用户名: 密码: 验证码:
广东大降坪和大宝山硫化物矿床多元同位素与稀土元素地球化学示踪研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
广东地区在我国东南部古扬子与古华夏陆块接触部位发育有(超)大型的成矿带,本文选择其中的两个成矿典型实例,包括粤西大降坪黄铁矿矿床和粤北大宝山多金属硫化物矿床,针对目前矿床成因研究中存在的种种争议与不确定性,在全面掌握地质背景的基础上,通过开展系统的矿床地球化学研究,并尝试应用一些新的矿床地球化学方法,结合地质背景讨论了矿床成因,为区域找矿提供了参考信息,并且在理论与方法上对金属硫化物矿床的成矿地质地球化学研究具有参考意义。
     在粤西大降坪黄铁矿矿床的研究中,首先尝试探索开展了非传统稳定同位素Mo在中低温热液成矿中的地球化学研究,分析对象为与矿体同生热水沉积的硅质岩,结果发现,本区Ⅲ号矿体与Ⅳ号矿体具有明显不同的Mo同位素特征(Ⅲ号矿体的δ97/95Mo为-0.02‰~0.29‰,变化范围小;Ⅳ号矿体的δ97/95Mo为-0.70‰~0.62‰,变化范围较大,尤其是主矿层处的5个样品均以富集轻同位素为特征),前者的Mo同位素指示其成矿流体来自于海底热液,属热水沉积成因(或海底喷流);后者则反映矿床形成过程中还受到后期热液改造作用;Ⅲ号矿体可能形成于一种开放的生物作用较强烈的缺氧环境;Ⅳ号矿体形成于一种封闭或半封闭的弱氧化—氧化的局限环境。Mo同位素在这种局限环境条件下可能存在一定的动力学分馏效应。Mo同位素可以作为一种示踪成矿流体以及成矿环境演化的有效手段。
     其他同位素(He-Ar-Pb-S)以及REE组成的地球化学特征也表明:大降坪的Ⅲ号矿体与Ⅳ矿体的成矿物质与成矿流体来源不同。Ⅲ号矿体的硫化物与围岩具有相似的Pb、S同位素特征(206Pb/204Pb、207Pb/204Pb、208Pb/204Pb分别为18.266、15.641、38.558 VS 18.244,15.712,38.647;δ34S为-19.4‰VS-18.5‰),3He/4He平均为1.48×10-6,R/Ra为1.04,反映Ⅲ号矿体的成矿物质主要来自碎屑围岩地层,成矿流体主要来自于当时的大气降水(海水);相比而言,Ⅳ号矿体的铅同位素(206pb/204pb、207Pb/204Pb、208Pb/204Pb平均值分别为18.157,15.687和38.509)显示其成矿物质主要来自下伏基底地层,硫(δ34S≈17.9‰)主要来自于海水硫酸盐,R/Ra平均为为2.42,显示有部分深部地幔流体的参与,其硫化物中具有非常明显的Eu正异常,暗示矿体经历了中高温热液叠加成矿作用。
     在粤北大宝山多金属硫化物矿床的研究中,通过对不同产状、不同形态的硫化物进行He-Ar-Pb-S同位素示踪和稀土元素组成研究,发现块状和脉状矿体的的He-Ar同位素组成明显不同,前者的R/Ra平均为3.01,反映成矿流体为大气饱和水(海水)与地幔流体混合作用的结果,而脉状矿体的R/Ra仅为0.60,表明有地壳物质组分的加入;块状矿体与脉状矿体的铅硫同位素组成较为均一,大多数硫化物的δ34S为零值附近,铅同位素(206pb/204pb、207pb/204Pb、208pb/204pb平均值分别为18.946,15.735,38.990)主要落在上地壳与造山带之间,从而其成矿物质主要来自于地球深部。然而,二者硫化物的REE组成明显不同,块状硫化物具有典型的Eu正异常,轻稀土富集,具有海底热液喷流沉积特征,而脉状矿体的呈Eu负异常,具有跟矿区花岗闪长斑岩相似的稀土特征,暗示脉状矿体可能主要与花岗质岩浆流体有关,部分脉状矿体也可能来自对后期岩浆热液对块状矿体的活化转移。大宝山多金属矿床存在两期成矿作用,即泥盆纪与火山作用相关的热液成矿期和燕山期与岩浆热液相关的叠加成矿期。
     在以上两个典型矿床分别精细研究的基础上,综合对比分析认为,大降坪黄铁矿矿床与大宝山多金属硫化物矿床均为与热水沉积作用相关的块状硫化物矿床,都具有热水沉积+叠加改造成矿的特点。前者为与热水沉积相关的SEDEX型,后者为与火山作用相关的VMS型。构造背景、含矿地层以及同生断裂中的岩浆活动是区域找矿的重点。
Super-large scale metallogenic belt was developed in Guangdong province between the ancient Yangtze and Cathaysia cratons, Southeast China. Two reprensentative deposits including the Dajiangping pyrite deposit and dabaoshan polymetallic sulfide deposit are selected in this study. As there are much controversy and uncertainties for mineral genesis till now. Based on the comprehensive geological setting, detailed studies on the systematic geochemistry including applied new mineral geochemical method for ore genesis have been carried in this study. Conbined with geological background, their ore deposit genisis are discussed. These explorations provide a important reference for regional metallogenic information as well as the theory studies on geochemical sulfide deposits.
     Molybdenum isotope was explored as a the new tracer for the low-medium temperature hydrothermal ore-forming systems. The results from twelve hydrothermal syndepositional sillcalite and chert samples from the Dajiangping pyrite deposit show that theδ97/95Mo values of the OrebodyⅢrange from -0.02‰to 0.29‰, with a narrow range, In contrast, the values of the OrebodyⅣdisplay a larger variation, especially, the five samples from the main ore bed all show strong negative values. The OrebodyⅢlikely deposited from submarine exhalative hydrothermal fluids under a relatively strong reducing environment and the OrebodyⅣmay have also been influenced by hydrothermal superimposition in a more oxidized disequilibrium condition. In addition, theδ97/95Mo values of the OrebodyⅣare clearly negative, together with the values increasing stratigraphically upward in the ore beds, suggesting that the metallogenic environment of the OrebodyⅣis different from the open oceanic systems. There might be dynamic fractionation in this restricted environment. The molybdenum isotope can be used as an effective tracer for the ore-forming fluid and metallogenic environment.
     Geochemistry characteristics from other isotopes such He、Ar、Pb and S also illustrated that the metallogenic materials and ore-forming fluids are different between the OrebodyⅢand OrebodyⅣ. There are similar pb and S isotope compositions between the sulfide and wall rock (206Pb/204Pb,207Pb/204Pb,208Pb/204Pb are 18.266、15.641、38.558 VS 18.244,15.712,38.647, respectively;δ34S was -19.4%o VS-18.5‰), as well as the average of 3He/4He is 1.48×10-6 and its R/Ra of 1.04, which indicates that the metallic ore-forming materials mainly derived from clastic formation and the ore-forming fluids might be atmospheric saturation water (seawater) in the OrebodyⅢ. However, the pb and S isotope compositions from Orebody IV show that the metallic ore-forming materials were from baseal statra and sulfur mainly derived from seawater sulfate. In addition, the average R/Ra of 2.42 indicates that the mantle ore-forming fluids might be involved. The sulfides with obvious positive Eu abonormal also infer that there has been experienced high-temperature hydrothermal superimposed during the orebody IV mineralization.
     Considering there are different bedding or formset in the sulfide ore, a comparative method between the massive orebody and vein orebody was introduced in the studies on the dabaoshan polymetallic deposit. The He-Ar isotope compositions between massive orebody and vein orebody was different. the average R/Ra of the massive orebody was 3.01 and its ore-forming fluids mixed with mantle fluids and atmospheric saturation water (seawater), in contrast, the ore-forming fluids of the vein orebody show the crust materials added characteristics with R/Ra of 0.6. The Pb and S isotope compositions in massive orebody and vein orebody was relative homogeneous that theδ34S values of most sulfide was zero balancing and the pb isotope compositions (the average values of 206Pb/204Pb、207Pb/204Pb、208Pb/204Pb was 18.946,15.735,38.990, respectively) mainly falled the field between the upper crust and fold belt, which suggested that both of their ore-forming materials were mainly from earth deep-seated. However, the REE distribution pattern of these two orebody was apparent different. The massive orebody has typical positive Eu abnormal and enriched LREE, showing the hydrothermal exhalative sedimentary characteristics. Meanwhile, The REE distribution pattern from vein orebody mainly displaying the similar specificities with Granodiorite porphyry that infer the ore-forming fluids of vein orebody might be related with the granitic magmatic fluids, besides some vein orebodies also may be from epimagma derived from the activated massive orebody transfer. There were indeed generated two mineralization in Dabaoshan Polymetallic deposit, One period was associated with volcanism hydrothermal mineralization in Devonian and the other was superposed magmatic mineralization during the stage of Yanshan.
     Based on fine systematical studies and comprehensive comparative analysis between the Dajiangping pyrite deposit and the Dabaoshan polymetallic sulfide deposit, both of them show hydrothermal sedimentary and superimposed mineralization characteristics. The former is SEDEX-type deposit associated with the hot water, the latter is VMS-type deposit associated with the volcanogenic mineralization. Structural setting, ore formation and contemporaneous fault with the magma emplacement should be as the main exploration point.
引文
1. Ozima M, podosek F A. Noble gas geochemistry. London:Cambridge University press, 1983
    2. Taylor S R, McLennan S M. The Continental Crust:Its Composition and Evolution. London Blackwell Sci Publish,1985,1-132
    3. Anbar A D and knoll A G.. Proterozoic ocean chemistry and evolution:a bioinorganic bridge? Science,2002,297:1137-1142
    4. Anbar A D. Molybdenum stable isotopes:Observations, interpretations and directions. Rev Miner Geochem,2004,55:429-454
    5. Anbar A D, Duan Y, Lyon T W, et al. A whiff of oxygen before the great oxidation event? Science,2007,397:1903-1906
    6. Anbar A D, Knab K A, Barling J et al. Precise determination of mass—dependent variations in the isotopic composition of molybdenum using MC—ICP—MS. Annual Chemistry,73: 1425-1431
    7. Anbar A D and Rouxel O. Metal stable isotopes in paleoceanography. Ann Rev Earth Planet Sci,2007,35:717-746
    8. Andrea R V, Thomas F N, Elias S, et al. Molybdenum isotopic composition of modern and carboniferous carbonates. Chemical Geology,2009,265:488-498
    9. Andrew W M, Pablo M, Anne P L, et al. Lead isotope provinces of the Central Andes inferred from ores and crustal rocks. Economic Geology,1990,85(8):1857-1880
    10. Arnol G L, Anbar A D, Barling J, et al. Molybdenum isotope evidence for widespread anoxia in mid—proterozoic oceans. Science,2004,304:87-90
    11. Barling J and Anbar A D. Molybdenum isotope fractionation during adsorption by manganese oxides. Earth Planet Sci Lett,2004,217(3-4):315-329
    12. Barling J, Arnold G L, Anbar A D. Natural mass—dependent variations in the isotopic composition of molybdenum. Earth Planet Sci Lett,2001,193:447-457
    13. Bau M. Rare earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chemical Geology,1991, 93:219-230.
    14. Bertine K K. The deposit ion of molybdenum in anoxic waters. Marine Chemistry,1972,1: 43-53
    15. Canfield D E. The early history of atmospheric oxygen:Homage to Robert M Garrels. Ann Rev Earth Planet Sci,2005,33:1-36
    16. Collier R W. Molybdenum in the northeast Pacific—ocean. Oceanography,1985,30:1351-1354
    17. Balistrieri L S, Borrok D M, Wanty R B, et al. Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(Ⅲ) oxy-hydroxide:Experimental mixing of acid rock drainage and ambient river water. Geochimica Cosmochim Acta,2008,72:311-328
    18. Berner R A, Beerling D J, Dudley R, et al. Phanerozoic atmospheric oxygen. Ann Rev Earth Planet Sci,2003,31:105-134
    19. Burnard P G, Stuart F, Turner G. C—He—Ar variations with in a dunite nodule as a function of fluid inclusion morphology. Earth Planet Sci.Lett,1994,128:243-258
    20. Burnard P G, Hu R Z, Turner G, et al. Mantle, crustal and atmosphere noble gases in Ailaoshan, Yunnan Province, China. Geochimica Cosmochimica Acta,1999,63:1595-1604
    21. Das A K, Charkraborty R, Cervera M L, et al. A review on molybdenum determination in solid geological samples. Talanta,2007,71:987-1000
    22. Douville, Bienvenu P, Charlou J L, et al. Yttrium and rate earth elements influids from various deep-sea hydrothermal system. Geochimica Cosmochimica Acta,1999,63:627-643
    23. Druschel G K, Labrenz M, Thomsen-Ebert T, et al. Geochemical modeling of Zns in biofilm: An example of ore-depositional progresses. Economic Geology,2002,97:1319-1329
    24. Edward M R, Nelson R S and Mark S G. Distribution and geochemical characteristics of metal enrichment in the New Albany Shale (Devonian-Mississippian), Indiana. Society of Economic Geologists.1990,85(8):1790-1807
    25. Emerson S R and Huested S S. Ocean anoxia and the concentrations of molybdenum and vanadium in seawater. Mar Chem,1991,34(3-4):177-196
    26. Fortin D, Ferris F G, Scott S D. Formation of Fe-silicates and Fe-oxides on bacterial surfaces in samples collected near hydrothermal vents on the Southern Explorer Ridge in the northeast pacific Ocean. American Mineralogist,1998,83:1399-1408
    27. Giggenbaeh W F. Evaluation of results from Seeond and Third IAVCEI Field Workshops on Volcanic Gases, Mt.Usu, Japan, and White Island, NewZealand. Appl Geoehem.1991,6:125-141.
    28. Hart S R. He diffusion in olivine. Earth Planet Sci Lett.1984,70:297-302
    29. Haas J R, Shock E L, Sassani D C. Rare earth elements in hydrothermal systems:Estimates of standard partial modal thermo-dynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures. Geochimica Cosmochimica Acta,1995,59: 4329-4350
    30. Helz G R, Miller C V, Charnock J M, et al. Mechanism of molybdenum removal from the sea and its concentration in black shales EXAFS evidence. Geochimica Cosmochimica Acta,60: 3631-3642
    31. Herzig P M, Petersen S, Hannincton M D. Geochemistry and sulfur isotopic composition of the TAG hydrothermal mound, Mid Atlantic Ridge,26°N. Proc ODP Sci Results,1998,158: 47-70
    32. Hutchinson R W. Precious metals in massive base-metal sulfide deposits. Geologische Rundschau,1990,79(2):241-263
    33. Jiang S Y, Zhao K D, Li L, et al. Comment on "Highly metalliferous carbonaceous shale and Early Cambrian seawater". Geology,2008,35:e158-e159
    1 Jiang S Y, Pi D H, Heubeck C, et al. Early Cambrian ocean anoxia in South China. Nature,2009, 459:E5-E6.
    34. Joseph L, Graf J. Rare Earth elements as hydrothermal tracers during the formation of massive sulfide deposits in volcanic rocks. Economic Geology.1997,72(4):527-548
    35. Labrenz M, Druschel G K, Thomsen-Ebert T, et al. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing becteria. Science,2000,290:1744-1747
    36. Lehmann B, Nagler T F, Holland H D, et al. Highly metalliferous carbonaceous shale and Early Cambrian seawater. Geology,2007,35(5):403-406
    37. Ling H F, Gao J F, Zhao K D, et al. Comment on "Molybdenum Isotope Evidence for Widespread Anoxia in Mid—Proterozoic Oceans". Science,309:1017c
    38. Lottermoser B G. Rare earth element study of exhalites within the Willyams Supergroup, Broken Hill Block, Australian. Mineral Deopsit,1989,24:92-99
    39. Kamenetsky V S, Binns R A, Gemmell J B, et al. Parentalbasaltic melts and fluids in eastern Manus back-arc basin:implications for hydrothermal mineralization. Earth Planet Sci Lett, 2001,184:685-702
    40. Kelley S, Turner G, Butterfield D, et al. The source and significance of argon isotopes in fluid inclusions from areas of mineralization. Earth Planet Sci.Lett,1986,79:303-318
    41. Mathur R, Brantley S, Anbar A D, et al. Variation of Mo isotopes from molybdenite in high-temperature hydrothermal ore deposites. Miner Deposita,2009, doi: 10.1007/s00126-009-0257-z.
    42. Malinovsky D, Rodushkin I, Baxter D C, et al. Molybdenum isotope ratio measurement on geological samples by MC—ICP—MS. International J Mass Spect,2005,245:94-107
    43. Malinovsky D, Hammarlund D, Ilyashuk B, et al. Variation in the isotopic composition of molybdenum in fresh water lake systems. Chemical Geology,2007,236:181-198
    44. Marty B, Zashu S, Ozima M.Two noble gas component in a Mid-Atlantic Ridge basalt. Nature,1983,302:238-240
    45. McManus J, Nagler T F, Siebert C, et al. Oceanic molybdenum isotope fractionation: Diagnosis and hydrothermal ridge—flank alteration. Geochemistry Geophysics Geosystems, 2002,3:202GC000356
    46. Mozley P S, Wersin P. Isotopic composition of siderite as an indicator of depositional enviroment. Geology,1992,20:817-820
    47. Murthy V R. Elemental and isotopic abundances of molybdenum in some meteorites. Geochimica Cosmochimica Acta,1963,27:1171-1178
    48. Nagler T F, Mills M M and Siebert C. Biological fractionation of Mo isotopes during N-2 fixation by Trichodesmium sp.IMS 101. Geochim.Cosmochim.Acta,2005,68(Suppl):A364
    49. Nagler T F, Siebert C, Luschen H, et al. Sedimentary Mo isotope record across the Holocene fresh—brackish water transition of the Black Sea. Chemical Geology,2005,219:283-295
    50. Neubert N, Naegler T F, Boettcher M E. Sulfidity controls molybdenum isotope fractionation into euxinic sediments:Evidence from the modern Black Sea. Geology,2008,36:775-778
    51. Ohmoto H, Skinner B J. The Kuroko and related volcanogenic massive sulfide deposit. Economic Geology,1983,5:604
    52. Pearce C R, Cohen A S, Coe A L, et al. Molybdenum isotope evidence for global ocean anoxia coupled with perturbations to the carbon cycle during the Early Jurassic. Geology, 2008,36(3):231-234
    53. Peter A, Rona. Hydrothermal mineralization at seafloor spreading centres. Earth Sci Rev, 1984,20:104
    54. Pietruszka A J and reznik A D. Identification of a matrix effect in the MC—ICP—MS due to sample purification using ion exchange resin:An isotopic case study of molybdenum. International J Mass Spect,2008,270:23-30
    55. Pietruszka A J, Wlker R J and Candela P A. Determination of mass—dependent molybdenum isotopic variations by MC-ICP-MS:An evaluation of matrix effects. Chemical Geology,2006, 225:121-136
    56. Poulson R L, Siebert C, Mcmanus J, et al. Authigenic molybdenum isotope signatures in marine sediments. Geology,2006,34:617-620
    57. Reitz A, Wille M, Nagler T F, et al. A typical Mo isotopes signatures in eastern Mediterranean sediments. Chemical Geology,2007,245:1-8
    58. Schwartzman D W. Argon degassing models of the earth. Nature Phys Sci,1973,245:20-21
    59. Siebert C, Kramers J D, Meisel T, et al. PGE, Re—Os and Mo isotope systematics in Archean and early proterozoic sedimentary systems as proxies for redox conditions of the early Earth. Geochim Cosmochim Acta,2005,69(7):1787-1801
    60. Siebert C, McMannus J, Bice A, et al. Molybdenum isotope signatures in continental margin marine sediments. Earth Planet Sci Lett,2006,241:723-733
    61. Siebert C, Nagler T F and Kramers J D. Determination of molybdenum isotope fractionation by double-spike multi-collector inductively couple plasma mass spectrometry. Geochem.Geophys.Geosyst,2001,2:200GC000124
    62. Siebert C, Nagler T F, von Blanckenburg F, et al. Molybdenum isotope records as a potential new proxy for paleoceanography. Earth Planet Sci Lett,2003,211:159-171
    63. Simmons S F, Sawkins F J, Schulutter D J. Mantle—derived helium in two Peruvian hydrothermal ore deposits. Nature,1987,329:429-432
    64. Shanks W. Stable isotope studies of vent fluids and chimney minerals, south Juan de Fuca Ridge-Sodium metasomatism and seawater sulfate reduction. J Geophys Res C:Oceans,1987, 11387
    65. Stacey J S, Kramers J D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett,1975,26:207-221
    66. Stuart F M, Burnard P, Taylor R P, et al. Resolving mantle and crustal contributions to ancient hydrothermal fluid:He-Ar isotopes in fluid inclusions from Dae Hwa W-Mo mineralization, South Korea. Geochim Cosmochim Acta,1995,59:4663-4673
    67. Sverjersky D A. Europium equilibrium in aqueous solution. Earth Planet Sci Lett,1984,67: 70-78
    68. Timothy J, Barrett, Lan J, et al. Rare Earth element geochemistry of massive sulfides-sulfates and gossans on the Southern Explorer Ridge. Geology,1990,18:583-586
    69. Tossell J A. Calculating the partitioning of the isotopes of Mo between oxidic and sulfidic species in aqueous solution. Geochim.Cosmochim.Acta,2005,69:2981-2993
    70. Tribovillard N, Riboulleau A, Lyons T, et al. Enhanced trapping of molybdenum by sulfurized marine organic matter of marine origin in Mesozoic limestones and shales. Chemical Geology,2004,213(4):385-401
    71. Turner G, Burgess R, Bannon M. Volatile-rich mantle fluids inferred from inclusions in diamond and mantle xenoliths. Nature,1990,344:635-655
    72. Turner G, Stuart F. Helium heat ratios and deposition temperatures of sulfides from the ocean floor. Nature,1992,357:581-583
    73. Urabe T, Mamumo K. A new model for Kuroko-type deposits of Japan. Episode,1991,14(3): 246-251
    74. Wen H J, Zhang Y X, Fan H F, et al. Mo isotopes in the lower Cambrian formation of southern china and its implications on paleo-ocean environment. Chinese Science Bulletin, 2009, doi:10.1007/s11434-009-0446-2
    75. Wen H J, Carignan J, Cloquet C, et al. Isotopic delta values of molybdenum standard reference and prepared solutions measured by MC-ICP-MS:Proposition for delta zero and secondary references. J Anal Atom Spect,2010,25:716-721
    76. Wasylenki L E, Rolfe B A, Weeks C L, et al. Experimental investigation of the effects of temperature and ionic strength on Mo isotope fractionation during adsorption to manganese oxides. Geochim.Cosmochim.Acta,2008,72:5997-6005
    77. Wieser M E and Laeter J R. Thermal ionization mass spectrometry of molybdenum isotopes. International J Mass Spect,2000,197:253-261
    78. Wieser M E and Laeter J R. A preliminary study of isotope fractionation in molybdenites. International J Mass Spect,2003,225:177-183
    79. Wieser M E, Laeter J R and Varner M D. Isotope fractionation studies of molybdenum. International J Mass Spect,2007,265:40-48
    80. Wille M, kramers J D, Nagler T F, et al. Evidence for a gradual rise of oxygen between 2.6-2.5Ga from Mo isotopes and Re-PGE signature in shales. Geochim.Cosmochim.Acta, 2007,71:2417-2435
    81. Wilde P, Lyons T W and Quinby—Hunt M S. Organic carbon proxies in black shales: molybdenum. Chemical Geology,2004,206(3-4):167-176
    82. Winckler G, Aeschbach—Hertig W, Kipfer R, et al. Constraints on origin and evolution of Red Sea brines from helium and argon isotopes. Earth Planet Sci Lett,2001,184:671-683
    83. Yang K H, Scott S D. Possible contribution of metal rich magmatic fluid to a seafloor hydrothermal systerm. Nature,1996,383:420-423
    84. Zartman R E, Doe B R. Plumbolectonics-the model. Tectonophysics,1981,75:135-162
    85. Zhu B Q. The mapping of geochemical provinces in China based on Pb isotopes. J Geochem Expl,1995,55:171-181
    86. Zhu X K, O'Nions R K, Guo Y L, et al. Secular variation of Iron isotopes in North Atlantic Deep Water. Science.2000,doi:10.1126/science.287,5460.2000
    87. Zhu X K, O'Nions R K, Guo Y L, et al. Determination of natural Cu-isotope variation by plasma-source mass spectrometry:implications for use as geochemical tracers. Chemical Geology.2000, doi:10.1016/s0009-254(99)00076-5
    88. Zhu X K, Guo Y, Williams R J, et al. Mass fractionation processes of transition metal isotopes. Earth Planet Sci Lett.2002, doi:10.1016/S0012-821X(02)00615-5
    89.陈学明.粤北层控矿床的构浩演化、成矿模式和找矿预测.北京:地质出版.1992.
    90.陈毓川.中国矿床成矿模式.北京:地质出版.1993
    91.陈毓川.中国主要成矿区带矿产资料远景评价.北京:地质出版.1999
    92.广东省地质局705队.大宝山多金属矿床地质勘探总结报告.1961
    93.广‘东省地质矿产局.广东省区域地质志.地质出版社.1988
    94.刘垢群,杨世义等.粤北大宝山矿床成矿地质特征及其成因讨论南岭地质矿产文集第二辑.北京:地质出版社,1986,141-146
    95.卢炳.中国硫铁矿地质.北京:地质出版社,1984,59—209
    96.丘元禧,陈焕疆.云开大山及其邻区地质构造论文集.地质出版社,1993
    97.汤吉方,刘家齐,傅太安等.粤北大宝山及其外围地区多金属矿床成矿条件、构造控岩控矿规律及隐伏矿床预测.南岭地质矿产文集第三辑.北京地质出版社,1992,1—67
    98.涂光炽等.中国层控矿床地球化学,第2卷.北京:科学出版社,1987.134—156
    99.涂光炽等.中国层控矿床地球化学,第3卷.北京:科学出版社,1988.131-169
    100.涂光炽.中国超大型矿床(Ⅰ).北京:科学出版社,2000:158—172
    101.翟裕生.区域成矿学.北京:地质出版社,1999
    102.郑永飞,陈江峰.稳定同位素地球化学.北京:科学出版社.2000
    103.安伟,曹志敏,郑建斌等.古代与现代火山成因块状硫化物矿床研究进展.地球科学进展,2003,18(5):773—782
    104.蔡锦辉,刘家齐.粤北大宝山多金属矿床的矿物包裹体特征及应用.矿物岩石,1993,13(1):33—40.
    105.蔡锦辉,刘家齐.粤北大宝山多金属矿区岩浆岩的成岩时代.广东地质,1994,8(2):45—52
    106.陈多幅,马绍刚,董维权等.广东大降坪黄铁矿矿床的铅、钕同位素及金属成矿物质来源探讨.矿床地质,1998,17(3):215—222
    107.陈多福,陈光谦,潘晶铭等.广东云浮大降坪超大型黄铁矿矿床的热水沉积特征.地球化学,1998,27(1):12-19
    108.陈好寿.粤北大宝山层状多金属矿床的铅、硫、氧同位素地球化学研究.宜昌地质矿产研究所所刊,1985,10:111—124
    109.陈好寿.我国层控多金属矿床的铅硫同位素研究.矿床地质,1983,2(3):79—85
    110.陈诸麒,王鹤年,李红艳等.粤西大降坪硫铁矿层中藻类化石的发现及其地质意义.南京大学学报(地球科学),1992,4(1):82—85
    111.陈祥军,周眉成,曲力群.微生物在锰的氧化富集过程中的作用—以广西湖润锰矿为例.地质与勘探,2003,39(1):23—26
    112.邓军,陈学明.粤北盆地流体系统及其矿化特征.地学前缘,2000,7(3): 95—102
    113.冯雄汉,谭文峰,刘凡.热液条件下钙锰矿的合成及其影响因素.地球科学,2005,30(3):347-353
    114.高剑峰,陆建军,赖鸣远等.岩石样品中微量元素的高分辨率等离子质谱分析.南京大学学报(自然科学),2003,39:844~850
    115.高剑峰,凌洪飞,赵葵东等.Mo含量和Mo同位素对古海洋氧化还原环境演化的指示作用.地球学报,2005,26(增刊):203—204
    116.葛朝华,韩发.大宝山铁—多金属矿床的海相火山热液沉积成因特征.矿床地质,1986,5(1):1—12
    117.顾连兴,徐克勤.论长江中下游中石碳世海底块状硫化物矿床.地质学报,1986,60(2):176—187
    118.顾连兴,胡文喧等.再论大陆地壳断裂拗陷带中的华南型块状硫化物矿床.高校地质学报,2003,9(4):592—603
    119.华仁民,陈培荣,张文兰,等.南岭与中生代花岗岩类有关的成矿作用及其大地构造背景.高校地质学报,2005,11(3):291304
    120.侯增谦,浦边撤郎.古代与现代海底黑矿型块状硫化物矿床矿石地球化学比较研究.地球化学,1996,25(3):228—241
    121.侯增谦,李荫清,张绮玲等.海底热水成矿系统中的流体端员与混合过程:来自白银厂和呷村VMS矿床的流体包裹体证据.岩石学报,2003,19(2):221—234
    122.胡凯.华南若干重要含金建造及其金矿床的有机地球化学.1992,博十论文
    123.胡凯,刘英俊,王鹤年等.华南碳质岩系层控金矿的有机地球化学特征和成因.中国科学(B辑),1995,25(10):1099—1107
    124.胡凯,刘英俊,贾容芬等.低温热液条件下有机质富集金机理的实验研究.中国科学(B辑),1993,23(8):880-888
    125.胡凯,于辰声,马东升等.粤东北嵩溪银—锑矿有机质中银的异常富集及其矿床勘探意义.地质科学,2001,36(1):83—90
    126.胡瑞忠.成矿流体氦、氩同位素地球化学.矿物岩石地球化学通报,1997,16(2):120—124
    127.胡瑞忠,毕献武,Turner G等.马厂箐铜矿床黄铁矿流体包裹体He—Ar同位素体系.中国科学D辑,1997,27(6):503—508
    128.胡瑞忠,钟宏,叶造军等.金顶超大型铅锌矿床氦、氩同位素地球化学.中国科学(D辑),1998,28(3):208—213
    129.胡瑞忠,毕献武,Turner G等.哀牢山金矿带金成矿流体He和Ar同位素地球化学.中国科学(D辑),1999,29(4):321—330
    130.黄会清,李献华,李武显等.南岭大东山花岗岩的形成时代与成因——SHRIMP锆石U-Pb年龄、元素和Sr-Nd-Hf同位素地球化学.高校地质学报,2008,14(3):317—333
    131.黄耀丽,储茅东.广东地质构造特征及其与地貌发育的关系.云南地理环境研究,1995,7(2):85—89
    132.孟良义.中国东部侵入型块状硫化物矿床.中国科学(B辑),1994,24(1):76-80
    133.蒋少涌.过渡族金属元素同位素分析方法及地质应用.地学前缘,2003,10(2):268—278
    134.蒋少涌,凌洪飞,赵葵东等.华南寒武纪早期牛蹄塘组黑色岩系中Ni-Mo多金属硫化物矿层的Mo同位素组成讨论.岩石矿物学杂志,2008,,27:341-345
    135.赖应籖.广东泥盆系的含矿性.地质论评,1981,第27卷第1期
    136.赖应籖.粤北泥盆系中主要金属矿床的区域控矿因素和成矿作用.广东地质,1986,1(1):93—105
    137.兰井志,粤北地区典型矿床矿物表型特征研究.北京:中国地质大学硕士学位论文,2002,1—10
    138.李厚民,沈远超,毛景文等.石英、黄铁矿及其包裹体的稀土元素特征-以胶东焦家式金矿为例.岩石学报,2003,19(2):267-274
    139.李江海,牛向龙,冯军.海底黑烟囱的识别及其科学意义.地球科学进展,2004,19(1):17—25
    140.李贶,胡凯,蒋少涌等.粤西大降坪黄铁矿矿床He-Ar同位素和稀土元素组成及成矿物质来源探讨.南京大学学报(自然科学),2006,42(6):611—620
    141.李贶.粤西大降坪黄铁矿元素地球化学特征和成矿机制探讨.南京:南京大学硕士学位论文,2005,1—46
    142.李献华,胡瑞忠,饶冰等.粤北白至纪基性岩脉的年代学和地球化学.地球化学,1997,26(3):14—28
    143.李献华,周汉文,刘颖等.粤西阳春中生代钾玄质侵入岩及其构造意义:Ⅰ.岩石学和同位素地质年代学.地球化学,2000,29(6):513—520
    144.凌洪飞,沈渭洲,邓平等.粤北帽峰花岗岩体地球化学特征及其成因研究.岩石学报,2005,21(3):677—657
    145.刘姤群,杨世义,张秀兰等.粤北大宝山多金属矿床成因的初步探讨.地质学报,1985,1:47—59
    146.刘红松.大宝山多金属矿区和外围磁异常特征及找矿意义.广东地质,1993,8(1):85—93
    147.刘孝善,周顺之.广东大宝山层控多金属矿床中首次发现硫化物化石及其地质意义.南京大学学报(自然科学版),1984,(1):139—143
    148.刘孝善,周顺之.广东大宝山中泥盆世火山岩与层状菱铁矿、多金属矿床成矿机制分析.南京大学学报(自然科学版),1985,21(2)::348—360
    149.卢家烂,傅家漠.沉积改造矿床形成中的若干有机地球化学问题.沉积学报,1991,171—177
    150.马铁球,柏道远,邝军等.南岭大东山岩体北部40Ar/39Ar:定年及地球化学特征.地球化学,2006,35(4):346—358
    151.毛光周,华仁民,高剑峰等.江西金山含金黄铁矿的稀土元素赋存状态研究.矿物学报,2006,26(4):409—418
    152.毛景文,谢桂青,李晓峰等.华南地区中生代大规模成矿作用与岩石圈多阶段伸展.地学前缘,2004,11(1):45—55
    153.潘家永,张乾,张宝贵等.粤西大降坪硫铁矿床地球化学特征及成因探讨.矿床地质.1994,13(3):231—241
    154.裴荣富,邱小平.成矿作用爆发异常及巨量金属堆积.矿床地质,1999,18(4):333—340
    155.裴太昌.粤北大宝山矿区多金属矿床地质研究综述.广东地质,1992,7(2):83—92
    156.裴太昌,钟树荣等.粤北大宝山—雪山嶂地区成矿系列及成矿模式.地质找矿论丛,1993,9(3):48—58
    157.齐永安,胡斌等.粤北晚泥盆世天子岭组遗迹组构及其环境解释.煤田地质与勘探,2005,33(2):1114
    158.邱世强.关于大宝山层状多金属矿床成因的初步探讨.地质论评,1981,27(4):334—340
    159.宋世明.粤北大宝山多金属成矿成矿流体的He-Ar-Pb-S同位素示踪.地质找矿论丛,2007,22(2):87—92
    160.孙小明,王敏等.华南下寒武统黑色岩系铂多金属矿中黄铁矿流体包裹体的He-Ar同位素体系.高校地质学报,2003,9(4):661—666
    161.孙晓明,D.Norman,等.粤中长坑金银矿成矿流体N2-Ar-He示踪体系及来源.中国科学(D辑)1999,29(3):240—246
    162.覃慕陶,刘师先等.广东—海南成矿带成矿系列地质特征及其演化规律.地球化学,1998,27(4):391—398
    163.涂光炽.超大型矿床的探寻与研究的若干进展.地学前缘,1994,1(3-4):45—53
    164.王宝德,牛树银等.冀北地区金矿He、Ar、Pb同位素组成及其成矿物质来源.地球化学,2003,32(2):181—187
    165.王鹤年,李红艳等.广东大降坪块状硫化物矿床形成时代——硅质岩Rb—Sr同位素研究. 科学通报,1996,41(21):1960—1962
    166.王联魁,覃慕陶,刘师先等.吴川一四会断裂带铜金矿控矿条件和成矿预测.北京:地质出版社.2001.
    167.王光杰,藤吉文等.中国华南大陆及陆缘地带的大地构造基本格局.地球物理进展,2000,15(3):25—44
    168.王先彬,陈践发,徐胜等.地震区温泉气体的地球化学特征.中国科学(B),1992,8:849-854.
    169.王玉岷.曲江县大宝山铁及多金属矿床发现史.广东地质,1994,9(4):95—99
    170.王登红.块状硫化物矿床的地球化学找矿标志.地质科技情报,1994,13(2):81—86
    171.王登红.新疆阿舍勒火山岩型块状硫化物铜矿硫、铅同位素地球化学.地球化学,1996,25(6)::582—590
    172.王磊.粤北大宝山钼多金属矿床成矿模式与找矿前景研究.2010.博十论文
    173.巫建华,张树明等.赣南一粤北版石群及其地质时代.地层学杂,1999,23(3): 226-333
    174.吴茂炳,王先彬等.辽宁宽甸新生代火山岩和地幔包体He—Ar同位素组成.地球化学,2003,32(5):402—405
    175.吴南平,蒋少涌等.云南兰坪—思茅盆地脉状铜矿床铅、硫同位素地球化学与成矿物质来源研究.岩石学报,2003,19(4):800—807
    176.徐克勤,朱金初.我国东南部几个断裂拗陷带中沉积(或火山沉积)一热液叠加类铁铜矿床成因的探讨.福建地质(科技情报),1978,4:1—68
    177.徐士进.女山和英峰岭地幔巨晶矿物中He和Ar同位素特征及其地质意义.科学通报,2003,48(10):1087—1091
    178.徐永昌,沈平,孙明良等,我国东部天然气中非烃及稀有气体的地球化学。中国科学(D辑),1990,20(6):
    179.徐永吕,沈平,陶明信等,中国含汕气盆地天然气中氦同位素分布。科学通报,1994,39(16):1505一1508。
    180.阎葆瑞,张胜,胡大春.太平洋中部微生物与多金属结核的生长关系.地质学报,1992,66(2):122—133
    181.杨斌,彭省临,董军等.浅析热液对流成矿系统.矿产与地质,2004,18(12):94—99
    182.杨荣勇,曹建劲等.广东云浮硫铁矿地质特征及成因.中山大学学报(自然科学版),1997,36(4):79—83
    183.杨森楠.华南裂陷系的建造特征和构造演化.地球科学—中国地质大学学报,1989,14(1):30—37
    184.杨振强.大宝山块状硫化物矿床成因:泥盆纪海底热事件.华南地质与矿产,1987,(1):7—17
    185.曾晓东,吴延之.广东云浮硫铁矿矿床多因复成富集机制.大地构造和成矿学,1998,22(3):242—251
    186.曾志刚,秦蕴珊等.冲绳海槽Jade热液区块状硫化物中流体包裹体的氦、氖、氩同位素组成.海洋学报,2003,25(4):36—42
    187.曾志刚,秦蕴姗等.大西洋中脊TAG热液活动区海底热液沉积物的硫同位素组成及其地质意义,海洋与湖沼,2000,31(5):518—529
    188.曾志刚,翟世奎等.现代海底热液沉积物中硫化物集合体和其单矿物之间的硫同位素关系及其意义.海洋科学(研究报告),2000,24(5):31—33
    189.翟伟,孙晓明,邬云山等.粤北梅子窝钨矿区隐伏花岗闪长岩锆石 SHRIMP U-Pb年龄与~(40)Ar/-(39)Ar成矿年龄及其地质意义.高校地质学报,2010,16(2):177—185
    190.翟裕生,邓军.同生断层对层控超大型矿床的控制.中国科学(D辑),1998,28(3):214—219
    191.张宝贵,张乾,潘家永等.粤西大降坪超大型黄铁矿床微量元素特征及其成因意义.地质与勘探,1994,30(334):66—71
    192.张科.西藏勒青拉铅锌矿床稀土元素地球化学特征.地质与勘探.2006,42(6):26-31
    193.张乾,张宝贵,潘家永等.粤西大降坪黄铁矿床热水沉积硅质岩特征及稀土模式.科学通报,1992,37(17):1588—1592
    194.张乾,张宝贵,曹一波等.粤西大降坪黄铁矿床硫、铅同位素组成初步研究.地质学报,1993,67(3):232—242
    195.张乾,潘家永,邵树勋.中国某些金属矿床矿石铅来源的铅同位素诠释.地球化学,2000,29(3):231—238
    196.张羽旭,温汉捷,樊海峰.地质样品Mo同位素测试前处理化学方法研究,分析化学,2009,37:356—363
    197.赵葵东,蒋少涌,肖红权,等.大厂锡一多金属矿床成矿流体来源的He同位素证据.科学通报,2002,47(8):632—635
    198.周炼,周红兵,李茉等.扬子克拉通古大陆边缘Mo同位素特征及对有机埋藏量的指示意义.地球科学,2007,32(6):759—766
    199.周炼,高山,Chris H K,等.扬子克拉通北缘显生宙碎屑沉积岩Mo同位素初步研究及其地质意义.科学通报,2008,53(26):2630—2637
    200.朱大岗,孟宪刚.粤西地区海西—印支期推覆构造初步研究.地质力学学报,1999,5(2):51—58
    201.朱大岗,孟宪刚等.粤西推覆构造系统对金银及多金属矿床的控制.地质力学学报,2001,7(1):22—32
    202.庄明正.大宝山多金属矿田类型及成矿作用探讨.地质与勘探,1983,18(3):9—16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700