用户名: 密码: 验证码:
金属配合物在离子液体中催化醇的氧化反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体是由阴阳离子组成的室温成液态的盐,采用金属配合物与离子液体相结合催化醇的氧化反应,不仅可以使催化剂能够重复使用,而且对于开发绿色化工过程具有重要意义和应用价值。
     本文对乙酰丙酮铜在离子液体中催化醇的氧化反应进行了研究,通过考察一系列影响反应的因素,确定出乙酰丙酮铜/[bmim]PF6为适宜的催化体系,得到适宜的反应条件为:2 mmolα-苯乙醇,10 mmol t-BuOOH,3 mol% Cu(acac)2,[bmim]PF6 1 mL,室温反应5h,在此条件下,α-苯乙醇的转化率和乙酰苯的产率分别达到93%和87%。在此催化体系下,以t-BuOOH为氧化剂,脂肪醇和芳香醇的仲醇均能被氧化成相应的酮,而伯醇有一部分被过氧化为相应的羧酸。反应体系在重复使用5次后,活性仅有微小的降低。
     以乙酰丙酮铜为原型,通过改变配体结构分别合成了乙酰丙酮-氨基酸-金属配合物和水杨醛-氨基酸-金属配合物来研究配体的改变对配合物催化性能的影响,通过红外光谱、热重分析、元素分析、核磁共振等定性分析方法,确定了其分子结构式。通过对反应影响因素的考察,确定出乙酰丙酮-亮氨酸-铜和水杨醛-酪氨酸-锰两个催化体系具有较好的催化活性。乙酰丙酮-亮氨酸-铜体系不仅能够将脂肪醇和芳香醇的仲醇氧化成相应的酮,而且也能将伯醇全部氧化成相应的羧酸。同时,相应的离子液体催化体系在重复使用5次后,其活性没有明显降低。结果表明氨基酸的引入大大提高了催化剂对伯醇的选择性。而水杨醛-酪氨酸-锰体系对产物的选择性与乙酰丙酮铜类似,但反应结束后催化体系不能重复使用。
     合成了带有离子液体支链的金属配合物功能型离子液体,以期提高催化体系的重复使用性,通过红外光谱、热重分析、元素分析、核磁共振等定性分析方法,确定了其分子结构式。实验结果表明,经过改性的功能型离子液体的催化活性得到了较大程度的提高,但催化剂的重复使用性仍有待提高。
     [bmim]BF4/NaClO组成的催化体系能够有效地催化脂肪醇和芳香醇的氧化反应,不仅可将仲醇氧化成相应的酮,而且也能将伯醇氧化成相应的醛。同时催化体系在重复使用5次后,其催化活性没有明显降低。
Ionic liquids are liquid salts at room temperature which are composed by anions and cations. Oxidations of alcohols are catalyzed by the method based on metal compounds and ionic liquids, which not only make catalysts reusably, but also have important meaning and application for the green chemical engineering.
     Catalyzed oxidation of alcohols by copper acetylacetonate in ionic liquid was studied. For optimizing the reaction condition, the influence of several factors on reaction was studied, and then a satisfied reaction condition was obtained in 5 hours at room temperature with 2 mmol 1-Phenylpropan-1-ol, 10 mmol t-BuOOH, 3 mol% copper acetylacetonate and 1 mL [bmim]PF6. In this condition, the conversion and yield of 1-Phenylpropan-1-ol was 93% and 87%. The sec-alcohols of benzylic and aliphatic alcohols were all oxidized to the corresponding ketones with t-BuOOH as oxygen resource in this catalytic condition. The catalytic system can be recycled and reused for five runs without any significant loss of catalytic activity.
     N-acac-amino acid-M and Sal-amino acid-M were synthesized by changing structure of complexes based on copper acetylacetonate in order to study the influence between catalyzed ability and complexes. The molecular structures were confirmed by FT-IR, TGA, EA and NMR, etc. N-acac-amino acid-Cu and Sal-amino acid-Mn were satisfied catalytic system by studying the factors on reactions. The N-acac-amino acid-Cu system oxidized not only the sec-alcohols of benzylic and aliphatic alcohols to corresponding ketones, but also the primary alcohol to the corresponding carboxylic acid. The catalytic system can be recycled and reused for five runs without any significant loss of catalytic activity. The selectivity of primary alcohols was improved due to introduced amino acid to metal complexes. For the Sal-amino acid-Mn catalytic system, the selectivity of products was the same as the copper acetylacetonate catalytic system, but it cannot be reused.
     Metal complexes task-special ionic liquids with ionic liquid tags were synthesized in order to improved the reusability of catalytic system. The molecular structures were confirmed by FT-IR, TGA, EA and NMR, etc. It should be noted that the catalytic ability was greatly improved by these Metal complexes task-special ionic liquids, but the reusability still needed to improve.
     Oxidations of benzylic and aliphatic alcohols were catalyzed efficiently by [bmim]BF4/NaClO system. This system oxidized not only the sec-alcohols to the corresponding ketones, but also the primary alcohols to the corresponding carboxylic acid. What’s more, the catalytic system can be recycled and reused for five runs without any significant loss of catalytic activity.
引文
[1] Wasserscheid P., Keim W., Ionic Liquids - New "Solutions" for Transition Metal Catalysis, Angew. Chem. Int. Ed., 2000, 39: 3773~3789.
    [2] Earle M. J., Seddon K. R., Ionic liquids-Green solvents for the future, Pure App1. Chem., 2000, 72(7): 1391~ 1398.
    [3] Sheldon R., Catalytic reactions in ionic liquids, Chem. Commun., 2001: 2399~2401.
    [4] Zhao D., Wu M., KouY., et al., Ionic liquids: applications in catalysis, Cata1. Today., 2002: 157~189.
    [5] Dupont J., de Souza R. F., Suarez P. A. Z., Ionic liquid (molten salt) phase organometallic catalysis, Chem. Rev., 2002, 102: 3667~3692.
    [6] Olivier-Bourbigou H., Magan L., Ionic liquids: perspectives for organic and catalytic reactions, J. Mo1. Cata1., 2002, 182-183: 419~439.
    [7] Gordon C. M., New developments in catalysis using ionic liquids, App1. Catal., 2001, 222(1-2): 101~l17.
    [8] Holbrey J. D., Seddon K. R., Ionic Liquids, Clean Prod. Process., 1999, 1(4): 223~236.
    [9] Wilkes J. S., A short history of ionic liquids—from molten salts to neoteric solvents, Green Chem., 2002, 4(2): 73~80.
    [10] Sugden S., Wilkins H., The parachor and chemical constitution PartⅫfused metals and salts, J. Am. Chem. Soc., 1929, 7: 1291~1298.
    [11] Knowles W. S., Sabacky M., Catalytic asymmetric hydrogenation employing a soluble, optically active, rhodium complex, Chem. Commun., 1968, 1445~1446.
    [12] AhLstr?m - Silver A. F., Odenbrand C. U. I., Combustion of methane over a Pd-Al2O3/SiO2 catalyst, catalyst activity and stability, Appl Catal A., 1997, 153: 157~175.
    [13] Machida M., Egn chi K., Arai H., Catalytic properties of BaMAl sub 11 O sub 19-..alpha.. (M = Cr, Mn, Fe, Co, and Ni) for high-temperature catalytic combustion, J. Catal., 1989, 120: 377~386.
    [14] Machida M., Egn chi K., Arai H., Effect of structural modification on the catalytic property of Mn-substituted hexaaluminates, J. Catal., 1990, 123: 477~485.
    [15] Zarur A. J., Ying J. Y., Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion, Nature, 2000, 403(6765): 65~67.
    [16] Sadamori H., Tanioka T., Matsuvisa T., Development of a high-temperature combustion catalyst system and prototype catalytic combustor turbine test results, Catal. Today., 1995, 26: 337~344.
    [17] Ngo H. L., LeCompte K., Hargens L., et a1., Thermal properties of imidazolium ionic liquids, Thermochimica Acta., 2000, 357-358: 97~102.
    [18] Huddleston J. G., Visser A. E., Reichert W. M., et a1., Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation, Green Chem., 2001, 3: 156~164.
    [19] Holbrey J. D., Seddon K. R., The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals, J. Chem. Soc., Dalton Trans., 1999, (13): 2133~2140.
    [20] Gordon C. M., Holbrey J. D., Kennedy A. R., et a1., Ionic liquid crystals: hexafluorophosphate salts, J. Mater. Chem., 1998, 12 (8): 2627~2636.
    [21] Deetlefs M. D., Raubenheimer H. G., Esterhuysen M. W., Stoichiometric and catalytic reactions of gold utilizing ionic liquids, Catal. Today, 2002, 72: 29~ 41.
    [22] Bonhote P., Dias A. P., Papageorgiou N., et a1., Hydrophobic, highly conductive ambient-temperature molten salts, Inorg. Chem., 1996, 35: 1168~1178.
    [23] Wilkes J. S., Frye J. S., Reynolds G. F., Aluminum-27 and carbon-13 NMR studies of aluminum chloride-dialkylimidazolium chloride molten salts, Inorg. Chem., 1983, 22 (26): 3870~3872.
    [24] Franzen G., Gilbert B. P., Pelzer G., et al., The anionic structure of room-temperature organic chloroaluminate melts from secondary ion mass spectrometry, Org. Mass. Spectrum., 1986, 21 (8): 443~ 444.
    [25] Gray J. L., Maciel G. E., Aluminum-27 Nuclear Magnetic Resonance Study of the Room-Temperature Melt A1C13/n-Butylpyridinium Chloride, J. Am. Chem. Soc., 1981, 103: 7147~7151.
    [26] Ackermann B. L., Tsarbopoulos A., Allison J., Fast Atom Bombardment Mass Spectrometric Studies of the Aluminum Chlorideln-Butylpyridinium Chloride Molten Salt, Ana1. Chem., 1985, 57: 1766~1768.
    [27] Anthony J. L., Maginn E. J., Brennecke J. F., Solution thermodynamics of imidazolium-based ionic liquids and water, J. Phys. Chem. B. 2001, 105 (44): 10942~10949.
    [28] Ley S. V., Ramarao C., Smith M. D., Tetra-N-propylammonium perruthenate: a case study in catalyst recovery and re-use involving tetraalkylammonium salts, Chem. Commun. 2001, 2278~2279.
    [29] Farmer V., Welton T., Proceedings– Electrochemical Society, 2002, 19 (Molten Salts XIII), 276~285; Chem. Abstr. 2003, 684192.
    [30] Farmer V., Welton T., The oxidation of alcohols in substituted imidazolium ionic liquids using ruthenium catalysts, Green Chem., 2002, 97~102.
    [31] A. Wolfson, S. Wuyts, D. E.De Vos, et al., Aerobic oxidation of alcohols with ruthenium catalysts in ionic liquids. Tetrahedron Lett. 2002, 43, 8107~8110.
    [32]唐文明,李朝军。三氯化钌催化下环己烷和环己醇在离子液体中的氧化反应研究,化学学报,2004,62(7):742~744
    [33] R. F. de Souza, J. Duponta, J. E. de L. Dullius. Aerobic, Catalytic Oxidation of Alcohols in Ionic Liquids. J. Braz. Chem. Soc., 2006, 17(1): 48~52
    [34] Ansari I. A., Gree R., TEMPO-Catalyzed Aerobic Oxidation of Alcohols to Aldehydes and Ketones in Ionic Liquid [bmim][PF6 ],Org. Lett., 2002, 4(9): 1507~1509.
    [35] Wu X. E., Ma L., Ding M. X., Gao L. X., Imidazolium Ionic Liquid-Grafted 2,2′-Bipyridine—A Novel Ligand for the Recyclable Copper-catalyzed Selective Oxidation of Alcohols in Ionic Liquid [bmim][PF6], Chem. Lett., 2005, 34(3): 312~313.
    [36] Jiang N., Ragauskas A. J., Copper (II)-Catalyzed Aerobic Oxidation of Primary Alcohols to Aldehydes in Ionic Liquid [bmpy] PF6 , Org. Lett., 2005, 7, 3689~3692.
    [37] Seddon K. R., Stark A., Selective catalytic oxidation of benzyl alcohol and alkylbenzenes in ionic liquids, Green Chem., 2002, 4, 119 ~123.
    [38] Ganchegui B., Bouquillon S., Hénin F., et al., Palladium-catalyzed dehydrogenation of benzylic alcohols in molten ammonium salts, a recyclable system,Tetrahedron Lett., 2002, 43, 6641~6644.
    [39] Ganchegui B., PhD Thesis, University of Reims Champagne-Ardenne, France, 2004.
    [40] Muzart J., Palladium-catalysed oxidation of primary and secondary alcohols, Tetrahedron, 2003, 59, 5789~5816.
    [41] Le Bras J., Mukher jee D. K., González S., et al., Palladium nanoparticles obtained from palladium salts and tributylamine in molten tetrabutylammonium bromide: their use for hydrogenolysis-free hydrogenation of olefins, New. J. Chem., 2004, 28, 1550~1553.
    [42] Bouquillon S., du Moulinet d HHardemare A., Averbuch-Pouchot M.-Th., et al., Synthesis and characterization of monomeric and dimeric palladium(II)-ammonium complexes: their use for the catalytic oxidation of alcohols, Polyhedron, 1999, 18, 3511~3516.
    [43] Ganchegui B., Bouquillon S., Hénin F., et al., Palladium-catalyzed isomerization of (homo-)allylic alcohols in molten tetrabutylammonium bromide, a recyclable system, J. Mol. Catal. A: Chem., 2004, 214, 65~69.
    [44] Hardacre C., Mullan E. A., W.Rooney D., et al., Use of a rotating disc reactor to investigate the heterogeneously catalysed oxidation of cinnamyl alcohol in toluene and ionic liquids, J. Catal., 2005, 232, 355~365.
    [45] Chhikara B. S., Tehlan S., Kumar A., 1-Methyl-3-butylimidazolium Decatungstate in Ionic Liquid: An Efficient Catalyst for the Oxidation of Alcohols, Synlett, 2005, 63~66.
    [46] Chhikara B.S., Chandra R., Tandon V., Oxidation of alcohols with hydrogen peroxide catalyzed by a new imidazolium ion based phosphotungstate complex in ionic liquid, J. Catal., 2005,230, 436~439.
    [47] Li J. W., Sun W., Xu L.W., et al., Room Temperature Ionic Liquid: A Powerful Additive of Mn(Salen) Catalyzed Oxidation of sec-Alcohols, Chinese Chem. Lett., 2004, 15(12): 1437~1440.
    [48] Bianchini G., Crucianelli M., de Angelis F., et al., Highly efficient C-H insertion reactions of hydrogen peroxide catalyzed by homogeneous and heterogeneous methyltrioxorhenium systems in ionic liquids, Tetrahedron Lett., 2005, 46, 2427~2432.
    [49] Jiang N., Ragauskas A. J., Vanadium-catalyzed selective aerobic alcohol oxidation in ionic liquid [bmim]PF6 . Tetrahedron Lett., 2007, 48, 273~276.
    [50] A. Kumar, N. Jain, S. M. S. Chauhan. Biomimetic Oxidation of Veratryl Alcohol with H O Catalyzed by Iron(III) Porphyrins and Horseradish Peroxidase in Ionic Liquid. Synlett, 2007, 411~414.2 2
    [51] W.Qian, E.Jin, W.Bao , Y.Zhang, Clean and Highly Selective Oxidation of Alcohols in an Ionic Liquid by Using an Ion-Supported Hypervalent Iodine(iii) Reagent. Angew. Chem. Int. Ed., 2005, 44, 952~955.
    [52] Jiang N., Ragauskas A. J., TEMPO-catalyzed oxidation of benzylic alcohols to aldehydes with the H2 O2 /HBr/ionic liquid [bmim] PF6 system, Tetrahedron Lett., 2005, 46, 3323~3326.
    [53] Wu X. E., Ma L., Ding M. X., Gao L.X., TEMPO-Derived Task-Specific Ionic Liquids for Oxidation of Alcohols, Synlett., 2005, 607~610.
    [54] Xie H., Zhang S., Duan H., An ionic liquid based on a cyclic guanidinium cation is an efficient medium for the selective oxidation of benzyl alcohols, Tetrahedron Lett., 2004, 45, 2013~2015.
    [55] Wasserscheid P., Wehon T., Ionic Liquids in Synthesis. New York: Wiley. VCH Verlag GmbH&Co. KGaA, 200.
    [56] Abbott A. P., Capper G., Davies D. L., et al., Novel solvent properties of choline chloride/urea mixtures, Chem. Commun., 200l: 2010.
    [57] Mateus N. M. M., Branco L. C., Luren o. N. M. T.,et al., Synthesis and properties of tetra-alkyl-dimethylguanidinium salts as a potential new generation of ionic liquids, Green Chem., 2003, 5: 347~352.
    [58] Bhattaeharyya S., Rana S., Gooding O. W., et al., , Tetrahedron Lett., 2003, 44(27): 4957~4960. Polymer-supported triacetoxyborohydride: a novel reagent of choice for reductive amination
    [59] Matsumoto H., Kageyama H., Miyzaki Y., , Chem. Commun., 2002: l726~1727. Room temperature ionic liquids based on small aliphatic ammonium cations and asymmetric amide anions
    [60] Lall S.I., Mancheno D., Castro S., et al., Polycations. Part X. LIPs, a new category of room temperature ionic liquid based on polyammonium salts, Chem. Commun., 2000: 2413~2414.
    [61] Merrigan T. L., Bates E. D., Dorman S. C., et al., New fluorous ionic liquids function as surfactants in conventional room-temperature ionic liquids, Chem. Commun., 2000: 2051~2052.
    [62] Zhao D. B., Fei Z. F., Dyson P. J., et al., Allyl-Functionalised Ionic Liquids: Synthesis, Characterisation, and Reactivity, Helvetica Chim. Acta, 2005, 88: 665~675.
    [63] Wasserseheid P., Drieben Holscher B., Hal R., et al., New, functionalised ionic liquids from Michael-type reactions—a chance for combinatorial ionic liquid development, Chem. Commun., 2003, 16: 2038~2039.
    [64] S. g. Lee, Y.J. Zhang, J.Y. Piao, et al. Catalytic asymmetric hydrogenation in a room temperature ionic liquid using chiral Rh-complex of ionic liquid grafted 1, 4-bisphosphine ligand. Chem. Commun., 2003, (20): 2624~2625.
    [65] M. Berthod, G. Mignani, M. Lemaire, Catalytic asymmetric hydrogenation of ethyltrifluoroacetoacetate with 4,4’and 5,5’-diamBINAP Ru(II) complexes in unusual conditions. J. Mol. Catal. A: Chem. 2005, 233(1-2): 105~110
    [66] T.J. Geldbach, P.J. Dyson. A Versatile Ruthenium Precursor for Biphasic Catalysis and Its Application in Ionic Liquid Biphasic Transfer Hydrogenation: Conventional vs Task-Specific Catalysts. J. Am. Chem. Soc., 2004, 126(26): 8114~8115.
    [67] J.C. Xiao, B. Twamley, J.M. Shreeve. An Ionic Liquid-Coordinated Palladium Complex: A Highly Efficient and Recyclable Catalyst for the Heck Reaction. Org. Lett., 2004, 6(21): 3845~3847.
    [68] N. Audic, H. Clavier, M. Mauduit, J.-C. Guillemin, An Ionic Liquid-Supported Ruthenium Carbene Complex: A Robust and Recyclable Catalyst for Ring-Closing Olefin Metathesis in Ionic Liquids. J. Am. Chem. Soc., 2003, 125(31): 9248~9249.
    [69] Graddon D. P., The absorption spectra of complex salts—III cupric ethylacetoacetate, J. Inorg. Nucl. Chem., 1960, 14(3-4): 161~168.
    [70] Peacock R. D., The preparation and investigation of bis(acetylacetonato)copper(II), J. Chem. Educ., 1971, 48, 133.
    [71] Doyle M. P., McKervey M. A., Ye T., Modern Catalytic Methods for Organic Synthesis with Diazo Compounds From Cyclopropanes to Ylides, Wiley: New York, 1998.
    [72] Tan Z., Qu Z., Chen B., et al., Diazo Decomposition in the Presence of Tributyltin Hydride. Reduction of a-Diazo Carbonyl Compounds, Tetrahedron, 2000, 56: 7457~7461.
    [73] Sirkecioglu O., Karliga B., Talinli N., Benzylation of alcohols by using bis [acetylacetonato] copper as catalyst, Tetrahedron Lett., 2003, 44: 8483~8485.
    [74] Hanaya K., Muramatsu T., Kudo H., Reduction of aromatic nitro-compounds to amines with sodium borohydride–copper (II) acetylacetonate, J. Chem. Soc., Perkin Trans. 1, 1979, 2409~2410.
    [75] Kantam M. L., Kavita V. N. B., Haritha Y., Cu(acac) Immobilized in Ionic Liquids: A Novel and Recyclable Catalytic System for Aziridination of Olefins Using PhI=NTs as Nitrene Donor, 2Synlett, 2004, 525~527.
    [76] Aggarwal V. K., Catalytic Asymmetric Epoxidation and Aziridination Mediated by Sulfur Ylides. Evolution of a Project, Synlett, 1998, 329~336.
    [77] Burtoloso A. C. B., Correia C. R. D., Metal carbene N-H insertion of chiralα,α'-dialkylα-diazoketones. A novel and concise method for the stereocontrolled synthesis of fully substituted azetidines, Tetrahedron Lett., 2004, 45(17): 3355~3358.
    [78] Solomon R. G., Kochi J. K., Copper(I) catalysis in cyclopropanations with diazo compounds. Role of olefin coordination, J. Am. Chem. Soc. 1973, 95(10): 3300~3310.
    [79] Hudlicky T., Kutchan T. M., Wilson S. R., et al., Synthesis of (.+-.)-coronafacic acid. Efficient intramolecular Diels-Alder reaction of latent diene-dienophile functionality via thermal reaction, J.Am. Chem. Soc. 1980, 102(20): 6353~6355.
    [80] Aminabhavi T. M., Biradar N. S., Patil S. B., et al., Structural Features of Some Organotin (IV) Complexes of Semi-and Thiosemicarbazones, Inorg. Chim. Acta., 1985, 107: 231~234.
    [81] Plesch G., Friebel C., Svajlenova O., et al., Response of Matricaria Recutita Plants to Some Copper(II) Chelates, Inorg. Chim. Acta., 1988, 151: 139.
    [82] Sattari D., Alipour E., Shriani S., et al., Metal complexes of N-salicylideneamino acids, J. Inorg. Biochem. 1992, 45, 115~122.
    [83] Punniyamurthy T., Madhava teddy M., Swinder Jeet Singh Kalra, et al.,Cobalt(II)Schiff base catalyzed biomimetic oxidation of organic substrates with sioxygen, Pure & Appl Chem, 1996, 68(3):619~622.
    [84]王荣民,王云普,李树本,O2选择氧化烷烃新进展,化学通报,1999,(8): 8~12
    [85]郝成君,彭玉洁,过渡金属苯丙氨酸希夫碱配合物的合成及表征,平硬山师专学报,1999,14(2):44~47.
    [86]陈德余,江银枝,过渡金属L-丙氨酸希夫碱配合物的合成及其抗O2-性能,应用化学,1997,14(3):5~8.
    [87]史卫良,陈士明,水杨醛天冬氨酸过渡金属配合物的ESR波谱及抗O^-2性能,无机化学学报,2001,17(2):239~243
    [88] Geldbach T. J., Laurenczy G., Scopelliti R., et al. Synthesis of imidazolium-tethered ruthenium(II)-arene complexes and their application in biphasic catalysis, Organometallics, 2006, 25(3): 733~742.
    [89] Geldbach T. J., Brown M. R. H., Scopelliti R., et al. Ruthenium-benzocrownether complexes: Synthesis, structures, catalysis and immobilisation in ionic liquids, J. Organomet. Chem., 2005, 690(23): 5055~5065.
    [90] Mathews C. J., Smith P. J., Welton T., et al. In Situ Formation of Mixed Phosphine-Imidazolylidene Palladium Complexes in Room-Temperature Ionic Liquids, Organometallics, 2001, 20(18): 3848~3850.
    [91] Fei Z., Zhao D., Scopelliti R., Organometallic Complexes Derived from Alkyne-Functionalized Imidazolium Salts, Organometallics, 2004, 23(7): 1622~1628.
    [92] Brasse C. C., Englert U., Salzer A., et al. Ionic Phosphine Ligands with Cobaltocenium Backbone: Novel Ligands for the Highly Selective, Biphasic, Rhodium-Catalyzed Hydroformylation of 1-Octene in Ionic Liquids, Organometallics, 2000, 19(19): 3818~3823.
    [93] RajanBabu T. V., Yan Y., Shin S., Synthesis, characterization, and applicability of neutral polyhydroxy phospholane derivatives and their rhodium(I) complexes, for reactions in organic and aqueous media, J. Am. Chem. Soc., 2001, 123(42): 10207~10213.
    [94] Berthod M., Saluzzo C., Mignani C., et al. 4,4 ' and 5,5 '-DiamBINAP as a hydrosoluble chiral ligand: syntheses and use in Ru(II) asymmetric biphasic catalytic hydrogenation, Tetrahedron: Asymm. 2004, 15(4): 639~645.
    [95] Clavier H., Audic N., Mauduit M., et al., , Chem. Commun., 2004, (20): 2282~2283. Ring-closing metathesis in biphasic BMI center dot PF6 ionic liquid/toluene medium: a powerful recyclable and environmentally friendly process
    [96] Clavier H., Audic N., Guillemin J. C, et al., , J. Olefin metathesis in room temperature ionic liquids using imidazolium-tagged ruthenium complexesOrganomet. Chem., 2005, 690(15): 3585~3599.
    [97] Yao Q., Zhang Y., Olefin Metathesis in the Ionic Liquid 1-Butyl-3-methylimidazolium Hexafluorophosphate Using a Recyclable Ru Catalyst: Remarkable Effect of a Designer Ionic Tag, Angew. Chem. Int. Ed. 2003, 42(29): 3395~3398.
    [98]刘祥,何炜,几种取代水杨醛合成方法的改进,化学试剂,2001,23(4):237~238.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700