on individualnanostructures become extremely difficult due to their smallscattering cross sections.We construted gold naoparticles clusters from the small one and got the5nm goldnaoparticle heptermaers on DNA origami with high yield.Then we extended to thebig gold nanoparticles whose diameters ranged from30nm to80nm. We constructeddimer,trimer and hexamer of these big gold nanoparticles.3. Sububwavelength metallic structures enable the broad manipulation ofelectromagnetic fields at the nanoscalebecause of their ability to support surfaceplasmons, which are oscillations of free electrons in metal that couple with theelectromagnetic field. We constructed80nm gold nanoparticle dimer, trimer,tetramer and50nm-80nm gold nanoparticle dimer. We realized the Dark-fieldmicroscopy and scanning electron microscopy colocalization theough the marker onthe conductive glass. With this method, we got the scattering spectru of these goldnanoparticle clusters and discover the Fano-like resonance on the asymmetric80nmgold nanoparticle tetramer.4. Herein we used a conceptually new, simple and straightforward in situmetallization method which utilizes artificial defects in DNA origami structure asnucleation and growth positions to achieve the large-scale site-specific copperplating with nano-resolution.We successfully constructed a variety of parttens, suchas "seven dots","digetal8"and "digital88", on the DNA origami through the selectivecpooer metallization.
引文
1Barnes, W. L., Dereux, A.&Ebbesen, T. W. Surface plasmon subwavelengthoptics. Nature424,824-830(2003).
    2Shalaev, V. M. Optical negative-index metamaterials. Nat Photon1,41-48(2007).
    3Shalaev, V. M. et al. Negative index of refraction in optical metamaterials.Optics Letters30,3356-3358, doi:10.1364/ol.30.003356(2005).
    4Pendry, J. B., Schurig, D.&Smith, D. R. Controlling Electromagnetic Fields.Science312,1780-1782, doi:10.1126/science.1125907(2006).
    5Maier, S. A. et al. Plasmonics—A Route to Nanoscale Optical Devices.Advanced Materials13,1501-1505,doi:10.1002/1521-4095(200110)13:19<1501::aid-adma1501>3.0.co;2-z(2001).
    6Bergman, D. J.&Stockman, M. I. Surface Plasmon Amplification by StimulatedEmission of Radiation: Quantum Generation of Coherent Surface Plasmons inNanosystems. Physical Review Letters90,027402(2003).
    7Engheta, N. Circuits with Light at Nanoscales: Optical Nanocircuits Inspired byMetamaterials. Science317,1698-1702, doi:10.1126/science.1133268(2007).
    8Sherry, L. J. et al. Localized Surface Plasmon Resonance Spectroscopy of SingleSilver Nanocubes. Nano Letters5,2034-2038, doi:10.1021/nl0515753(2005).
    9Pendry, J. B., Holden, A. J., Robbins, D. J.&Stewart, W. J. Magnetism fromconductors and enhanced nonlinear phenomena. Microwave Theory andTechniques, IEEE Transactions on47,2075-2084, doi:10.1109/22.798002(1999).
    10Klein, M. W., Enkrich, C., Wegener, M.&Linden, S. Second-HarmonicGeneration from Magnetic Metamaterials. Science313,502-504,doi:10.1126/science.1129198(2006).
    11Perez-Juste, J., Pastoriza-Santos, I., Liz-Marzan, L. M.&Mulvaney, P. Goldnanorods: Synthesis, characterization and applications. CoordinationChemistry Reviews249,1870-1901, doi:10.1016/j.ccr.2005.01.030(2005).
    12Xia, Y., Xiong, Y., Lim, B.&Skrabalak, S. E. Shape-Controlled Synthesis of MetalNanocrystals: Simple Chemistry Meets Complex Physics? AngewandteChemie-International Edition48,60-103, doi:10.1002/anie.200802248(2009).
    13Schwartzberg, A. M., Olson, T. Y., Talley, C. E.&Zhang, J. Z. Synthesis,characterization, and tunable optical properties of hollow gold nanospheres.Journal of Physical Chemistry B110,19935-19944, doi:10.1021/jp062136a(2006).
    14Xiong, Y. et al. Synthesis and mechanistic study of palladium nanobars andnanorods. Journal of the American Chemical Society129,3665-3675,doi:10.1021/ja0688023(2007).
    15Ni, W., Yang, Z., Chen, H., Li, L.&Wang, J. Coupling between molecular andplasmonic resonances in freestanding dye-gold nanorod hybridnanostructures. Journal of the American Chemical Society130,6692-+,doi:10.1021/ja8012374(2008).
    16Wiley, B. J. et al. Synthesis and electrical characterization of silver nanobeams.Nano Letters6,2273-2278, doi:10.1021/nl061705n (2006).
    17Zhao, N. et al. Controlled synthesis of gold nanobelts and nanocombs inaqueous mixed surfactant solutions. Langmuir24,991-998,doi:10.1021/la702848x (2008).
    18Huo, Z., Tsung, C.-k., Huang, W., Zhang, X.&Yang, P. Sub-two nanometersingle crystal Au nanowires. Nano Letters8,2041-2044,doi:10.1021/nl8013549(2008).
    19Murphy, C. J., Gole, A. M., Hunyadi, S. E.&Orendorff, C. J. One-dimensionalcolloidal gold and silver nanostructures. Inorganic Chemistry45,7544-7554,doi:10.1021/ic0519382(2006).
    20Jin, R. C. et al. Photoinduced conversion of silver nanospheres to nanoprisms.Science294,1901-1903, doi:10.1126/science.1066541(2001).
    21Porel, S., Singh, S.&Radhakrishnan, T. P. Polygonal gold nanoplates in apolymer matrix. Chemical Communications,2387-2389,doi:10.1039/b500536a (2005).
    22Das, S. K., Das, A. R.&Guha, A. K. Microbial Synthesis of Multishaped GoldNanostructures. Small6,1012-1021, doi:10.1002/smll.200902011(2010).
    23Liu, B., Xie, J., Lee, J. Y., Ting, Y. P.&Chen, J. P. Optimization of high-yieldbiological synthesis of single-crystalline gold nanoplates. Journal of PhysicalChemistry B109,15256-15263, doi:10.1021/jp051449n (2005).
    24Ah, C. S. et al. Size-controlled synthesis of machinable single crystalline goldnanoplates. Chemistry of Materials17,5558-5561, doi:10.1021/cm051225h(2005).
    25Jiang, L. P. et al. Ultrasonic-assisted synthesis of monodispersesingle-crystalline silver nanoplates and gold nanorings. Inorganic Chemistry43,5877-5883, doi:10.1021/ic049529d (2004).
    26Kim, F., Connor, S., Song, H., Kuykendall, T.&Yang, P. D. Platonic goldnanocrystals. Angewandte Chemie-International Edition43,3673-3677,doi:10.1002/anie.200454216(2004).
    27Tao, A., Sinsermsuksakul, P.&Yang, P. Tunable plasmonic lattices of silvernanocrystals. Nature Nanotechnology2,435-440,doi:10.1038/nnano.2007.189(2007).
    28Seo, D. et al. Shape adjustment between multiply twinned andsingle-crystalline polyhedral gold nanocrystals: Decahedra, icosahedra, andtruncated tetrahedra. Journal of Physical Chemistry C112,2469-2475,doi:10.1021/jp7109498(2008).
    29Kim, D. Y., Im, S. H., Park, O. O.&Lim, Y. T. Evolution of gold nanoparticlesthrough Catalan, Archimedean, and Platonic solids. Crystengcomm12,116-121, doi:10.1039/b914353j (2010).
    30Sun, Y. G., Mayers, B. T.&Xia, Y. N. Template-engaged replacement reaction:A one-step approach to the large-scale synthesis of metal nanostructures withhollow interiors. Nano Letters2,481-485, doi:10.1021/nl025531v (2002).
    31Chen, S. H., Wang, Z. L., Ballato, J., Foulger, S. H.&Carroll, D. L. Monopod,bipod, tripod, and tetrapod gold nanocrystals. Journal of the AmericanChemical Society125,16186-16187, doi:10.1021/ja038927x (2003).
    32Liao, H.-G., Jiang, Y.-X., Zhou, Z.-Y., Chen, S.-P.&Sun, S.-G. Shape-ControlledSynthesis of Gold Nanoparticles in Deep Eutectic Solvents for Studies ofStructure-Functionality Relationships in Electrocatalysis. AngewandteChemie-International Edition47,9100-9103, doi:10.1002/anie.200803202(2008).
    33Yavuz, M. S. et al. Gold nanocages covered by smart polymers for controlledrelease with near-infrared light. Nature Materials8,935-939,doi:10.1038/nmat2564(2009).
    34Skrabalak, S. E. et al. Gold Nanocages: Synthesis, Properties, and Applications.Accounts of Chemical Research41,1587-1595, doi:10.1021/ar800018v(2008).
    35Wang, X. et al. One-Pot Solution Synthesis of Cubic Cobalt Nanoskeletons.Advanced Materials21,1636-+, doi:10.1002/adma.200801309(2009).
    36Sun, Y. G.&Xia, Y. N. Shape-controlled synthesis of gold and silvernanoparticles. Science298,2176-2179, doi:10.1126/science.1077229(2002).
    37Wang, C. et al. Rational Synthesis of Heterostructured Nanoparticles withMorphology Control. Journal of the American Chemical Society132,6524-6529, doi:10.1021/ja101305x (2010).
    38Lee, J., Hasan, W., Lee, M. H.&Odom, T. W. Optical properties and magneticmanipulation of bimaterial nanopyramids. Advanced Materials19,4387-+,doi:10.1002/adma.200701505(2007).
    39Cheng, W., Steinhart, M., Goesele, U.&Wehrspohn, R. B. Tree-like aluminananopores generated in a non-steady-state anodization. Journal of MaterialsChemistry17,3493-3495, doi:10.1039/b709618f (2007).
    40Qin, Y. et al. Ionic liquid-assisted growth of single-crystalline dendritic goldnanostructures with a three-fold symmetry. Chemistry of Materials20,3965-3972, doi:10.1021/cm8002386(2008).
    41Seeman, N. C. DNA in a material world. Nature421,427-431,doi:10.1038/nature01406(2003).
    42Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns.Nature440,297-302, doi:10.1038/nature04586(2006).
    43Le, J. D. et al. DNA-templated self-assembly of metallic nanocomponentarrays on a surface. Nano Letters4,2343-2347, doi:10.1021/nl048635+(2004).
    44Zhang, J. P., Liu, Y., Ke, Y. G.&Yan, H. Periodic square-like gold nanoparticlearrays templated by self-assembled2D DNA nanogrids on a surface. NanoLetters6,248-251, doi:10.1021/nl052210l (2006).
    45Sharma, J. et al. Control of Self-Assembly of DNA Tubules Through Integrationof Gold Nanoparticles. Science323,112-116, doi:10.1126/science.1165831(2009).
    46Xiong, H., Sfeir, M. Y.&Gang, O. Assembly, Structure and Optical Response ofThree-Dimensional Dynamically Tunable Multicomponent Superlattices. NanoLetters10,4456-4462, doi:10.1021/nl102273c (2010).
    47Liu, H. et al. Fano resonance in two-intersecting nanorings: Multiple layers ofplasmon hybridizations. Applied Physics Letters100, doi:15311410.1063/1.3702884(2012).
    48Christensen, J., Manjavacas, A., Thongrattanasiri, S., Koppens, F. H. L.&JavierGarcia de Abajo, F. Graphene Plasmon Waveguiding and Hybridization inIndividual and Paired Nanoribbons. Acs Nano6,431-440,doi:10.1021/nn2037626(2012).
    49Tong, L., Miljkovic, V. D., Johansson, P.&Kall, M. Plasmon HybridizationReveals the Interaction between Individual Colloidal Gold NanoparticlesConfined in an Optical Potential Well. Nano Letters11,4505-4508,doi:10.1021/nl1036116(2011).
    50Preston, T. C.&Signorell, R. Vibron and phonon hybridization in dielectricnanostructures. Proceedings of the National Academy of Sciences of theUnited States of America108,5532-5536, doi:10.1073/pnas.1100170108(2011).
    51Prodan, E.&Nordlander, P. Structural tunability of the plasmon resonances inmetallic nanoshells. Nano Letters3,543-547, doi:10.1021/nl034030m (2003).
    52Prodan, E., Nordlander, P.&Halas, N. J. Electronic structure and opticalproperties of gold nanoshells. Nano Letters3,1411-1415,doi:10.1021/nl034594q (2003).
    53Prodan, E., Lee, A.&Nordlander, P. The effect of a dielectric core andembedding medium on the polarizability of metallic nanoshells. ChemicalPhysics Letters360,325-332, doi:Pii s0009-2614(02)00850-310.1016/s0009-2614(02)00850-3(2002).
    54Prodan, E., Nordlander, P.&Halas, N. J. Effects of dielectric screening on theoptical properties of metallic nanoshells. Chemical Physics Letters368,94-101,doi:Pii s0009-2614(02)01828-610.1016/s0009-2614(02)01828-6(2003).
    55Prodan, E.&Nordlander, P. Plasmon hybridization in spherical nanoparticles.Journal of Chemical Physics120,5444-5454, doi:10.1063/1.1647518(2004).
    56Prodan, E., Radloff, C., Halas, N. J.&Nordlander, P. A hybridization model forthe plasmon response of complex nanostructures. Science302,419-422,doi:10.1126/science.1089171(2003).
    57Park, T.-H.&Nordlander, P. On the nature of the bonding and antibondingmetallic film and nanoshell plasmons. Chemical Physics Letters472,228-231,doi:10.1016/j.cplett.2009.03.029(2009).
    58Nordlander, P., Oubre, C., Prodan, E., Li, K.&Stockman, M. I. Plasmonhybridizaton in nanoparticle dimers. Nano Letters4,899-903,doi:10.1021/nl049681c (2004).
    59Brandl, D. W., Oubre, C.&Nordlander, P. Plasmon hybridization in nanoshelldimers. Journal of Chemical Physics123, doi:02470110.1063/1.1949169(2005).
    60Brown, L. V., Sobhani, H., Lassiter, J. B., Nordlander, P.&Halas, N. J.Heterodimers: Plasmonic Properties of Mismatched Nanoparticle Pairs. AcsNano4,819-832, doi:10.1021/nn9017312(2010).
    61Lassiter, J. B. et al. Close encounters between two nanoshells. Nano Letters8,1212-1218, doi:10.1021/nl080271o (2008).
    62Brandl, D. W., Mirin, N. A.&Nordlander, P. Plasmon modes of nanospheretrimers and quadrumers. Journal of Physical Chemistry B110,12302-12310,doi:10.1021/jp0613485(2006).
    63Urzhumov, Y. A. et al. Plasmonic nanoclusters: a path towards negative-indexmetafluids. Optics Express15,14129-14145, doi:10.1364/oe.15.014129(2007).
    64Mirin, N. A., Bao, K.&Nordlander, P. Fano Resonances in PlasmonicNanoparticle Aggregates. Journal of Physical Chemistry A113,4028-4034,doi:10.1021/jp810411q (2009).
    65Bao, K., Mirin, N. A.&Nordlander, P. Fano resonances in planar silvernanosphere clusters. Applied Physics a-Materials Science&Processing100,333-339, doi:10.1007/s00339-010-5861-3(2010).
    66Wu, Y.&Nordlander, P. Plasmon hybridization in nanoshells with anonconcentric core. Journal of Chemical Physics125, doi:12470810.1063/1.2352750(2006).
    67Wang, H. et al. Symmetry breaking in individual plasmonic nanoparticles.Proceedings of the National Academy of Sciences of the United States ofAmerica103,10856-10860, doi:10.1073/pnas.0604003103(2006).
    68Wang, H., Brandl, D. W., Le, F., Nordlander, P.&Halas, N. J. Nanorice: A hybridplasmonic nanostructure. Nano Letters6,827-832, doi:10.1021/nl060209w(2006).
    69Brandl, D. W.&Nordlander, P. Plasmon modes of curvilinear metalliccore/shell particles. Journal of Chemical Physics126, doi:14470810.1063/1.2717167(2007).
    70Willingham, B., Brandl, D. W.&Nordlander, P. Plasmon hybridization innanorod dimers. Applied Physics B-Lasers and Optics93,209-216,doi:10.1007/s00340-008-3157-5(2008).
    71Bao, K., Sobhani, H.&Nordlander, P. Plasmon hybridization for real metals.Chinese Science Bulletin55,2629-2634, doi:10.1007/s11434-010-4070-y(2010).
    72Le, F. et al. Plasmons in the metallic nanoparticle-Film system as a tunableimpurity problem. Nano Letters5,2009-2013, doi:10.1021/nl0515100(2005).
    73Knight, M. W. et al. Nanoparticle-mediated coupling of light into a nanowire.Nano Letters7,2346-2350, doi:10.1021/nl071001t (2007).
    74Hao, F., Nehl, C. L., Hafner, J. H.&Nordlander, P. Plasmon resonances of a goldnanostar. Nano Letters7,729-732, doi:10.1021/nl062969c (2007).
    75Oldenburg, S. J., Averitt, R. D., Westcott, S. L.&Halas, N. J. Nanoengineeringof optical resonances. Chemical Physics Letters288,243-247,doi:10.1016/s0009-2614(98)00277-2(1998).
    76Fano, U. Effects of Configuration Interaction on Intensities and Phase Shifts.Physical Review124,1866-1878(1961).
    77Miroshnichenko, A. E., Flach, S.&Kivshar, Y. S. Fano resonances in nanoscalestructures. Reviews of Modern Physics82,2257-2298(2010).
    78Luo, H. G., Xiang, T., Wang, X. Q., Su, Z. B.&Yu, L. Fano Resonance forAnderson Impurity Systems. Physical Review Letters92,256602(2004).
    79Johnson, A. C., Marcus, C. M., Hanson, M. P.&Gossard, A. C.Coulomb-Modified Fano Resonance in a One-Lead Quantum Dot. PhysicalReview Letters93,106803(2004).
    80Hessel, A.&Oliner, A. A. A New Theory of Wood?s Anomalies on OpticalGratings. Applied Optics4,1275-1297, doi:10.1364/ao.4.001275(1965).
    81Sarrazin, M., Vigneron, J.-P.&Vigoureux, J.-M. Role of Wood anomalies inoptical properties of thin metallic films with a bidimensional array ofsubwavelength holes. Physical Review B67,085415(2003).
    82Lee, H.-T.&Poon, A. W. Fano resonances in prism-coupled square micropillars.Optics Letters29,5-7, doi:10.1364/ol.29.000005(2004).
    83Rybin, M. V. et al. Fano Resonance between Mie and Bragg Scattering inPhotonic Crystals. Physical Review Letters103,023901(2009).
    84Fan, S. H. Sharp asymmetric line shapes in side-coupled waveguide-cavitysystems. Applied Physics Letters80,908-910, doi:10.1063/1.1448174(2002).
    85Fan, S. H.&Joannopoulos, J. D. Analysis of guided resonances in photoniccrystal slabs. Physical Review B65, doi:23511210.1103/PhysRevB.65.235112(2002).
    86Genet, C., van Exter, M. P.&Woerdman, J. P. Fano-type interpretation of redshifts and red tails in hole array transmission spectra. Optics Communications225,331-336, doi:10.1016/j.optcom.2003.07.037(2003).
    87Fan, S. H., Suh, W.&Joannopoulos, J. D. Temporal coupled-mode theory forthe Fano resonance in optical resonators. Journal of the Optical Society ofAmerica a-Optics Image Science and Vision20,569-572,doi:10.1364/josaa.20.000569(2003).
    88Christ, A., Tikhodeev, S. G., Gippius, N. A., Kuhl, J.&Giessen, H.Waveguide-plasmon polaritons: Strong coupling of photonic and electronicresonances in a metallic photonic crystal slab. Physical Review Letters91,doi:18390110.1103/PhysRevLett.91.183901(2003).
    89Christ, A. et al. Optical properties of planar metallic photonic crystalstructures: Experiment and theory. Physical Review B70, doi:12511310.1103/PhysRevB.70.125113(2004).
    90Catrysse, P. B.&Fan, S. Near-complete transmission through subwavelengthhole arrays in phonon-polaritonic thin films. Physical Review B75, doi:07542210.1103/PhysRevB.75.075422(2007).
    91Tribelsky, M. I., Flach, S., Miroshnichenko, A. E., Gorbach, A. V.&Kivshar, Y. S.Light scattering by a finite obstacle and fano resonances. Physical ReviewLetters100, doi:04390310.1103/PhysRevLett.100.043903(2008).
    92Miroshnichenko, A. E. et al. Fano Resonances: A Discovery that Was NotMade100Years Ago. Optics&Photonics News19,48-48,doi:10.1364/opn.19.12.000048(2008).
    93Hao, F. et al. Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPRSensing and a Tunable Fano Resonance. Nano Letters8,3983-3988,doi:10.1021/nl802509r (2008).
    94Hao, F., Nordlander, P., Sonnefraud, Y., Van Dorpe, P.&Maier, S. A. Tunabilityof Subradiant Dipolar and Fano-Type Plasmon Resonances in MetallicRing/Disk Cavities: Implications for Nanoscale Optical Sensing. Acs Nano3,643-652, doi:10.1021/nn900012r (2009).
    95Verellen, N. et al. Fano Resonances in Individual Coherent PlasmonicNanocavities. Nano Letters9,1663-1667, doi:10.1021/nl9001876(2009).
    96Maier, S. A. The benefits of darkness. Nature Materials8,699-700,doi:10.1038/nmat2522(2009).
    97Sonnefraud, Y. et al. Experimental Realization of Subradiant, Superradiant,and Fano Resonances in Ring/Disk Plasmonic Nanocavities. Acs Nano4,1664-1670, doi:10.1021/nn901580r (2010).
    98Liu, N. et al. Plasmonic analogue of electromagnetically induced transparencyat the Drude damping limit. Nature Materials8,758-762,doi:10.1038/nmat2495(2009).
    99Joe, Y. S., Satanin, A. M.&Kim, C. S. Classical analogy of Fano resonances.Physica Scripta74,259(2006).
    100Jevons, W.&Shenstone, A. G. Spectroscopy: I. atomic spectra. Reports onProgress in Physics5,210(1938).
    101Auger, P. Sur l'effet photoélectrique composé. J. Phys. Radium6,205-208(1925).
    102Fano, U. Sullo spettro di assorbimento dei gas nobili presso il limite dellospettro d’arco. Il Nuovo Cimento12,154-161, doi:10.1007/bf02958288(1935).
    103N ckel, J. U.&Stone, A. D. Resonance line shapes in quasi-one-dimensionalscattering. Physical Review B50,17415-17432(1994).
    104Lee, S.&Kim, B. Direct evaluation of the asymmetry parameters for isolatedresonances. Journal of Physics B: Atomic, Molecular and Optical Physics33,
    3441(2000).
    105Bianconi, A. Ugo Fano and shape resonances. AIP Conference Proceedings652,13-18, doi:doi:http://dx.doi.org/10.1063/1.1536357(2003).
    106Bandopadhyay, S., Dutta-Roy, B.&Mani, H. S. Understanding the Fanoresonance through toy models. American Journal of Physics72,1501-1507,doi:doi:http://dx.doi.org/10.1119/1.1789162(2004).
    107Rau, A. R. P. Perspectives on the Fano Resonance Formula. Physica Scripta69,C10(2004).
    108Bohm, D.&Pines, D. A Collective Description of Electron Interactions. I.Magnetic Interactions. Physical Review82,625-634(1951).
    109Moskovits, M. Surface-enhanced spectroscopy. Reviews of Modern Physics57,783-826(1985).
    110Ozbay, E. Plasmonics: Merging Photonics and Electronics at NanoscaleDimensions. Science311,189-193, doi:10.1126/science.1114849(2006).
    111Le, F. et al. Metallic nanoparticle arrays: A common substrate for bothsurface-enhanced Raman scattering and surface-enhanced infraredabsorption. Acs Nano2,707-718, doi:10.1021/nn800047e (2008).
    112Fan, J. A. et al. Self-Assembled Plasmonic Nanoparticle Clusters. Science328,1135-1138, doi:10.1126/science.1187949(2010).
    113Hentschel, M. et al. Transition from Isolated to Collective Modes in PlasmonicOligomers. Nano Letters10,2721-2726, doi:10.1021/nl101938p (2010).
    114Seeman, N. C. NUCLEIC-ACID JUNCTIONS AND LATTICES. J. Theor. Biol.99,237-247, doi:10.1016/0022-5193(82)90002-9(1982).
    115Pinheiro, A. V., Han, D., Shih, W. M.&Yan, H. Challenges and opportunities forstructural DNA nanotechnology. Nat Nano6,763-772(2011).
    116Yan, H., LaBean, T. H., Feng, L.&Reif, J. H. Directed nucleation assembly ofDNA tile complexes for barcode-patterned lattices. Proceedings of theNational Academy of Sciences100,8103-8108, doi:10.1073/pnas.1032954100(2003).
    117Shih, W. M., Quispe, J. D.&Joyce, G. F. A1.7-kilobase single-stranded DNAthat folds into a nanoscale octahedron. Nature427,618-621,doi:http://www.nature.com/nature/journal/v427/n6975/suppinfo/nature02307_S1.html (2004).
    118Jungmann, R., Liedl, T., Sobey, T. L., Shih, W.&Simmel, F. C. IsothermalAssembly of DNA Origami Structures Using Denaturing Agents. Journal of theAmerican Chemical Society130,10062-10063, doi:10.1021/ja8030196(2008).
    119Qian, L. et al. Analogic China map constructed by DNA. Chin. Sci. Bull.51,2973-2976, doi:10.1007/s11434-006-2223-9(2006).
    120Andersen, E. S. et al. DNA Origami Design of Dolphin-Shaped Structures withFlexible Tails. ACS Nano2,1213-1218, doi:10.1021/nn800215j (2008).
    121Pound, E., Ashton, J. R., Becerril, H. A.&Woolley, A. T. Polymerase ChainReaction Based Scaffold Preparation for the Production of Thin, BranchedDNA Origami Nanostructures of Arbitrary Sizes. Nano Letters9,4302-4305,doi:10.1021/nl902535q (2009).
    122Wei, B., Dai, M.&Yin, P. Complex shapes self-assembled from single-strandedDNA tiles. Nature485,623-626,doi:http://www.nature.com/nature/journal/v485/n7400/abs/nature11075.html#supplementary-information (2012).
    123Andersen, E. S. et al. Self-assembly of a nanoscale DNA box with acontrollable lid. Nature459,73-76,doi:http://www.nature.com/nature/journal/v459/n7243/suppinfo/nature07971_S1.html (2009).
    124Kuzuya, A.&Komiyama, M. Design and construction of a box-shaped3D-DNAorigami. Chemical Communications,4182-4184, doi:10.1039/b907800b(2009).
    125Ke, Y. et al. Scaffolded DNA Origami of a DNA Tetrahedron MolecularContainer. Nano Letters9,2445-2447, doi:10.1021/nl901165f (2009).
    126Douglas, S. M., Chou, J. J.&Shih, W. M. DNA-nanotube-induced alignment ofmembrane proteins for NMR structure determination. Proceedings of theNational Academy of Sciences104,6644-6648, doi:10.1073/pnas.0700930104(2007).
    127Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensionalshapes. Nature459,414-418,doi:http://www.nature.com/nature/journal/v459/n7245/suppinfo/nature08016_S1.html (2009).
    128Dietz, H., Douglas, S. M.&Shih, W. M. Folding DNA into Twisted and CurvedNanoscale Shapes. Science325,725-730, doi:10.1126/science.1174251(2009).
    129Ke, Y., Ong, L. L., Shih, W. M.&Yin, P. Three-Dimensional StructuresSelf-Assembled from DNA Bricks. Science338,1177-1183,doi:10.1126/science.1227268(2012).
    130Han, D. et al. DNA Origami with Complex Curvatures in Three-DimensionalSpace. Science332,342-346, doi:10.1126/science.1202998(2011).
    131Steinhauer, C., Jungmann, R., Sobey, T. L., Simmel, F. C.&Tinnefeld, P. DNAOrigami as a Nanoscopic Ruler for Super-Resolution Microscopy. Angew.Chem., Int. Ed.48,8870-8873, doi:10.1002/anie.200903308(2009).
    132Schmied, J. J. et al. DNA Origami Nanopillars as Standards forThree-Dimensional Superresolution Microscopy. Nano Lett.13,781-785,doi:10.1021/nl304492y (2013).
    133Stein, I. H., Steinhauer, C.&Tinnefeld, P. Single-Molecule Four-Color FRETVisualizes Energy-Transfer Paths on DNA Origami. J. Am. Chem. Soc.133,4193-4195, doi:10.1021/ja1105464(2011).
    134Dutta, P. K. et al. DNA-Directed Artificial Light-Harvesting Antenna. J. Am.Chem. Soc.133,11985-11993, doi:10.1021/ja1115138(2011).
    135Lin, C. et al. Submicrometre geometrically encoded fluorescent barcodesself-assembled from DNA. Nat. Chem.4,832-839,doi:http://www.nature.com/nchem/journal/v4/n10/abs/nchem.1451.html#supplementary-information (2012).
    136Anton, K., Kimmo, T. L.&P ivi, T. DNA origami as a nanoscale template forprotein assembly. Nanotechnology20,235305(2009).
    137Kuzuya, A. et al. Precisely Programmed and Robust2D StreptavidinNanoarrays by Using Periodical Nanometer-Scale Wells Embedded in DNAOrigami Assembly. ChemBioChem10,1811-1815,doi:10.1002/cbic.200900229(2009).
    138Saccà, B. et al. Orthogonal Protein Decoration of DNA Origami. Angew. Chem.,Int. Ed.49,9378-9383, doi:10.1002/anie.201005931(2010).
    139Shen, W., Zhong, H., Neff, D.&Norton, M. L. NTA Directed ProteinNanopatterning on DNA Origami Nanoconstructs. J. Am. Chem. Soc.131,6660-6661, doi:10.1021/ja901407j (2009).
    140Nakata, E. et al. Zinc-Finger Proteins for Site-Specific Protein Positioning onDNA-Origami Structures. Angewandte Chemie International Edition51,2421-2424, doi:10.1002/anie.201108199(2012).
    141Stearns, L. A. et al. Template-Directed Nucleation and Growth of InorganicNanoparticles on DNA Scaffolds. Angewandte Chemie International Edition48,8494-8496, doi:10.1002/anie.200903319(2009).
    142Stephanopoulos, N. et al. Immobilization and One-Dimensional Arrangementof Virus Capsids with Nanoscale Precision Using DNA Origami. Nano Lett.10,2714-2720, doi:10.1021/nl1018468(2010).
    143Jahn, K. et al. Functional Patterning of DNA Origami by Parallel EnzymaticModification. Bioconjug. Chem.22,819-823, doi:10.1021/bc2000098(2011).
    144S rensen, R. S. et al. Enzymatic Ligation of Large Biomolecules to DNA. ACSNano7,8098-8104, doi:10.1021/nn403386f (2013).
    145Luk'yanchuk, B. et al. The Fano resonance in plasmonic nanostructures andmetamaterials. Nat. Mater.9,707-715(2010).
    146Mayer, K. M.&Hafner, J. H. Localized Surface Plasmon Resonance Sensors.Chem. Rev.111,3828-3857, doi:10.1021/cr100313v (2011).
    147Sharma, J. et al. Toward Reliable Gold Nanoparticle Patterning OnSelf-Assembled DNA Nanoscaffold. J. Am. Chem. Soc.130,7820-7821,doi:10.1021/ja802853r (2008).
    148Ding, B. et al. Gold Nanoparticle Self-Similar Chain Structure Organized byDNA Origami. J. Am. Chem. Soc.132,3248-3249, doi:10.1021/ja9101198(2010).
    149Pal, S., Deng, Z., Ding, B., Yan, H.&Liu, Y. DNA-Origami-DirectedSelf-Assembly of Discrete Silver-Nanoparticle Architectures. Angew. Chem.,Int. Ed.49,2700-2704, doi:10.1002/anie.201000330(2010).
    150Pal, S. et al. DNA Directed Self-Assembly of Anisotropic PlasmonicNanostructures. J. Am. Chem. Soc.133,17606-17609, doi:10.1021/ja207898r(2011).
    151Pal, S. et al. Quantum Efficiency Modification of Organic Fluorophores UsingGold Nanoparticles on DNA Origami Scaffolds. The Journal of PhysicalChemistry C117,12735-12744, doi:10.1021/jp312422n (2013).
    152Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructureswith tailored optical response. Nature483,311-314,doi:http://www.nature.com/nature/journal/v483/n7389/abs/nature10889.html#supplementary-information (2012).
    153Shen, X. et al. Rolling Up Gold Nanoparticle-Dressed DNA Origami intoThree-Dimensional Plasmonic Chiral Nanostructures. J. Am. Chem. Soc.134,146-149, doi:10.1021/ja209861x (2011).
    154Shen, X. et al. Three-Dimensional Plasmonic Chiral Tetramers Assembled byDNA Origami. Nano Lett.13,2128-2133, doi:10.1021/nl400538y (2013).
    155Lan, X. et al. Bifacial DNA Origami-Directed Discrete, Three-Dimensional,Anisotropic Plasmonic Nanoarchitectures with Tailored Optical Chirality. J. Am.Chem. Soc.135,11441-11444, doi:10.1021/ja404354c (2013).
    156Acuna, G. P. et al. Distance Dependence of Single-Fluorophore Quenching byGold Nanoparticles Studied on DNA Origami. ACS Nano6,3189-3195,doi:10.1021/nn2050483(2012).
    157Acuna, G. P. et al. Fluorescence Enhancement at Docking Sites ofDNA-Directed Self-Assembled Nanoantennas. Science338,506-510,doi:10.1126/science.1228638(2012).
    158Klein, W. P. et al. Multiscaffold DNA Origami Nanoparticle Waveguides. NanoLett.13,3850-3856, doi:10.1021/nl401879r (2013).
    159Bui, H. et al. Programmable Periodicity of Quantum Dot Arrays with DNAOrigami Nanotubes. Nano Lett.10,3367-3372, doi:10.1021/nl101079u(2010).
    160Wang, R., Nuckolls, C.&Wind, S. J. Assembly of Heterogeneous FunctionalNanomaterials on DNA Origami Scaffolds. Angew. Chem., Int. Ed.51,11325-11327, doi:10.1002/anie.201206389(2012).
    161Maune, H. T. et al. Self-assembly of carbon nanotubes into two-dimensionalgeometries using DNA origami templates. Nat Nano5,61-66,doi:http://www.nature.com/nnano/journal/v5/n1/suppinfo/nnano.2009.311_S1.html (2010).
    1Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns.Nature440,297-302,doi:http://www.nature.com/nature/journal/v440/n7082/suppinfo/nature04586_S1.html (2006).
    2Qian, L. et al. Analogic China map constructed by DNA. Chinese ScienceBulletin51,2973-2976, doi:10.1007/s11434-006-2223-9(2006).
    3Andersen, E. S. et al. DNA Origami Design of Dolphin-Shaped Structures withFlexible Tails. ACS Nano2,1213-1218, doi:10.1021/nn800215j (2008).
    4Pound, E., Ashton, J. R., Becerril, H. A.&Woolley, A. T. Polymerase ChainReaction Based Scaffold Preparation for the Production of Thin, BranchedDNA Origami Nanostructures of Arbitrary Sizes. Nano Letters9,4302-4305,doi:10.1021/nl902535q (2009).
    5Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensionalshapes. Nature459,414-418,doi:http://www.nature.com/nature/journal/v459/n7245/suppinfo/nature08016_S1.html (2009).
    6Andersen, E. S. et al. Self-assembly of a nanoscale DNA box with acontrollable lid. Nature459,73-76,doi:http://www.nature.com/nature/journal/v459/n7243/suppinfo/nature07971_S1.html (2009).
    7Dietz, H., Douglas, S. M.&Shih, W. M. Folding DNA into Twisted and CurvedNanoscale Shapes. Science325,725-730, doi:10.1126/science.1174251(2009).
    8Endo, M., Hidaka, K., Kato, T., Namba, K.&Sugiyama, H. DNA Prism StructuresConstructed by Folding of Multiple Rectangular Arms. Journal of the AmericanChemical Society131,15570-15571, doi:10.1021/ja904252e (2009).
    9Kuzuya, A.&Komiyama, M. Design and construction of a box-shaped3D-DNAorigami. Chemical Communications,4182-4184, doi:10.1039/b907800b(2009).
    10Ke, Y. et al. Multilayer DNA Origami Packed on a Square Lattice. Journal of theAmerican Chemical Society131,15903-15908, doi:10.1021/ja906381y (2009).
    11Ke, Y. et al. Scaffolded DNA Origami of a DNA Tetrahedron MolecularContainer. Nano Letters9,2445-2447, doi:10.1021/nl901165f (2009).
    12Liedl, T., Hogberg, B., Tytell, J., Ingber, D. E.&Shih, W. M. Self-assembly ofthree-dimensional prestressed tensegrity structures from DNA. Nat Nano5,520-524,doi:http://www.nature.com/nnano/journal/v5/n7/abs/nnano.2010.107.html#supplementary-information (2010).
    13Han, D., Pal, S., Liu, Y.&Yan, H. Folding and cutting DNA into reconfigurabletopological nanostructures. Nat Nano5,712-717,doi:http://www.nature.com/nnano/journal/v5/n10/abs/nnano.2010.193.html#supplementary-information (2010).
    14Han, D. et al. DNA Origami with Complex Curvatures in Three-DimensionalSpace. Science332,342-346, doi:10.1126/science.1202998(2011).
    15H gberg, B., Liedl, T.&Shih, W. M. Folding DNA Origami from aDouble-Stranded Source of Scaffold. Journal of the American Chemical Society131,9154-9155, doi:10.1021/ja902569x (2009).
    16Liu, W., Zhong, H., Wang, R.&Seeman, N. C. Crystalline Two-DimensionalDNA-Origami Arrays. Angewandte Chemie International Edition50,264-267,doi:10.1002/anie.201005911(2011).
    17Rajendran, A., Endo, M., Katsuda, Y., Hidaka, K.&Sugiyama, H. ProgrammedTwo-Dimensional Self-Assembly of Multiple DNA Origami Jigsaw Pieces. ACSNano5,665-671, doi:10.1021/nn1031627(2010).
    18Zhao, Z., Liu, Y.&Yan, H. Organizing DNA Origami Tiles into Larger StructuresUsing Preformed Scaffold Frames. Nano Letters11,2997-3002,doi:10.1021/nl201603a (2011).
    1Stewart, M. E. et al. Nanostructured Plasmonic Sensors. Chemical Reviews108,494-521, doi:10.1021/cr068126n (2008).
    2Fan, J. A. et al. Self-Assembled Plasmonic Nanoparticle Clusters. Science328,1135-1138, doi:10.1126/science.1187949(2010).
    3Engheta, N. Circuits with Light at Nanoscales: Optical Nanocircuits Inspired byMetamaterials. Science317,1698-1702, doi:10.1126/science.1133268(2007).
    4Loweth, C. J., Caldwell, W. B., Peng, X., Alivisatos, A. P.&Schultz, P. G. DNA alsGerüst zur Bildung von Aggregaten aus Gold-Nanokristallen. AngewandteChemie111,1925-1929,doi:10.1002/(sici)1521-3757(19990614)111:12<1925::aid-ange1925>3.0.co;2-2(1999).
    5Aldaye, F. A.&Sleiman, H. F. Sequential Self-Assembly of a DNA Hexagon as aTemplate for the Organization of Gold Nanoparticles. Angewandte Chemie118,2262-2267, doi:10.1002/ange.200502481(2006).
    6Sharma, J. et al. Toward Reliable Gold Nanoparticle Patterning OnSelf-Assembled DNA Nanoscaffold. Journal of the American Chemical Society130,7820-7821, doi:10.1021/ja802853r (2008).
    7Deng, Z., Tian, Y., Lee, S.-H., Ribbe, A. E.&Mao, C. DNA-EncodedSelf-Assembly of Gold Nanoparticles into One-Dimensional Arrays.Angewandte Chemie117,3648-3651, doi:10.1002/ange.200463096(2005).
    8Beyer, S., Nickels, P.&Simmel, F. C. Periodic DNA Nanotemplates Synthesizedby Rolling Circle Amplification. Nano Letters5,719-722,doi:10.1021/nl050155a (2005).
    9Lee, J. H. et al. Site-Specific Control of Distances between Gold NanoparticlesUsing Phosphorothioate Anchors on DNA and a Short Bifunctional MolecularFastener. Angewandte Chemie119,9164-9168, doi:10.1002/ange.200702569(2007).
    10Niemeyer, C. M., Bürger, W.&Peplies, J. KovalenteDNA-Streptavidin-Konjugate als Bausteine für neuartige biometallischeNanostrukturen. Angewandte Chemie110,2391-2395,doi:10.1002/(sici)1521-3757(19980817)110:16<2391::aid-ange2391>3.0.co;2-x (1998).
    11Le, J. D. et al. DNA-Templated Self-Assembly of Metallic NanocomponentArrays on a Surface. Nano Letters4,2343-2347, doi:10.1021/nl048635+(2004).
    12Zhang, J., Liu, Y., Ke, Y.&Yan, H. Periodic Square-Like Gold Nanoparticle ArraysTemplated by Self-Assembled2D DNA Nanogrids on a Surface. Nano Letters6,248-251, doi:10.1021/nl052210l (2006).
    13Zheng, J. et al. Two-Dimensional Nanoparticle Arrays Show the OrganizationalPower of Robust DNA Motifs. Nano Letters6,1502-1504,doi:10.1021/nl060994c (2006).
    14Nykypanchuk, D., Maye, M. M., van der Lelie, D.&Gang, O. DNA-guidedcrystallization of colloidal nanoparticles. Nature451,549-552,doi:http://www.nature.com/nature/journal/v451/n7178/suppinfo/nature06560_S1.html (2008).
    15Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature451,553-556,doi:http://www.nature.com/nature/journal/v451/n7178/suppinfo/nature06508_S1.html (2008).
    16Sharma, J. et al. Control of Self-Assembly of DNA Tubules Through Integrationof Gold Nanoparticles. Science323,112-116, doi:10.1126/science.1165831(2009).
    17Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns.Nature440,297-302,doi:http://www.nature.com/nature/journal/v440/n7082/suppinfo/nature04586_S1.html (2006).
    18Qian, L. et al. Analogic China map constructed by DNA. Chinese ScienceBulletin51,2973-2976, doi:10.1007/s11434-006-2223-9(2006).
    19Andersen, E. S. et al. DNA Origami Design of Dolphin-Shaped Structures withFlexible Tails. ACS Nano2,1213-1218, doi:10.1021/nn800215j (2008).
    20Pound, E., Ashton, J. R., Becerril, H. A.&Woolley, A. T. Polymerase ChainReaction Based Scaffold Preparation for the Production of Thin, BranchedDNA Origami Nanostructures of Arbitrary Sizes. Nano Letters9,4302-4305,doi:10.1021/nl902535q (2009).
    21Andersen, E. S. et al. Self-assembly of a nanoscale DNA box with acontrollable lid. Nature459,73-76,doi:http://www.nature.com/nature/journal/v459/n7243/suppinfo/nature07971_S1.html (2009).
    22Dietz, H., Douglas, S. M.&Shih, W. M. Folding DNA into Twisted and CurvedNanoscale Shapes. Science325,725-730, doi:10.1126/science.1174251(2009).
    23Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensionalshapes. Nature459,414-418,doi:http://www.nature.com/nature/journal/v459/n7245/suppinfo/nature08016_S1.html (2009).
    24Ke, Y. et al. Scaffolded DNA Origami of a DNA Tetrahedron MolecularContainer. Nano Letters9,2445-2447, doi:10.1021/nl901165f (2009).
    25Kuzuya, A.&Komiyama, M. Design and construction of a box-shaped3D-DNAorigami. Chemical Communications,4182-4184, doi:10.1039/b907800b(2009).
    26Han, D. et al. DNA Origami with Complex Curvatures in Three-DimensionalSpace. Science332,342-346, doi:10.1126/science.1202998(2011).
    27Ding, B. et al. Gold Nanoparticle Self-Similar Chain Structure Organized byDNA Origami. J. Am. Chem. Soc.132,3248-3249, doi:10.1021/ja9101198(2010).
    28Pal, S., Deng, Z., Ding, B., Yan, H.&Liu, Y. DNA-Origami-DirectedSelf-Assembly of Discrete Silver-Nanoparticle Architectures. Angew. Chem.,Int. Ed.49,2700-2704, doi:10.1002/anie.201000330(2010).
    29Pal, S. et al. DNA Directed Self-Assembly of Anisotropic PlasmonicNanostructures. J. Am. Chem. Soc.133,17606-17609, doi:10.1021/ja207898r(2011).
    30Chen, Z., Lan, X.&Wang, Q. DNA Origami Directed Large-Scale Fabrication ofNanostructures Resembling Room Temperature Single-Electron Transistors.Small9,3567-3571, doi:10.1002/smll.201300640(2013).
    31Pal, S. et al. Quantum Efficiency Modification of Organic Fluorophores UsingGold Nanoparticles on DNA Origami Scaffolds. The Journal of PhysicalChemistry C117,12735-12744, doi:10.1021/jp312422n (2013).
    32Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructureswith tailored optical response. Nature483,311-314,doi:http://www.nature.com/nature/journal/v483/n7389/abs/nature10889.html#supplementary-information (2012).
    33Shen, X. et al. Rolling Up Gold Nanoparticle-Dressed DNA Origami intoThree-Dimensional Plasmonic Chiral Nanostructures. J. Am. Chem. Soc.134,146-149, doi:10.1021/ja209861x (2011).
    34Shen, X. et al. Three-Dimensional Plasmonic Chiral Tetramers Assembled byDNA Origami. Nano Lett.13,2128-2133, doi:10.1021/nl400538y (2013).
    35Lan, X. et al. Bifacial DNA Origami-Directed Discrete, Three-Dimensional,Anisotropic Plasmonic Nanoarchitectures with Tailored Optical Chirality. J. Am.Chem. Soc.135,11441-11444, doi:10.1021/ja404354c (2013).
    36Mock, J. J., Barbic, M., Smith, D. R., Schultz, D. A.&Schultz, S. Shape effects inplasmon resonance of individual colloidal silver nanoparticles. The Journal of
    Chemical Physics116,6755-6759,
    doi:doi:http://dx.doi.org/10.1063/1.1462610(2002).
    1Barnes, W. L., Dereux, A.&Ebbesen, T. W. Surface plasmon subwavelengthoptics. Nature424,824-830(2003).
    2Shalaev, V. M. Optical negative-index metamaterials. Nat Photon1,41-48(2007).
    3Shalaev, V. M. et al. Negative index of refraction in optical metamaterials.Optics Letters30,3356-3358, doi:10.1364/ol.30.003356(2005).
    4Pendry, J. B., Schurig, D.&Smith, D. R. Controlling Electromagnetic Fields.Science312,1780-1782, doi:10.1126/science.1125907(2006).
    5Klein, M. W., Enkrich, C., Wegener, M.&Linden, S. Second-HarmonicGeneration from Magnetic Metamaterials. Science313,502-504,doi:10.1126/science.1129198(2006).
    6Bergman, D. J.&Stockman, M. I. Surface Plasmon Amplification by StimulatedEmission of Radiation: Quantum Generation of Coherent Surface Plasmons inNanosystems. Physical Review Letters90,027402(2003).
    7Engheta, N. Circuits with Light at Nanoscales: Optical Nanocircuits Inspired byMetamaterials. Science317,1698-1702, doi:10.1126/science.1133268(2007).
    8Maier, S. A. et al. Plasmonics—A Route to Nanoscale Optical Devices.Advanced Materials13,1501-1505,doi:10.1002/1521-4095(200110)13:19<1501::aid-adma1501>3.0.co;2-z(2001).
    9Sherry, L. J. et al. Localized Surface Plasmon Resonance Spectroscopy of SingleSilver Nanocubes. Nano Letters5,2034-2038, doi:10.1021/nl0515753(2005).
    10Pendry, J. B., Holden, A. J., Robbins, D. J.&Stewart, W. J. Magnetism fromconductors and enhanced nonlinear phenomena. Microwave Theory andTechniques, IEEE Transactions on47,2075-2084, doi:10.1109/22.798002(1999).
    11Yen, T. J. et al. Terahertz Magnetic Response from Artificial Materials. Science303,1494-1496, doi:10.1126/science.1094025(2004).
    12Verellen, N. et al. Fano Resonances in Individual Coherent PlasmonicNanocavities. Nano Letters9,1663-1667, doi:10.1021/nl9001876(2009).
    13Liu, N. et al. Plasmonic analogue of electromagnetically induced transparencyat the Drude damping limit. Nat Mater8,758-762,doi:http://www.nature.com/nmat/journal/v8/n9/suppinfo/nmat2495_S1.html (2009).
    14Stebe, K. J., Lewandowski, E.&Ghosh, M. Oriented Assembly ofMetamaterials. Science325,159-160, doi:10.1126/science.1174401(2009).
    15Ming, T. et al. Ordered Gold Nanostructure Assemblies Formed By DropletEvaporation. Angewandte Chemie International Edition47,9685-9690,doi:10.1002/anie.200803642(2008).
    16Lee, J. H., Wu, Q.&Park, W. Metal nanocluster metamaterial fabricated bythe colloidal self-assembly. Optics Letters34,443-445,doi:10.1364/ol.34.000443(2009).
    17Wheeler, M. S., Aitchison, J. S., Chen, J. I. L., Ozin, G. A.&Mojahedi, M.Infrared magnetic response in a random silicon carbide micropowder. PhysicalReview B79,073103(2009).
    18Fan, J. A. et al. Self-Assembled Plasmonic Nanoparticle Clusters. Science328,1135-1138, doi:10.1126/science.1187949(2010).
    19Barrow, S. J., Wei, X., Baldauf, J. S., Funston, A. M.&Mulvaney, P. The surfaceplasmon modes of self-assembled gold nanocrystals. Nat Commun3,1275,doi:http://www.nature.com/ncomms/journal/v3/n12/suppinfo/ncomms2289_S1.html (2012).
    1Heuberger, A. X-ray lithography. Journal of Vacuum Science&Technology B:Microelectronics and Nanometer Structures6,107-121, doi:10.1116/1.584026(1988).
    2Gwyn, C. W., Stulen, R., Sweeney, D.&Attwood, D. Extreme ultravioletlithography. Journal of Vacuum Science&Technology B: Microelectronics andNanometer Structures16,3142-3149, doi:10.1116/1.590453(1998).
    3Li, J. et al. Ion-beam sculpting at nanometre length scales. Nature412,166-169(2001).
    4Vieu, C. et al. Electron beam lithography: resolution limits and applications.Applied Surface Science164,111-117,doi:http://dx.doi.org/10.1016/S0169-4332(00)00352-4(2000).
    5Chou, S. Y., Krauss, P. R.&Renstrom, P. J. Nanoimprint lithography. Journal ofVacuum Science& Technology B14,4129-4133,doi:doi:http://dx.doi.org/10.1116/1.588605(1996).
    6Huo, F. et al. Beam pen lithography. Nat Nano5,637-640(2010).
    7Liddle, J. A.&Gallatin, G. M. Lithography, metrology and nanomanufacturing.Nanoscale3,2679-2688, doi:10.1039/c1nr10046g (2011).
    8Yu, H.-D., Regulacio, M. D., Ye, E.&Han, M.-Y. Chemical routes to top-downnanofabrication. Chemical Society Reviews42,6006-6018,doi:10.1039/c3cs60113g (2013).
    9Seeman, N. C. NUCLEIC-ACID JUNCTIONS AND LATTICES. Journal ofTheoretical Biology99,237-247, doi:10.1016/0022-5193(82)90002-9(1982).
    10Zhang, G., Surwade, S. P., Zhou, F.&Liu, H. DNA nanostructure meetsnanofabrication. Chemical Society Reviews42,2488-2496,doi:10.1039/c2cs35302d (2013).
    11Braun, E., Eichen, Y., Sivan, U.&Ben-Yoseph, G. DNA-templated assembly andelectrode attachment of a conducting silver wire. Nature391,775-778,doi:10.1038/35826(1998).
    12Winfree, E., Liu, F. R., Wenzler, L. A.&Seeman, N. C. Design and self-assemblyof two-dimensional DNA crystals. Nature394,539-544, doi:10.1038/28998(1998).
    13Nykypanchuk, D., Maye, M. M., van der Lelie, D.&Gang, O. DNA-guidedcrystallization of colloidal nanoparticles. Nature451,549-552,doi:10.1038/nature06560(2008).
    14Seeman, N. C. in Annual Review of Biochemistry, Vol79Vol.79Annual Reviewof Biochemistry (eds R. D. Kornberg, C. R. H. Raetz, J. E. Rothman,&J. W.Thorner)65-87(2010).
    15Aldaye, F. A., Palmer, A. L.&Sleiman, H. F. Assembling Materials with DNA asthe Guide. Science321,1795-1799, doi:10.1126/science.1154533(2008).
    16Pinheiro, A. V., Han, D., Shih, W. M.&Yan, H. Challenges and opportunities forstructural DNA nanotechnology. Nat Nano6,763-772(2011).
    17Wei, B., Dai, M.&Yin, P. Complex shapes self-assembled from single-strandedDNA tiles. Nature485,623-+, doi:10.1038/nature11075(2012).
    18Ke, Y., Ong, L. L., Shih, W. M.&Yin, P. Three-Dimensional StructuresSelf-Assembled from DNA Bricks. Science338,1177-1183,doi:10.1126/science.1227268(2012).
    19Teller, C.&Willner, I. Functional nucleic acid nanostructures and DNAmachines. Current opinion in biotechnology21,376-391(2010).
    20Liu, D., Cheng, E.&Yang, Z. DNA-based switchable devices and materials. NPGAsia Mater3,109-114(2011).
    21Krishnan, Y.&Simmel, F. C. Nucleic Acid Based Molecular Devices.Angewandte Chemie International Edition50,3124-3156,doi:10.1002/anie.200907223(2011).
    22Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns.Nature440,297-302, doi:10.1038/nature04586(2006).
    23Torring, T., Voigt, N. V., Nangreave, J., Yan, H.&Gothelf, K. V. DNA origami: aquantum leap for self-assembly of complex structures. Chemical SocietyReviews40,5636-5646, doi:10.1039/C1CS15057J (2011).
    24Saccà, B.&Niemeyer, C. M. DNA Origami: The Art of Folding DNA.Angewandte Chemie International Edition51,58-66,doi:10.1002/anie.201105846(2012).
    25Qian, L. et al. Analogic China map constructed by DNA. Chinese ScienceBulletin51,2973-2976, doi:10.1007/s11434-006-2223-9(2006).
    26Yang, Y., Han, D., Nangreave, J., Liu, Y.&Yan, H. DNA Origami withDouble-Stranded DNA As a Unified Scaffold. ACS Nano6,8209-8215,doi:10.1021/nn302896c (2012).
    27Zhao, Z., Liu, Y.&Yan, H. Organizing DNA Origami Tiles into Larger StructuresUsing Preformed Scaffold Frames. Nano Letters11,2997-3002,doi:10.1021/nl201603a (2011).
    28Zhang, H. et al. Folding super-sized DNA origami with scaffold strands fromlong-range PCR. Chemical Communications48,6405-6407,doi:10.1039/C2CC32204H (2012).
    29Woo, S.&Rothemund, P. W. K. Programmable molecular recognition basedon the geometry of DNA nanostructures. Nat Chem3,620-627,doi:http://www.nature.com/nchem/journal/v3/n8/abs/nchem.1070.html-supplementary-information (2011).
    30Andersen, E. S. et al. Self-assembly of a nanoscale DNA box with acontrollable lid. Nature459,73-76,doi:http://www.nature.com/nature/journal/v459/n7243/suppinfo/nature07971_S1.html (2009).
    31Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensionalshapes. Nature459,414-418, doi:10.1038/nature08016(2009).
    32Dietz, H., Douglas, S. M.&Shih, W. M. Folding DNA into Twisted and CurvedNanoscale Shapes. Science325,725-730, doi:10.1126/science.1174251(2009).
    33Han, D. et al. DNA Origami with Complex Curvatures in Three-DimensionalSpace. Science332,342-346, doi:10.1126/science.1202998(2011).
    34Han, D. et al. DNA Gridiron Nanostructures Based on Four-Arm Junctions.Science339,1412-1415, doi:10.1126/science.1232252(2013).
    35Endo, M., Hidaka, K., Kato, T., Namba, K.&Sugiyama, H. DNA Prism StructuresConstructed by Folding of Multiple Rectangular Arms. Journal of the AmericanChemical Society131,15570-15571, doi:10.1021/ja904252e (2009).
    36Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructureswith tailored optical response. Nature483,311-314,doi:10.1038/nature10889(2012).
    37Chen, Z., Lan, X.&Wang, Q. DNA Origami Directed Large-Scale Fabrication ofNanostructures Resembling Room Temperature Single-Electron Transistors.Small9,3567-3571, doi:10.1002/smll.201300640(2013).
    38Lan, X. et al. Bifacial DNA Origami-Directed Discrete, Three-Dimensional,Anisotropic Plasmonic Nanoarchitectures with Tailored Optical Chirality.Journal of the American Chemical Society135,11441-11444,doi:10.1021/ja404354c (2013).
    39Shen, X. et al. Three-Dimensional Plasmonic Chiral Tetramers Assembled byDNA Origami. Nano Letters13,2128-2133, doi:10.1021/nl400538y (2013).
    40Stearns, L. A. et al. Template-Directed Nucleation and Growth of InorganicNanoparticles on DNA Scaffolds. Angewandte Chemie121,8646-8648,doi:10.1002/ange.200903319(2009).
    41Pal, S. et al. Site-Specific Synthesis and In Situ Immobilization of FluorescentSilver Nanoclusters on DNA Nanoscaffolds by Use of the Tollens Reaction.Angewandte Chemie International Edition50,4176-4179,doi:10.1002/anie.201007529(2011).
    42Liu, J. et al. Metallization of Branched DNA Origami for Nanoelectronic CircuitFabrication. Acs Nano5,2240-2247, doi:10.1021/nn1035075(2011).
    43Geng, Y. et al. Rapid metallization of lambda DNA and DNA origami using a Pdseeding method. Journal of Materials Chemistry21,12126-12131,doi:10.1039/c1jm11932j (2011).
    44Pilo-Pais, M., Goldberg, S., Samano, E., LaBean, T. H.&Finkelstein, G.Connecting the Nanodots: Programmable Nanofabrication of Fused MetalShapes on DNA Templates. Nano Letters11,3489-3492,doi:10.1021/nl202066c (2011).
    45Schreiber, R. et al. DNA Origami-Templated Growth of Arbitrarily ShapedMetal Nanoparticles. Small7,1795-1799, doi:10.1002/smll.201100465(2011).
    46Pearson, A. C. et al. DNA Origami Metallized Site Specifically to FormElectrically Conductive Nanowires. Journal of Physical Chemistry B116,10551-10560, doi:10.1021/jp302316p (2012).
    47Geng, Y. et al. Electrically Conductive Gold-and Copper-Metallized DNAOrigami Nanostructures. Langmuir29,3482-3490, doi:10.1021/la305155u(2013).
    48Jin, Z. et al. Metallized DNA nanolithography for encoding and transferringspatial information for graphene patterning. Nature communications4,1663-1663, doi:10.1038/ncomms2690(2013).
    49Hagerman, P. J. Flexibility of DNA. Annual Review of Biophysics andBiophysical Chemistry17,265-286,doi:doi:10.1146/annurev.bb.17.060188.001405(1988).
    50Samano, E. C. et al. Self-assembling DNA templates for programmed artificialbiomineralization. Soft Matter7,3240-3245, doi:10.1039/C0SM01318H(2011).
    51Kumar, A., Hwang, J.-H., Kumar, S.&Nam, J.-M. Tuning and assembling metalnanostructures with DNA. Chemical Communications49,2597-2609,doi:10.1039/C2CC37536B (2013).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700