用户名: 密码: 验证码:
辽东地区硼矿矿产资源评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辽东是我国重要的硼矿产地,硼矿床赋存于古元古界变质岩系中,在区内自西向东沿营口-凤城-宽甸一线呈带状分布。
     该区域的硼矿赋存于辽吉裂谷内,区域地质构造复杂,变质变形作用十分明显,成矿地质条件优越,是我国硼矿的主要分布地区,也是硼矿找矿的有利地段,硼矿是该区域的优势矿种。
     本文在工作区利用综合信息矿产预测原理系统建立地质、物探、化探综合解译空间信息库和图库的基础上,建立了综合信息找矿模型及预测模型,并在计算机上全方位及全过程地完成硼床密集区的靶区定位和定量评价,取得以下应用研究成果:
     (1)本文通过对辽东地区硼矿的成矿地质背景、硼矿蕴矿层特征、典型矿床特征和辽东硼矿矿床特征等进行分析研究,结合近年来辽东地区硼矿矿床成因的研究成果,认为辽东地区的硼矿属于热水喷流沉积变质型矿床
     (2)通过分析工作区内37种地球化学元素的统计参数特征,结果表明,在工作区内,硼元素具有强浓集、强富集和强离散的特征,反映出硼元素在工作区内的高背景特征和较好的成矿物质基础;通过使用多种多元统计方法分析硼元素和其他36种元素的关系,结果表明:该区硼元素主要与Co、F、Sn、W、Y、Fe_2O_3、MgO关系密切;以B元素为主,利用叠置分析的方法研究8种与成矿关系密切元素的空间关系,将其分为四种地球化学异常组合:分别为硼-镁型组合元素异常、硼-镁-铁型组合元素异常、硼复合型和简单型组合元素异常;其中B-MgO型组合异常和B-MgO-Fe_2O_3型组合异常与硼矿化具有一定的对应关系。
     (3)通过分析工作区内岩(矿)石的物性资料,对工作区内岩石地层的物性特征形成基本认识,以此为基础,结合物探资料的应用目的,确定工作区内物探资料的处理方法及解释原则,并对解释的结果进行了论述。
     (4)在典型矿床及区域成矿规律研究的基础上,建立了辽东地区的硼矿综合信息找矿模型,使用地质单元法圈定统计单元75个,其中已知有矿单元19个,无矿单元56个,并购置、转换和提取变量。
     (5)通过使用特征分析法、聚类分析法和数量化Ⅳ等3种方法综合分析,将辽东地区的硼矿统计单元的成矿可能性划分为A、B、C、D四级,其中D级统计单元的成矿可能性最小,予以删除。最终,获得A级预测区5处,B级预测区20处。
     (6)使用逻辑信息法建立辽东地区硼矿资源的定量预测模型,经19个有矿单元检验,准确率达92.3%,模型准确可靠,通过使用逻辑信息法进行资源量预测,共计算新增资源量3242.69万吨。
     (7)含矿地质体体积参数估算法是全国矿产资源潜力评价项目于2010年确定使用的一种定量预测的新方法,在辽东地区使用含矿地质体体积参数估算法进行资源量的估算,共获得新增资源量3345.96万吨。
     (8)本文首次应用地球化学块体理论解决非金属的矿产资源评价问题,并对地球化学块体资源评价法做如下改进:通过各级地球化学块体与已知矿化进行对比分析确定了远景区的划分方法;通过引入面硼量密度、异常强度、块体结构、远景区面积等概念结合谱系图实现了远景区的筛选和定位预测;通过引入成矿概率(富集因素),使得基于物质基础的地球化学块体法的定量预测更符合实际。最终使地球化学块体资源评价法形成了集区域总量预测、统计单元划分、单元的定位预测和单元的定量预测于一体的预测体系。
     利用地球化学块体理论研究辽东地区大约2万km~2硼元素1:20万图幅化探数据,圈定硼地球化学块体3处,地球化学异常2处,共算得工作区内有4145.93万吨的硼矿总量资源潜力;通过对工作区内硼地球化学块体特征及硼矿产资源特征进行了系统研究,确定5级地球化学子块体作为评价远景区;并提出远景区的含矿性与块体的面积、面金属密度、异常强度及块体套合层次密切相关,结合地球化学块体谱系树对远景区进行筛选,共划分9个硼有利的成矿远景区,其中A级远景区4个,分别为Ⅲ111-2、Ⅲ112-1、Ⅳ111-1和Ⅴ111-1号远景区;在充分研究地质背景因素的基础上,认为地层、构造等富集因素与成矿物质基础是矿床形成的两个必要条件,因此,在资源量预测的工作中,还应考虑富集因素的影响,据此建立了找矿概率-地球化学块体法,并将其应用于辽东裂谷硼资源量的定量评价中,经找矿概率-地球化学块体法对15个预测远景区共求得新增资源量2738.17万吨。
     (9)结合多种定量评价方法分析,各种方法预测的资源量结果相差不大,从另一方面也说明了各个定量预测方法的有效性,经综合分析,可以认为辽东地区的资源潜力规模为3345.96万吨。结果表明,辽东地区硼矿资源潜力较大并符合客观实际。
     (10)综合定位预测和定量预测成果,形成辽东地区的勘查部署分级,共获得Ⅰ+级远景区3处,Ⅰ级远景区8处,为未来的硼矿找矿工作指明了方向。
The eastern Liaoning provinces constitute an important borate deposits resource area,in which borate deposits are distributed in Paleoproterozoic strata as a zone from west Yingkou to east Fengcheng,Kuandian.
     Boron occurs of the region within in the Liaoning-Jilin rift,geological structure in the area is complex,the deterioration distortion function is obvious, the geological condition of mineralizing is superior,Boron in China is mainly distributed in the region, the region is looking for favorable areas for boron ,besides, the borate deposits is the superiority ore to plant.
     Based on the establishment of comprehensive interpretation spatial database and the map base of geology,physical exploration, geochemical exploration by utilizing the prediction system of the comprehensive information mineral resources in the study zone, a comprehensive information prospecting model and a forecasting model of prospecting comprehensive were established. The location and quantitative assessment was carried out in the target region of borate mineral resources concentration region with computers. The following is the Production of the applied research:
     (1)By studying geological background of boron,ore-bearing strata characteristics of boron,typical deposit characteristics of boron,deposit characteristics of boron in the Liaodong area.Combining the latest research results of boron ore genesis in the Liaodong area. That the boron is metamorphosed sedimentary exhalative deposits.
     (2) By analyzing the characteristics statistical parameters of 37 geochemical elements in the work area,the results show that,characteristics of boron is strong concentration, strong accumulation and strong discrete,boron reflected with high background characteristics and better basis for mineralization in the work area;By using multivariate statistical methods, analysis of the relationship between boron and other elements,the results show that,Boron is closely related with the Co、F、Sn、W、Y、Fe_2O_3、MgO in the work area;The B element as the main element, using overlay analysis method to study spatial relationships of seven elements and B elements,they were divided into four geochemical composition, respectively:the element composite anomaly of B-MgO;the element composite anomaly of B-MgO-Fe_2O_3:the simple element composite anomaly;the complex element composite anomaly;The element composite anomaly of B-MgO and the element composite anomaly of B-MgO-Fe_2O_3 has certain relationship with boron mineralization.
     (3)By analyzing the rock (ore) physical properties data in the work area,understand the physical properties of rock and formation. Combined with the application purpose of geophysical data,determine the principles of interpretation and the treatment methods of geophysical data in the work area,And discusses the interpretation of the results.
     (4)In typical deposit of research and regional metallogenic regularity based on,Established the prospecting model of integrated information of boron in the Liaodong area,Use geological unit method to draw statistical unit 75. In these units, 19 units containing minerals, 56 unit is not mineral. And the acquisition, conversion and extraction variables.
     (5)Using the characteristic analysis, the quantification theory IV and the Q cluster analysis to analyze the mineralization probability of statistical unit,them into A, B, C, D four grades. D-level statistical probability is the smallest unit of mineralization, and to discard it. Finally, we get A-level statistical unit 5, B-level statistics unit 20.
     (6)Using the method of logical information, establishment the quantitative prediction model of boron resources in eastern Liaoning, Detection of the 19 test units using this model, Accuracy rate was 92.3%, this shows that the model is reliable. By using the method of logical information forecasting resources, The result is the amount of 32,426,900 tons of additional resources in the Liaodong area.
     (7)In the next section the author use the Volume method of estimating parameters of ore-bearing geological to set up the quantitative prediction model. finally using the method calculate the amount of resources 33,459,600 tons. This method is the potential for mineral resources assessment project in 2010 to determine the use of a quantitative prediction of the new method.
     (8) This is the first application of geochemical block theory to solve the problem of non-metallic mineral resource estimation, and improve the evaluation of mineral resources based on geochemical block. Through the various geochemical blocks were compared with the known mineralization to determine the partition method of prospective areas; By introducing the surface boron density, abnormal strength, block structure, the vision of the concepts of area, with pedigree chart, Screening of the prospect area and location prediction; By introducing the probability of mineralization (enrichment factor), so based on the material basis of geochemical blocks more scientific method of quantitative prediction. Ultimately the evaluation of mineral resources based on geochemical block has a total area forecasting, statistical unit, the positioning unit forecast and unit quantitative predictions.
     Through researching 1:200000 map sheet geochemical datas on B in about 20000 km~2 region of East of Liaoning by using geochemical Block Theory, we delineated 3 geochemical blocks and 2 geochemical anomalies. Calculate the amount of 41,459,300 tons of resources.Through systematically searching the characteristic s of geochemical blocks in study area and the characteristic of boron deposit, we determined 5-grade geochemical sub-volume as prospective area, and we thought the ore potentiality of prospective area were relative with the block area,the surface metal density,the anomaly intensity and the overlap level of block. Divided favorable metallogenic perspective areas 9. We divided 4 A level prospective areas, includingⅢ111-2、Ⅲ112-1、Ⅳ111-1 andⅤ111-1.On the foundation of research geological background, we think the enrichment factors, such as formation and structure, and the ore-forming material base are the two necessary conditions. So in the course of calculation to resource extent, we should think about the influences of them. Finally, we set up the ore prospecting probability-geochemical block ore prospecting method, and use it to quantitatively assess the amount of B ore in Liaodong rift. Calculate the amount of 27,381,700 tons of resources(vision district 15, minus the amount of proven resources).
     (9)Comparing prediction results of quantitative forecasting methods, they have little difference. This shows the validity of the quantitative prediction. Comprehensive analysis, that the scale of resource potential is 33,459,600 tons in the Liaodong area. The results show that the large resource potential of boron in eastern Liaoning and With objective reality.
     (10)Comprehensive analysis of location prediction results and results of quantitative prediction, formed a survey deployment classification in the Liaodong area.Ⅰ+ level were obtained three prospective areas,Ⅰlevel prospect area 8. It pointed out the future direction of prospecting work of boron.
引文
[1]AgterbergF.P.Combiningindicatorpatternsinweightsofevidenceforresourceevaluation[J].NonrenewableResources.1992:1.
    [2]AgterbergF.P.BonhamCarterG.F.Statisticalpatternintegrationformineralexploration,inG.GaalandD.F.Merriam(eds.)-ComputerApplicationsforMineralExplorationinResourceExploration[M].Oxford:PergamonPress.1990.
    [3]BrinckJ.W.Criticalparametersfortheproduction,depletionandsubstitutionofmineralresources-ahorizonbeyondthelimitstogrowth.Ceol.enMijnb.1976,V55(3–4):185–194.
    [4]JohnFSlack,NeilHerrimau,RobertGBarnes,IanRPlimer.Stratiformtourmalinitesinmetamorphicterranesandtheirgeologicsignificance.Geology,1984,12:713-716.
    [5]LesleyWyborn,etc.UsingGISformineralpotentialevaluationinareaswithfewknownmineraloccurrences[J].SecondNationalforumonGISintheGeosciences,1995:29-31.
    [6]LiPeilan,YuXingzhen.Locatingmechanismstudyofseveraltypesofgolddeposits[J].JournalofCentralSouthUniversityofTechnology.1996,3(1):54-57
    [7]WilliamsTM,GunnAG.ApplicationofenzymeleachsoilanalysisforepithermalgoldexplorationintheAndesofEcuador[J].AplliedGeochemistry,2002(17):367-385.
    [8] DeVerleHarris著,文世澂译.矿产资源评价-过去,现在的看法和对未来趋势的展望[C].矿产资源评价和矿业经济分析方法与实践,1997:9-19.
    [9] DonaldASinger著,张莓译,未发现矿产资源三阶段定量评价的基本原理[C].矿产资源评价与矿业经济分析方法与实践,1997:12-22.
    [10]WilliamRD.罗正华,刘铭铨译校.板块作用与沉积作用[M]北京:地质出版社,1982:54-56.
    [11]白瑾,戴凤岩.中国早前寒武纪的地壳演化[J].地球学报,1994,3-4:73-87.
    [12]白瑾,黄学光,戴凤岩,等.中国前寒武纪地壳演化[M].北京:地质出版社,1994:1-229.
    [13]白瑾.华北陆台北缘前寒武纪地质及铅锌成矿作用[M].北京:地质出版社,1993:1-123.
    [14]曹洪亮,李洋.大石桥市后仙峪硼矿区硼矿床特征[J].矿床地质,2008,27(增):76-77.
    [15]曹瑜,胡光道,杨志峰.GIS环境下地质变量自动提取与地质异常的圈定[J].计算机工程与应用,2003(14):81-85.
    [16]陈荣度.辽东裂谷的地质构造演化[J].中国区域地质,1990,9(4):306-315.
    [17]陈荣度.一个早元古代裂谷盆地-辽东裂谷[J].辽宁地质,1984(2):125-133.
    [18]陈毓川,裴荣富,宋天锐.中国矿床成矿系列初论[M].北京:地质出版社,1998.
    [19]程裕淇,陈毓川,等.再论矿床的成矿系列问题-兼论中生代某些矿床的成矿系列[J].地质论评,1983,(29)2:127-141.
    [20]迟清华.岩石化学元素丰度在地球化学块体研究中的意义[J].物探与化探,2003,27(6):428?430.
    [21]董文泉,周光亚.数量化理论及其应用[M].长春:吉林人民出版社,1979.
    [22]冯本智,等.中国北方超大型矿床模型研究[M].地矿部“八五”重要基础地质研究项目成果报告,1995
    [23]冯本智,等.克拉通内裂谷海槽中以沉积为容矿岩石的硼矿床模式.见:裴荣富主编.中国矿床模式[M].北京:地质出版社,1995:83-85.
    [24]冯本智,卢静文,邹日,等.中国辽吉地区早元古代大型—超大型硼矿床的形成条件[J].长春科技大学学报,1998,28(1).
    [25]冯本智,邹日.辽宁营口后仙峪硼矿床特征及成因[J].地学前缘,1994,1(1):235-237.
    [26]胡惠民,等.大比例尺成矿预测方法[M].北京:地质出版社,1995:4-7.
    [27]方继萱.试论地球化学场的研究方法[J].西北地质,1999,32(1):28-34.
    [28]郭万超,陈学华.峪耳崖金矿床元素地球化学地质统计分析[J].地质找矿论从,2002,17(1):63-72.
    [29]何厚强.论区域地球化学场的结构性及其在异常评价中的意义[J].岩土工程界,1997,6(增):48-51.
    [30]贺高品,叶慧文.辽东-吉南地区早元古代变质地体的组成及主要特征[J].长春科技大学学报,1998,28(2):121-134.
    [31]侯跃武,王生志.高精度磁法在找硼矿上的尝试-以牛皮闸硼矿为例[J].化工矿产地质,2005,27(3):185-188.
    [32]黄太岭.胶莱盆地地球化学参数特征及赋金层位[J].物探与化探.2000,24(5):363-372.
    [33]黄薰德,吴郁彦,等.地球化学找矿[M].北京:地质出版社,1989:130-136.
    [34]纪宏金.地球化学数据的统计分析[M].长春地质学院.1993:195-294.
    [35]季克俭,王立本.热源研究的重要进展和“三源”交代热液成矿学说[J].地学前缘,1994(12).
    [36]姜春潮.辽吉东部前寒武纪地质[M].沈阳:辽宁科学技术出版社,1987:1-300.
    [37]荆友广,刘来成.辽宁宽甸大西岔乡庙沟硼矿的成矿规律及对该地区找矿的指导意义[J].化工矿产地质,2005,27(1):21-32.
    [38]雷万杉.内蒙古赤峰南部地区金矿综合信息矿产预测[D].长春:吉林大学综合信息矿产预测研究所,2009.
    [39]雷万杉,王淼,张振庭,等.赤峰南部金地球化学块体评价[J].吉林大学学报:地球科学版,2009,39(2):255?261
    [40]李守义,等.辽吉古裂谷中的双峰式火山岩及岩浆演化[J].长春地质学院学报,1994,24(2):143-145.
    [41]李雪梅,等.辽东后仙峪硼矿床含硼岩系中电英岩的地球化学特征及其成因[J].世界地质,2008,27(3):260-266.
    [42]李雪梅,等.辽东地区后仙峪及翁泉沟硼矿床流体包裹体特征研究[J].现代地质,2007,21(4):645-653.
    [43]李雪梅.辽东-吉南硼矿带硼矿成矿作用及成矿远景评价[D].长春:吉林大学地球科学学院,2009.
    [44]辽宁省地质矿产局.辽宁省区域地质志[M].北京:地质出版社,1989.1-650.
    [45]辽宁省地质矿产局.辽宁省营口至宽甸硼矿成矿远景区划及“九五”找矿地质工作布署建议[R].沈阳:辽宁省地质矿产局,1994.
    [46]辽宁,吉林地质矿产局.辽东至吉南硼铁成矿区成矿远景区划[R].沈阳:辽宁省地质矿产局,1984.
    [47]刘大文,谢学锦,严光生,等.地球化学块体的方法技术在山东金矿资源潜力预测中的应用[J].地球学报,2002,23(2):169?174.
    [48]刘敬党.辽东地区下元古界镁硼酸盐矿床控矿模型及其勘查与评价研究[D].北京:中国地质大学地球科学与资源学院,2006.
    [49]刘敬党.辽吉地区早元古代遂安石-硼镁石型硼矿床矿床模型[J].化工矿产地质,1995,17(1):37-41.
    [50]刘敬党.辽东-吉南地区早元古代硼镁石型硼矿床地质特征及矿床成因[J].化工矿产地质,1996,18(3):207-212.
    [51]刘敬党,等.辽宁宽甸砖庙硼矿区成矿地质特征及找矿[J].地质与资源,2005,14(2):158-165.
    [52]刘敬党,孙淑华.辽东-吉南早元古宙硼矿地质特征及矿床成因-以砖庙矿区为例[J].辽宁地质,1995,1:47-57.
    [53]刘敬党,肖荣阁,王文武,等.辽东硼矿区域成矿模型[M].北京:地质出版社,2007,1-426.
    [54]刘来成,等.辽东地区硼矿成矿带远景区预测[J].化工矿产地质,2006,28(2):83-86.
    [55]刘培栋.辽东裂谷铜钴矿产资源特征与潜力评价[D].长春:吉林大学,2008.
    [56]路远发,等.辽东古元古代裂谷中硼矿床成矿年代学研究[J].地质学报,2005,79(2):287-297.
    [58]裴荣富.金属成矿省等级体制成矿[J].矿床地质,2004,5(28).
    [59]裴荣富,梅燕雄.矿产勘查的双控论与合理域模型[J].矿床地质,2001,20(4):307-312.
    [60]彭齐鸣,许虹.辽东-吉南地区早元古宙变质蒸发岩系及硼矿床[M].北京:地质出版社,1994.
    [61]曲洪祥,等.辽东地区硼矿床成因探讨与硼矿远景区预测[J].地质与资源,2005,14(2): 133-139.
    [62]石玉臣.山东省焦家成矿带深部金成成矿预测研究及其应用[D].长春:吉林大学,2005: 74-78.
    [63]孙启祯.论边缘成矿-关于金属矿床的时空分布及其成因联系[J].地质与勘探,1986(1).
    [64]孙启祯.边缘成矿与成矿边缘效应[J].地学前缘,1994,1(04).
    [65]孙文涛,孙吉国,刘志远.辽东裂谷中部多金属矿集区成矿规律与成矿模式[J].科技创新导报,2008.
    [66]涂光炽.超大型矿床的找矿和理论研究[J].矿产与地质,1989(1).
    [67]王长秋,崔文元.辽西-赤峰一带太古代变质杂岩中石榴石的研究[J].岩石矿物学杂志.1992(2):157-165.
    [68]王成文,刘永江,等.辽河岩群南北区域对比的新证据[J].长春地质学院报,1997,27(1):17-24.
    [69]王翠芝,等,辽东-吉南硼矿的控矿因素及成矿作用研究[J].矿床地质,2008,27(6):727-741.
    [70]王翠芝,等.辽东硼矿床矿石的稀土元素特征及其地质意义[J].地质与资源,2008,17(2):115-121.
    [71]王翠芝,等.辽东硼矿的成矿机制及成矿模式[J].地球科学,2008,33(6):813-824.
    [72]王翠芝.辽东古元古界镁质岩石成因及其对硼矿成矿控制作用[D].北京:中国地质大学,2007.
    [73]王福润.吉林省南部下元古界集安群地质特征与沉积期古环境分析[J].吉林地质,1991.
    [74]王慧媛,彭晓蕾.辽宁凤城翁泉沟硼铁矿床磁铁矿的成因研究[J].中国地质,2008,35(6):1299-1300.
    [75]王继伦,李善芳,等.中国金矿物探,化探方法技术的研究与应用[M].北京:地质出版社,1997.
    [76]王生志,徐大地.后仙峪硼矿区硼矿地质特征及其成因探讨[J].地质与资源,2003,12(4):221-227.
    [77]王世称等,矿产资源评价[M].长春:吉林科学技术出版社,1985.
    [78]王世称,陈永良,夏立显.综合信息矿产预测理论与方法[M].北京:科学出版社,2002.
    [79]王世称,杨毅恒,李景朝.综合信息矿产资源预测中的定性数据分析方法[M].长春:吉林大学出版社,1999.
    [80]王世称,范继璋,杨永华.矿产资源评价[M].长春:吉林科学技术出版社,1990:21-28.
    [81]王世称,成秋明,范继璋.金矿资源综合信息评价方法[M].长春:吉林科学技术出版社,1990:1-21.
    [82]王世称,王於天.综合信息解译原理与矿产预测图编制方法[M].长春:吉林大学出版社,1989:3-18.
    [83]王秀璋,等.东北内生硼矿的矿物组成和成因的研究[M].北京:科学出版社,1974.
    [84]王延卓,等.辽东地区硼矿床矿物组合特征[J].有色矿冶,2007,23(3):5-8.
    [85]王延卓,刘肃敬,贾玉国,李然菊.辽东地区硼矿床矿物组合特征[M].有色矿冶,2007(3).
    [86]吴春林.辽河群沉积期古环境分析[J].矿产与地质,1994,8(6):433-439.
    [87]吴虹.辽宁宽甸砖庙矿区硼矿床地球化学特征[J].化工矿产地质,2005,27(4):206-210.
    [88]夏学惠,等.辽东-吉南地区硼矿床地质特征及成矿远景[J].化工矿产地质,2007.29(3): 169-177.
    [89]夏学惠,等.辽东裂谷硼铁矿床地质及成矿作用[J].矿床地质,2006,25(1):83-88.
    [90]肖克炎.应用综合信息法研究成矿规律及成矿预测的新进展[J].地球科学进展,1994,9(2): 18-23.
    [91]肖克炎,叶天竺,李景朝,杨毅恒,丁建华,娄德波.矿床模型综合地质信息预测资源量的估算方法[J].地质通报,2010.
    [92]肖荣阁,等.辽东后仙峪地区元古界超镁橄榄岩岩石学及其成因[J].现代地质,2007,21(4): 638-644.
    [93]肖荣阁,等.辽东地区沉积变质硼矿床及硼同位素研究[J].现代地质,2003,17(2):137-142.
    [94]肖晔,刘长学.辽吉地区含硼岩系中斜长角闪岩地球化学[J].化工矿产地质,2009,31(2): 85-96.
    [95]谢学锦.全球地球化学填图[J].中国地质,2003,30(1):1?9.
    [96]谢学锦,刘大文,等.地球化学块体-概念与方法学的发展[J].中国地质,2002,29(3):225-233.
    [97]谢学锦,邵跃,王学求.矿产勘查地球化学[M].北京:地质出版社,1999.
    [98]徐道一.数学地质引论[M].北京:地质出版社,1977.
    [99]徐大地,等.辽东地区硼矿体赋存特征及成矿预测[J].地质与资源,2005,14(3):208-212.
    [100]徐涛,曹洪亮,马红.辽南硼矿床成矿模型研究及其勘查意义[J].国土资源,2008(S1).
    [101]鄢明才,迟清华.中国东部地壳与岩石的化学组成[M].北京:科学出版社,1997:1?292.
    [102]杨万志,姜云辉,周军,等.新疆区域地球化学参数特征及其研究意义[J].新疆地质,2008,26(3):236-239.
    [103]杨振福,等.大石桥凤城宽甸古隆起硼矿体特征及远景推测[J].化工矿产地质,2010,32-38.
    [104]叶天竺.固体矿产预测评价方法技术[M].北京:中国大地出版社,2004:128-163.
    [105]曾庆丰.我国矿田构造(内生金属矿床)研究现状与展望[J].地质与勘探,1979(4).
    [106]翟裕生.古陆边缘成矿系统[M].北京:地质出版社,2002:244-278.
    [107]翟裕生,彭润民,邓军,王建平.区域成矿学与找矿新思路[J].现代地质,2001(2).
    [108]张景山.辽东硼镁石型硼矿床地质特征及成矿作用[J].辽宁地质,1994(4):289-303.
    [109]张景山.辽宁省宽甸县杨木杆硼矿典型矿床研究报告[R].沈阳:辽宁省地质矿产局,1986.
    [110]张秋生.辽东半岛早期地壳与矿床[M].北京:地质出版社,1988,221-255
    [111]张秋生.中国前寒武纪地质及成矿作用[M].长春:吉林人民出版社,1984:1-536.
    [112]张秋生,李守义.辽吉岩套-早元古宙的一种特殊优地槽相杂岩[J].长春地质学院学报,1985,1:1-12.
    [113]张艳飞,等.辽宁后仙峪硼矿区古元古代电气石岩-锆石特征及SHRIMP定年[J].地球科学,2010,35(6):985-999.
    [114]赵鹏大,胡旺亮.地质异常理论与矿产预测[J].新疆地质,1992,10(2):93-100.
    [115]赵鹏大,池顺都.初论地质异常[J].地球科学,1991,16(3):241-248.
    [116]赵鹏大,孟宪国.地质异常与矿产预测[J].地球科学,1993,18(1):39-47.
    [117]周红春.辽东地区元古界硼矿床矿石学研究[D].北京:中国地质大学,2006.
    [118]周文光,董立军,赵金才,等.辽东裂谷铜钴矿床控矿因素分析[J].中国金属通报,2010.
    [119]邹日,冯本智.辽吉地区早元古代含硼建造中电英岩的特征及成因[J].长春地质学院学报,1993,23(4):373-378
    [120]邹日.辽吉地区早元古代含硼岩系中电英岩的特征及成因[J].长春地质学院学报,1993,23(4):373-329.
    [121]邹日.营口虎皮峪地区早元古代含硼岩系中热水沉积建造特征及硼矿床成因[D].长春:吉林大学,1993:1-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700