用户名: 密码: 验证码:
海南石碌铁矿矿区环境地球化学及环境治理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿产开发活动及其废弃物的排放带来了一系列影响深远的环境问题,矿业开发对环境污染的预防和治理、废弃地的生态恢复已成为全世界面临的紧迫任务之一,也是当今世界重要的科学研究课题之一。石碌铁矿是亚洲最大的富铁矿,已有70多年的开采历史,产生了大量的废弃物,2007年开始正式规模开采铜钴矿,并开展铜钴矿的加工和冶炼,矿区的环境压力越来越大,而矿区所在地就是昌江县县城,因此,矿区环境污染的防治和生态保护十分紧迫。本文以地球化学理论为指导,以岩(矿)石—尾矿—土壤—水—水系沉积物—植物—人为系统,采用地球化学、生态学等多学科协同及野外调查—实验测试—栽培试验—模拟试验—综合研究等方法,研究了矿区环境污染的历史、现状、发展趋势及其主要影响因素,研究了矿区环境污染的植物治理与化学治理方案。研究取得以下主要成果:
     1、从岩石地球化学特征着手研究了矿区环境的地球化学背景。研究表明,研究区As、Cd、Cu、Hg、Cr、Pb、Zn等有害元素在侵入岩中含量一般都高于全海南岛侵入岩的背景水平,其中,中元古代花岗片麻岩中除Pb外的其他元素含量是最高的;沉积—变质岩中各元素也具有同样的分布特点,且铁矿体、铜钴矿体围岩石碌群中As、Co、Cr、Cu、Mn、Ni、Fe的含量最高。对于矿山开采活动的主体——铁矿石和铜钴矿石而言,铁矿石中除Fe外其他元素含量一般较低,但其围岩中Hg、Ni等元素的含量高;铜钴矿石中除Cu、Co元素外,As、Cd、Hg、Ni、Pb、Zn的含量也很高。因此,铁矿和铜钴矿的开采,都可能带来As、Cd、Hg、Ni、Pb、Zn、Mn等伴生元素以及成矿元素Cu、Co、Fe对环境的影响。
     2、对矿区土壤、尾矿、水系沉积物、水、植物等各环境介质的环境地球化学进行了研究。
     (1)从海南岛全区土壤到研究区内区域性土壤、与矿山开采影响密切关联的局部土壤、尾矿库区上游土壤、尾矿库区下游土壤,有害元素含量逐步升高,特别是尾矿库区下、上游土壤中元素含量比值明显大于1,说明尾矿是影响其下游土壤有害元素含量的源头。结合表层土壤的富集因子进行的研究区内区域土壤有害元素地球化学异常的解释,表明其成因大多为人为作用即矿山开采所致。
     (2)研究区内的各期尾矿库的尾矿和排土场废石中有害元素含量较高,铜钻尾矿中有害元素的含量高于铁矿尾矿。尾矿中最稳定的元素是Cr,有机结合态是尾矿中较常见的有害元素的赋存形式;各期尾矿库表层的有害元素有效态一般高于深层;铜钴尾矿中大部分有害元素的有效态含量及潜在活动性比铁矿尾矿更高。
     (3)矿区内上世纪八十年代和当今水系沉积物有害元素特征研究表明,近20年来水系沉积物中有害元素均呈增加态势。对比八十年代与当今两个时间点的有害元素含量,可知尾矿库和铁矿排土场等对水系沉积物中有害元素的改变存在一定时间的延迟,这种延迟也正是尾矿库地球化学演化过程的真实写照。
     (4)研究区内地表水在迳流过程中与河床的岩石、土壤、水系沉积物等发生物理、化学、生物及吸附等作用,岩石、水系沉积物、土壤中某些元素如铁、锰及重金属等被水溶解进入水中,使水中元素含量增加,石碌河矿区段河水的铁、锰元素普遍偏高,尤其是与Fe1铁矿尾矿库及铜钴矿尾矿库(Cu-Co2)相连的支流更高,这与尾矿库淋滤水、复杂的区域水岩交换有关。研究区地下水中铁、锰元素含量总体偏高,在矿区尾矿库地段,由于受尾矿渗透的影响,尾矿中铁、锰金属元素和硫化物等组分经溶解进入地下水,使地下水中重金属元素含量剧增。
     (5)不同生长背景区小油菜对土壤中有害元素的吸收特性均表现为根大于叶,叶大于茎,而且各部位对土壤的地球化学性质反应灵敏,小油菜和土壤有害元素含量具有正相关特征;土壤中某些元素如Cd、Pb、Zn、Hg等更易于被小油菜吸收。
     3、矿山开采、尾矿和矿山废石等改变了矿区土壤、地表水和地下水中的有害元素组成,降低了土壤和水的环境质量,并与区外土壤和水形成了鲜明的对比,最终影响到农作物的安全性。矿区土壤As、Cd、Cu、Hg、Zn等元素大多超过国家土壤环境质量1级标准,尾矿库、排土场下游土壤环境质量更差,有的元素超过3级标准。根据内梅罗指数,矿区石碌河尾矿库河段地表水属严重污染,排土场下游地表水属中度污染,明显不同于矿区外围地表水;尾矿库周围地下水属于严重污染。矿区尾矿库下游土壤中种植的小白菜受到污染,As、Cd、Hg、Pb含量超标。矿区环境质量总体较差。矿区尾矿库尾矿、排土场废石是影响矿区环境质量的主要因素。
     4、对土壤的环境质量演化预测表明,研究区内因矿山开采和尾矿库等影响,矿区土壤环境质量呈总体下降趋势;石碌河整个河段河水,在今后30~35年内,其中锰、铁等元素和硫酸盐、硝酸盐等组分含量将超过生活饮用水卫生标准;矿区水系沉积物中有害元素含量也会持续增长。总之,矿区不同环境介质的环境质量将会向下降的趋势进一步演化,随着铜钴矿的规模开采和冶炼的进行,矿区面临的环境压力将越来越大。
     5、为寻找尾矿治理的有效植物,开展了尾矿库区的自然植被调查。调查表明,尾矿库中自然生长的植物有40多种,其中狭叶香蒲在海南是首次发现;狭叶香蒲、水蓼、水竹、白茅、斑茅等是尾矿库中的优势植物,其中水蓼、水竹、狭叶香蒲对Fe、Mn、Cu、Pb、Zn、As、Hg等有害元素有较强的吸收能力和耐性;尾矿库区植物的种类、盖度、多样性与尾矿存放的时间及其N、P、K等养分含量关系密切,尾矿存放时间越长,N、P、K等养分含量越高,植物种类越多、盖度和多样性指数越高。
     6、开展了尾矿库区自然生长的优势植物水蓼、狭叶香蒲、水竹和海南优势热带作物对有害元素的吸收性和耐性栽培试验研究,取得了重要成果。
     (1)水蓼具有较好的治理尾矿中Cu、Pb、Zn、Mn的能力:水蓼对Mn具有很高的吸收能力、富集能力和耐性,对Mn的转移系数、累积系数均大于1,地上部分Mn的含量可高达13681.5mg/kg,具备了对Mn作为超积累植物的特征;水蓼吸收Mn时,对Fe、Cu、Zn等有害金属很少会发生拮抗作用。
     (2)狭叶香蒲对Cu、Pb、Zn等有害金属具有较强的吸收能力和耐性,其对环境中Cu、Pb、Zn的最大耐性浓度分别为2000mg/kg、350 mg/kg、10000mg/kg,远远高于这些元素在尾矿中的含量。
     (3)剑麻对Pb、Cd等有害金属具有较强的耐性和富集能力,环境中Pb、Cd分别达到15900mg/kg、1000mg/kg时,仍有较强的耐性;Pb、Cd的最高含量,剑麻地上部分别为2220.26mg/kg、2348.08mg/kg,地下部分分别为2544.78mg/kg、16620.52mg/kg,地上部分和地下部分Pb、Cd的含量都很高;尽管Pb、Cd等有害元素在剑麻中转移系数小于1,但剑麻的生物量大,对尾矿中Cu、Cd有较好的治理效果。剑麻的尾矿栽培模拟试验表明,H.11648品种吸收有害元素能力强,并能使尾矿中有害元素有效态减少,是尾矿治理的较好的剑麻品种。
     7、为探讨尾矿化学方法治理的可能性,开展了模拟试验。尾矿的EDTA及盐酸淋洗模拟试验表明,在酸性或在有络合物环境中,尾矿中尤其是新尾矿中有害金属不稳定,易于从尾矿中迁出。尾矿化学治理模拟试验表明,石灰、有机肥和生物肥对老尾矿改良效果不明显,而对新尾矿具有一定的改良作用,0.1%石灰和1%的有机肥对新尾矿的改良效果最好。
     8、研究区主要的污染源是尾矿库尾矿和排土场废石,其治理以植物方法为主,化学方法相配合;尾矿治理植物的选择遵循“适者生存”自然法则,以尾矿库区自然生长的优势植物为主;污染源的治理要分区域采取不同的方案。创造性提出了热带地区铁铜钴矿山环境治理的新方法。
     尾矿库干燥区的治理,采用以种植剑麻为主,以适量石灰和有机肥化学治理为辅的联合协同方案,新尾矿库治理区石灰的使用量为0.1%,剑麻种植坑内有机肥的使用量为1%,剑麻的种植网度为3.6×1.2m就可达到较好的治理效果:按国家二级土壤环境质量标准,旧尾矿库Cd的修复年限为2年,铜钴尾矿库Cd的修复年限为2年,新铁矿尾矿库Cd的修复年限为4年。尾矿库种植剑麻并进行加工,每公顷尾矿库可创年产值7.29万元,经济效益明显。
     尾矿库废水沼泽区的治理,主要采用植物治理方案,废水区种植狭叶香蒲,废水区与干燥区过度带种植水蓼和水竹,并让其它生物自然生长,形成人工与自然生长的植物群落。狭叶香蒲和水竹吸收有害元素后不会通过食物链传递给人或其它生物,它们还有较高的经济价值,可用于编制器具和工艺品。
     排土场的治理,一是要采取工程措施,防止发生滑坡和泥石流,二是要在植树复垦的基础上,适当套种剑麻进行治理。
Deposit exploitation and mining waste discharge have been bringing a series of far-reaching environmental problems to human living.All over the world,people are facing to an urgent task, that is,how to prevent and restore the environmental pollution and ecology recondition in the discarded area for the deposit exploitation.It is now becoming one of the important subjects of scientific research.Shilu mine is the biggest iron-enrich ore deposit in Asia.It has been mined for more than seventy years,and inevitably discharged a large of waste around this region.In 2007, the Copper-Cobalt ore deposit in this mine was begun to exploit formally in industrial scale,and subsequent processing and smelting for the Cu-Co ore were also carried out.Environmental pressure on this mining area is getting more and more serious.Moreover,Changjiang County just lies in this mining area,so it is very urgent to do the environmental prevention and ecology protection there.
     Based on the geochemical theory,and set the rocks(ores),tailings,soils,waters,stream sediments,plants and human activities as an associated system,the pollution history,actuality and evolution tendency and the primary influential factors of the environment in this mining area were studied in this paper.An integrated study method was accepted in this study,it includes geochemical,ecological,and field surveys,and also includes the experimental analysis,planting test,simulating test and comprehensive methods.Consequently,a planting and chemical recondition scheme on the environmental pollution in this mining area was studied and developed. This study includes the following eight correlative parts,and summarizes the following results and conclusions.
     1.Geochemical background of this mining area was surveyed and studied based on the rock geochemical characteristic.The results show that the contents of toxic elements,such as As,Cd, Cu,Hg,Cr,Pb and Zn,in the intrusive rocks of this mining area are generally higher than their whole background level in Hainan intrusive rocks.These toxic elements,except for Pb,of the mesoproterozoic granite gneiss were highest in this mining area.The abundance of these toxic elements of the sedimental- metamorphite rocks in this area has similar parting properties. Moreover,Shilu Group,the host rocks of the iron-ore and Copper-Cobalt ore bodies contains the highest contents of As,Co,Cr,Cu,Mn,Ni,and Fe in this mining area.For the main bodies,the iron-ore and Copper-Cobalt ore,exploited in this mine,many elements except for iron are generally low in the iron-ore,and however,the contents of Hg,Ni and so on are very high in its host rocks.Contrarily,the contents of toxic elements,such as As,Cd,Hg,Ni,Pb and Zn in the Copper-Cobalt ore,are high with ore-forming elements Cu and Co.Therefore,the exploitations of both iron and Copper-Cobalt ores are quite possibly to bring the environment pollution with ore-forming elements,such as Fe,Cu,Co and the accompanying elements,such as As,Cd,Hg, Ni,Pb,Zn and Mn,etc.
     2.Environment geochemistry study were also carried on several environmental media,such as soils,and tailings,waters,stream sediments and plants,etc.and summarized the following results.
     (1)From the whole soils in Hainan,to the regional soils in Shilu region,to the local soils closely affected by the exploitation in the mining area,and to the upriver and the downriver soils of the tailing dam,the contents of the forementioned toxic elements are getting higher and higher. Especially,the abundances ratios(enrichment)of these toxic elements in the two latter are far higher than one.It indicates that the tailings are the possible source of these toxic elements polluted the downriver soils.According to the explains for the geochemical abnormality of the toxic element enrichment factors in the regional surface soils,the cause of the pollution was possibly farther deduced to the human action,i.e.the mine exploitation.
     (2)The contents of these toxic elements are quite high in the tailings and waste rocks for every period of tailing dam and dumping sites.The toxic element contents in the Cu-Co tailings are higher than that in the Fe tailings.Chromium is the most stable element in the tailings,and the organic combination is a quite usual occurrence form for these toxic elements in the tailings. The organic combinations of these toxic elements are higher in the surface layers than that in the down layers.The contents of the organic combinations and the potential activities of these toxic elements in the Cu-Co tailings are much higher than that in the Fe tailings.
     (3)From a comparison study on the toxic elemental characteristic of the present and the last century's stream sediments in this mining area,it was found that the contents of the toxic elements in these stream sediments have an increasing tendency.Comparing the toxic elements contents of these two stages in this mining area,we found that for the stream sediments,there was a time delay on the alteration of the toxic elements by the tailing dam and the iron dumping sites.This delay is factually the geochemical evolution of the tailing dam.
     (4)During the surface water flowing along the river,it happen a series of physical,chemical and biological interactions and absorption with the rocks,soils and stream waters in the riverbed. By this way some toxic elements such as Fe,Mn and heavy metals were dissolved into the water, and their contents in river water increase.So the contents of Fe,Mn and other elements of the river water are general enriched in Shilu mining region,especially much higher in the distributaries of iron(Fe1)tailings dam and Copper-Cobalt(Cu-Co2)tailings dam.It is also related to the interchange process between the leach water from the iron tailing dam,sewage from the ironworks and the complex tectonic rocks.Affected by the infiltration of the tailings dam,the metal elements such as Fe,Mn and sulfides,etc.of the tailings were dissolved into the groundwater on the sections of the tailings dam in this mining area,therefore,the contents of heavy metal elements of the groundwater are rapidly increase as a whole in this mining area.
     (5)The absorption of the toxic elements in soils by Brassica Chinensis in different growing backgrounds shows that the adsorb ability decreases from roots to leaves and to stems.However, every part of the Brassica Chinensis is sensitive to the geochemical property of the soils.So the toxic elements have positive relations between their contents in Brassica Chinensis and in the soils.Some metal elements in soil such as Cd,Pb,Zn,and Hg,etc.are liable to be absorbed by Brassica Chinensis.
     3.The toxic elemental compositions of the soils,surface water,and groundwater were changed by the exploitation,tailings and waste rocks in the mining area.Consequently,the environmental quality of the soils and waters was also deteriorated in the mining area,and was quite distinctive from the soils outside this mine.Finally this environment deterioration is getting a dangerous effect to the crops planting.Most of contents of As,Cd,Cu,Hg and Zn,etc.from the soils in this mining area are beyond the 1~(st)level of the national soil standard.The environment quality was much worse for the downriver soils of the tailings dam and the refuse dumps,and some elements were especially beyond the 3~(rd)level of the national soil standard.According to NMR's index,in Shilu mining area,the surface water in the tailing dam reach of Shilu river is badly polluted;surface water of the downriver is secondarily polluted;and they are evidently different from the outside surface water;the groundwater around the tailing dams is also badly polluted.Brassica Chinensis planted in the downriver soils of the tailing dams were polluted,the contents of As,Cd,Hg and Pb in these Brassica Chinensis were beyond the national standard. Totally,the environment quality in this mining area is bad.The primary influential factors are the pollutions from the tailings in the tailing dams and waste rocks in the refuse dumps.
     4.The environmental quality evolution of the soil in the mining area was surveyed and evaluated.The result shows that the exploitation and tailing dams and so on have bad affected the environment in this mine,and the environmental quality has a worsen tendency in general.In the coming period of 30 to 35 years,the contents of Fe,Mn and other toxic elements and sulphate and nitrate compositions contained in the whole Shilu river will exceed the drinking water standard.The toxic element contents of stream water in this area will be continuously increasing. Anyway,the environmental qualities of different environmental media in this mining area will go along with a worsen evolution tendency.The environmental pressure is increasing with the industrial scale exploitation and smelting of cupper-Cobalt in Shilu mining area.
     5.In order to find out some effective plants to treat the pollutions in the tailings,a survey on the natural vegetation was done in the area of tailing dams.We found that there were more than forty of natural plants growing about this tailing dams;and fortunately that,one of Typhaceae angutifolia was first found in Hainan province;the dominant plants are Typhaceae angutifolia, Polygonum hydropiper,Phragrnites.Karka,Imperata cylindrica,Saccharum arundinaceum, etc.in this area of tailing dams.Polygonum hydropiper,Phragrnites.Karka and Typhaceae angutifolia have strong absorbing capacity and tolerance to the toxic elements,such as Fe,Mn, Cu,Pb,Zn,As and Hg,etc.The plant species,plant coverage,and variety are closely correlated with the storage time of tailings,and the nutrient contents of Nitrogen,Phosphorus,and Potassium,etc.The longer the storage time of railings,the higher the contents of these nutrients, and the more the plant species,coverage,and variety.
     6.A pilot study was gone on the planting of the natural dominant plants,such as Polygonum hydropiper,Typhaceae angutifolia,Phragmites.Karka are the tropic plants in Hainan.The planting study was focused on the absorption and tolerance of the toxic elements into these plants in the area of tailing dams.We have got the following important conclusions.
     (1)Polygonum hydropiper and Typha Orientalis have strong ability to decontaminate the toxic elements such as Cu,Pb,Zn,Mn,etc.from the tailings.Polygonum hydropiper has a very high capacity of absorption,enrichment,and tolerance to Manganese.Both transfer and cumulation coefficients of Mn in Polygonum hydropiper are higher than one.The contents of Mn in it's over ground parts can accumulate to 13681.5 mg/kg,moreover,during the absorption of Mn,it has no antagonistic action;so it is totally the strongest super-accumulating plant for Mn absorption.
     (2)Typhaceae angutifolia has strong absorption and tolerance capacities to the toxic elements,such as Cu,Pb,Zn,etc.The max tolerant capacity to these toxic elements is 2000 mg/kg,350 mg/kg and 10000 mg/kg,respectively,which is far higher than that in the soil.
     (3)Agave Sisalana has strong tolerance and accumulation ability to the toxic elements such as Pb and Cd.It can stand up and tolerate high levels of these toxic elements,although the contents of Pb and Cd are as high as 15900 mg/kg,400 mg/kg,4000 mg/kg,and 1000 mg/kg, respectively.The contents of these toxic elements in its over ground parts are respectively 2220.26 mg/kg,321.87 mg/kg,2702.6 mg/kg,and 2348.08 mg/kg,while the contents in its underground parts are respectively 2544.78 mg/kg,4324.75 mg/kg,19399.08 mg/kg,and 16620.52 mg/kg.Both parts contain high contents of Pb and Cd.Although the transfer coefficients of these toxic elements in Agave Sisalana are less than one,its biomass is much large in this area,so it has an effective function to decontaminate the toxic elements of Pb and Cd. During the planting test of Agave Sisalana in the tailing dams,we found that one variety of Agave Sisalana,H.11648,has a stronger absorptive ability to these toxic elements,and can decrease their organic combinations,so it is a better variety to treat the tailings.
     7.To search out a possible chemical method for treating the railings,simulating test was carried.The eluting of the tailings using EDTA,and hydrochloric acid shows that,in acid or complex condition,the toxic metal elements are unstable in the tailings,especially,in the fresh railings.These toxic metal elements were easily to leach out from the tailings.The simulating results indicate that usage of lime,organic manure,and biological fertilizer is ineffective to improve the stale tailings,although it has effect to the fresh tailings to some extent.A mixture of lime of 0.1%and organic manure of 1%is possible the most effective to improve the fresh tailings.
     8.Main pollution sources in this mining area are from tailings filled in the tailing dams and from waste rocks in the refuse dumps.The important effective measure for the recondition of this mine is planting plants,and associated with chemical disposal method.The selection principle of plants for environmental recondition should follow the natural law,"the survival of the fittest". The dominant plants naturally growing in this area are the primary and effective selection.The treating project for different pollution sources should be different for different sections in the mining area.An innovative project was developed in this study;and it is effective to the tropic environmental recondition of Fe-Cu-Co mine.
     For the environmental recondition of dry sections in the tailing dams,a combined and synergistic project should be effectively taken.Planting of Agave Sisalana is the primary measure, and the chemical treat,with lime and organic manure,is an accessorial measure.The proportion of lime used to treat the new tailing dams is 0.1%,and organic manure used to plant Agave Sisalana is 1%.The planting distance of 3.6×1.2 m in girding is efficient enough to the environmental recondition.By the 2~(nd)level of the national soil standard,the rehabilitating terms of Cd in the old tailing dams are 2 years,respectively,and the terms of Cd in the Cu-Co2 tailing dams are respectively 2 years,while the terms of Cd in the new tailing dams is 4 years. The planting and processing of Agave Sisalana in the tailing dams has notable economical benefit,it can get an annual production value of 72.9 thousands Yuan per hectare of tailing dam.
     For the environmental recondition of the mars with wastewater in the tailing dams,a primary project is planting plants.In the wastewater sections,Orientalis Presl should be planted; Polygonum hydropiper and Phragmites Karka should be planted in the intermediate zones,while let the other plants grow naturally;and then the phytobiocoenose was forming by the planting and naturally growing plants.The toxic elements absorbed into Typhaceae angutifolia and Phragmites Karka can't transfer to human and other bodies by food chain.These two of plants can be also used to make art ware and produce economic values.
     For the environmental recondition of the refuse dump,an engineering measure should be first taken to prevent the landslide and mud-rock flow;and secondly,basing on the tree planting and re-cultivating,the interplant of Agave Sisalana should be a helpful measure.
引文
[1]蓝崇钰、束文圣、孙庆业.1993.采矿地的复垦.持续发展与生态学(陈昌笃主编)[M].北京:中国科学技术出版社,132-138.
    [2]束文圣,叶志鸿,张志权等.华南铅锌尾矿生态恢复的理论和实践[J].生态学报,2003,23(8):1630-1639.
    [3]束文圣,张志权,蓝崇玉.中国矿业废弃地的复垦对策研究[J].生态科学,2000,19(2):24-29.
    [4]何圣华,钟盛中,廖香俊等.海南省志·地质矿产志[M].海口:海南出版公司,2004,119-121.
    [5]杨忠芳,朱立,陈岳龙等.现代环境地球化学[M].北京:地质出版社,1999,1-30.
    [6]李家熙,吴功建,黄怀曾等.区域地球化学与农业和健康[M].北京:人民卫生出版社,2000,77-113.
    [7]韩吟文,马振东,张宏飞,张本仁等.地球化学[M].北京:地质出版社,2003,7-13.
    [8]陈德兴,邵德行.环境地球化学研究现状与发展.地学前缘[J].1996,3(1-2):119-125.
    [9]戎秋涛,翁焕新.环境地球化学[M].北京:地质出版社,1990,1-5.
    [10]王微.生态环境地球化学的研究进展[J].地质与勘探,2001,37(5):67-70.
    [11]王焰新.环境地球化学研究进展评述[J].地质科技情报,1997,16(4):75-78.
    [12]兰雅莉.环境地球化学三个领域的研究进展[J].河北工业科技,2002,19(1):13-18.
    [13]国家自然科学基金委员会.地球化学[M].北京:科学出版社,1996,109-110.
    [14]王庆仁,刘秀梅,崔岩山等.我国几个工矿与污灌区土壤重金属污染状况及原因探讨[J].环境科学学报,2002,22(3):354-358.
    [15]胡宏伟,姜必亮,蓝崇钰等.广东乐昌铅锌废弃地酸化控制研究[J].中山大学学报,1999,38(3):68-71.
    [16]Kissao Gnandi,H.J.Tobschall.Heavy metals distribution of soils around mining sites of cadmium-rich marine sedimentary phosphorites of Kpogame and Hahotoe(southern Togo)[J].Environmental Geology 2002,41:593-600.
    [17]A.K.Singh,S.I.Hasnain.Environmental geochemistry of Damodar Rirer basin,east coast of India.Environmental Geology,1999,37(1-2):124-136.
    [18]A.L.Bamanathan,V.Subramanian,R.Ramesh,et al.Enviromental geochemistry of the pichavaram mangrove ecosystem(tropical),Southeast coast of India[J].Environmental Geology,1999,37(3):223-233.
    [19]A.B.Machenzie,I.D.Pulford.Investigation of contaminant metal dispersal from a disubed mine site at Tyndrum,Scotland,using concontration gradients and stable Pb isotope ratios[J].Applied Geochemistry,2002,17:1093-1103.
    [20]Iuone S.da Silva,Giberto Abate,Taim Lichting,et al.Heavy metal distribufion in recent sediment of the Tiete-Pinheriros river system in Sao Paulo state,Brazil[J].hpplied Geochesmistry,2002,17:105-116.
    [21]A.Nagaraju,S.Karimulla.Accnmulation of elements in plants and soils around Nellore mica belt,Andhra Pradesh,lndia-a biogeochemic study[J].Environmental Geology,2002,41:852-860.
    [22]Xiangding Li,Lain Thornton.Chemical partitioning of trace and major elements in soils contaminated by mining and smelting actirities[J].Applied Geochemistry,2001,16:1693-1706.
    [23]J.G.Farmer,A.B.Mackenzie,L.J.Eades,A.Kirika,et al.Influences on the extent and record of heavy metal pollution in sediment cores from Loch Tay in a mineralised of Scotland[J].Journal of Geochemical Exploration,1997,58:195-202.
    [24]E.Dinelli,F.Tateb.Different types of fine-grained sediments associated with acid mine drainage in the Libiola Fe-Cu mine area(Ligurian Apennines,Italy)[J].Applied Geochemistry,2002,17:1081-1092.
    [25]Charles A.CravottaⅢ,Mary Trahan.Limestone drains to increase pH and remove dissolved metals from acidic mine drainge[J].Applied Geochemistry,1999,14:581-606.
    [26]J.M.Azcue,A.Mudroch,F.Rosa.Trace elements in water,sediments,porewater,and biada polluted by railings from an abandoned gold mine in British Columbia,Canada[J].Journal of Geochemisal Eexploration,1995,52(1-2):25-34.
    [27]Myung Chae Jung et al.Heavy metal contamination of soils and plants in the Vicinity of Lead-zinc mine,Kerea[J].Applied Geochemistry,1996,11:53-59.
    [28]John E.Gray,James G.Crock,Darid L.Fey.Environmental geochemistry of abandoned mercury mine in West-Central Nevada,USA[J].Applied Geochemistry,2002,17:1069-1079.
    [29]I.Mascro,B.Benvenuit,F.Corsini,et al.Mine wastes at the polymetallic deposit of Fenice Capanne(southern Tuscany,Italy).Mineralogy,geochemistry,and environmental impact[J].Environmental Geology,2001,41:417-429.
    [30]马振东,张凌,蒋敬业等.长江中下游东南铜矿集中区土壤铜环境地球化学特征[J].地球化学,2002,31(1):91-106.
    [31]孙庆业,蓝崇玉,黄铭洪等.铅锌矿尾矿上自然定居植物[J].生态学报,2001,21(9):1457-1462.
    [32]夏秋平,束文圣.香根等和百喜草对铅锌尾矿重金属的抗性与吸收差异性研究[J].生态学报,2001,2l(7):1122-1129.
    [33]蓝崇钰,束文圣,张志权.酸性淋溶对铅锌尾矿金属行为的影响及植物毒性[J].中国环境科学,1996,16(6):461-465,
    [34]符志友,杨元根,吴丰昌等.铅锌矿区地表环境中重金属元素的时空动态变化及生物有效性探讨.矿物岩石地球化学通报,2008,27(1)89-97
    [35]简曙光,杨中艺.茎瘤对长喙田菁在铅锌尾矿环境适应中的意义[J].植物生态学 报,2002,26(1):96-100.
    [36]束文圣,蓝崇钰,张志权.凡口铅锌矿尾矿影响植物定居的主要因素分析[J].应用生态学报,1997,8(3)L314-318.
    [37]储玲,刘登义,王友保,李影,刘慧君.铜污染对三叶草幼苗生长及活性氧代谢影响的研究[J].应用生态学报,2004,15(1):119-122.
    [38]吴双桃,吴晓芙,胡臼利,等.铝锌冶炼厂土壤污染及重金属富集植物的研究[J].生态环境,2004,13(2):156-157,160.
    [39]刘玉萃,李保华,吴明作.大气-土壤-小麦生态系统中铅的分布和迁移规律研究[J].生态学报,1997,17(4):418-425.
    [40]刘秀梅等.6种植物对Pb的吸收与耐性研究[J].植物生态学报,2002,26:533.
    [41]刘登义,田胜尼,杨世勇.铜尾矿对5种豆科植物种子萌发和幼苗生长影响的初步研究[J].应用生态学报,2002,13(5):596-600.
    [42]Reeves R D.The hyper accumulation of nickle by serpentine plants in:Baker vegetation of Ultramatic(serpentine)soil[M].Intercept Ltd.An-dover.Hampshire,VK.1992,253-277.
    [43]Demirevska-Kepova K,Simova-Stoilova L,Stoyaniva Z,Holzer R and Filler U.Biochemical changes in barley plants after excess supply of copper and manganese[J].Environ.Exp.Bot.,2004,52:253-266.
    [44]Fecht-Christoffers M M,Maier P and Horst W.Apoplastic peroxidases and ascorbate are involved in manganese toxicity and tolerance of Vigna unguiculata[J].Physiol Plant,2003,117:237-244.
    [45]Heenan D P and Campbell L C.Influence of potassium and manganese on growth and uptake of magnesium by soybean(Glycine max L.Merr.cv.Bragg)[J].Plant Soil,1981,61:447-456.
    [46]Lasat M M,Baker A J M and Kochian L V.Physiological characterization of root Zn~(2+)absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi[J].Plant Physiology,1996,112:1715-1722.
    [47]Reeves R D,Srooks R R.European species of Tblaspl(cruciferae)asindicators of nickel and zinc[J].Cechem Explor,1983,18:275-283.
    [48]Baker A J M,Brooks R R.Terrestrial higher plants which by per accumulate metallic elements:a review of their distribution[J].ecology and pboto-chemistry Biorecouery,1989,(1):81-126.
    [49]Monni S M Salemaa,C Wite,et al.Cpper resistance of Czlluna vulgaris originating from the pollution gradient of a Cu-Ni smelter,in south West Finland[J].Enuironmental Pollution,2000,109:211-219.
    [50]Monni S M Salemaa.Copper resistance of Calluna vulgaris originating from the pollution gradient of a Cu-Ni smelter in southwest Finland[J].Environmental pollution,2000,109:211-219.
    [51]Brooks R R,et al,Phytomining[J].Trends in Plant Science,1998,3(9):359.
    [52]Ouyang Y,Phytoremediation:Modeling plant uptake and contaminar transport in the soil-plant-atmosphere continuum[J].Journal of Hydrology,2002,266:66.
    [53]Kramer U,et al,Free histidine as a metal chelator in plants that accumulate nickel[J].Nature,1996,379:635.
    [54]Awang,K.1994.Growth of three multipurcse tree specieson tin railings in Malaysia.[J].Ttopical Forest Science,7(1):106-112.
    [55]束文圣,蓝崇玉,张志权.凡口铅锌尾矿影响植物定居的主要因素分析[J].应用生态学报,1997,8(3):314-318.
    [56]柯文山,席红安,杨毅等.大治铜绿山矿区海州香薷(Elsholtzia halchowensis)植物地球化学特征分析[J].生态学报,2001,21(6):907-912.
    [57]夏星辉,陈静生.土壤重金属污染方法研究进展[J].环境科学,1997,18(3):72-75.
    [58]郁云妹,朱咏煊,高振敏.毒砂的氧化作用及其环境效应[J].矿物岩石地球化学通报,2000,19(4):423-425.
    [59]束文圣,黄立南,张志权等.几种矿业废物的酸化潜力[J].中国环境科学,1999,19(5):402-405.
    [60]和文祥,朱铭莪,张一平.土壤酶与重金属关系的研究现状[J].土壤与环境,2000,9(2):139-142.
    [61]卢瑛,龚子同,张甘霖.南京城市土壤Pb的含量及其化学形态[J].环境科学学报,2002,22(2):156-160.
    [62]党志,刘丛强,尚爱安.矿区土壤中重金属活动性评估方法的研究进展[J].地球科学进展,2001,16(1):87-92.
    [63]张辉,马东升.南京地区土壤沉积物中重金属形态研究[J].环境科学学报,1997,17(3):346-352.
    [64]P.Conta,A.Zena,G.Pilidis,A.Piccolo.Increased retention of polycyclic aromatic hydrocarbons in soils induced by soil treatment with humic substances[J].Environmental Pollution,2001,112:27-31.
    [65]J.L.Howard,W.J.Vandenbrink.Sequential extraction analysis of heavy metals in sediments of variable composition using nitrilotriacetic acid to counteract resorption[J].Environmental Pollution,1999.106:285-292.
    [66]V.P.Evangelou,A.K.seat,A Holt.Potential role of bicarbonenate durig oxidation[J].Environ Science Technology,1998,32(14):2084-2091.
    [67]Mark E.Hodson.Experimental evidence for mobility of Zrand orther trance elements in soils[J].Geochimica et Cosmochimica Acta,2002,66(5):819-828.
    [68]Hauck M,Panl A,Gross S and Raubuch M.Manganese toxicity in epiphytic lichens:cholorophyll degradation and interaction with iron and phosphorus[J].Environ.Exp.Bot.,2003,49:181-191.
    [69]Nable R O and Loneragan J F.Translocation of manganese in subterranean clover(Trifolium subterraneum L.cv.Seaton Park).Ⅰ.Redistribution during vegetative growth[J].Aust.J.Plant Physiol,1984,11:101-111.
    [70]Tessier,A.sequential extraction procedure for the speciation of particulate trace metals[J].Analysis Chemistry,1979,51:844-851.
    [71]高太忠,李景印.土壤重金属污染研究与治理现状[J].土壤与环境,1999,8(2):137-140.
    [72]刘平,汤万金.矿区可持续生态管理规划方法研究[J].应用生态学报,2003,14(2)301-304.
    [73]蒋先军,骆家明,赵其国.重金属污染土壤的植物修复研究[J].土壤学报,2002,39(5):664-670.
    [74]胡振琪.关于土地复垦若干基本问题的探讨[J].煤矿环境保护,1997,11(2):24-29.
    [75]张志权,蓝崇钰.铅锌矿尾矿场所植被重建的生态学研究Ⅰ.尾矿对种子萌发的影响[J].应用生态学报,1994,5(1):52-5.
    [76]杨修,高林.德兴铜矿矿山废弃地植被恢复与重建研究[J].生态学报,2001,21(11):1932-1940.
    [77]张国发,姜旭红.利用香根草进行尾矿植被恢复初探[J].环境污染与防治,2004,26(6):458-463.
    [78]张志权,束文圣,廖志波,等.豆科植物与矿业废弃地植被恢复[J].生态学杂志,2002,21(2);47-52
    [79]张志权、蓝崇钰.1994.铅锌矿尾矿场植被重建生态学研究Ⅰ.尾矿对种子萌发的影响[J].应用生态学报,5(1):52-56.
    [80]陈晓东,常文越,邵春岩等.土壤污染生物修复技术进展[J].环境保护科学,2001,27:23-25.
    [81]刘海龙.采矿废弃地的生态恢复与可持续景观设计[J].生态学报,2004,24(2):323-329.
    [82]Bradshaw A D.Understanding the fundamentals of succession,in:Miles J,Walton D H.eds.Primary Suuession on land.Blackuell,Oxford.1993,1-4.
    [83]蓝崇钰,束文圣,张志权.矿业废弃地复垦中的基质改良[J].生态学杂志,1996,15(2):55-59.
    [84]阳承胜,蓝崇玉,束文圣.宽叶香蒲人工湿地对铅/锌矿废水净化效能的研究[J].深圳大学学报(理工版),2000,17(2-3):51-57.
    [85]杜占池,钟华平,川东红池地区红叶和鸭茅人工草地土壤和植物营养元素含量特征的研究[J].植物生态学报,1998,22(4):350-355.
    [86]朝阳,李雪梅,朱延姝等.环境污染与植物功能[M].北京:化学工业出版社,2005,230-233.
    [87]骆永明.金属污染土壤的植物修复[J].土壤,1999,31:261-265.
    [88]王庆仁,崔岩山,董艺婷等.植物修复-重金属污染土壤整治的有效途径[J].生态学报,2001,21(2):326-331.
    [89]黄铭洪,骆永明.矿区土地修复与生态修复[J].土壤学报,2003,40(2):161-169.
    [90]顾继光等.镉污染土壤的治理及植物修复.生态科学,2002,21(4):352.
    [91]戴晶平,胡岳华,香蒲植物生理特征及其对矿山尾矿的环保的环保作用[J].矿冶工程,2003,23(16):32-34
    [92]王华,唐树梅,廖香俊等.锰超积累植物-水蓼[J].生态环境,2007,16(3):830-834.
    [93]王红旗,李华,陆泗进.羽叶鬼针草对pb的吸收特性及修复潜力[J].环境科学,2005, 26(6):143-144.
    [94]万敏,周卫,林葆.不同镉积累类型小麦根际土壤低分子量有机酸与镉的生物积累的研究[J].植物营养与肥料学报,2003,9(3):331-336.
    [95]魏树和,周启星,王新,等.杂草中具重金属超积累特征植物的筛选[J].自然科学进展,2003,13(12):1259-1265.
    [96]薛生国,陈英旭,林琦,等.中国首次发现的锰超积累植物-商陆[J].生态学报,2003,23(5):935-937.
    [97]陈同斌,韦朝阳,黄泽春,等.砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报,2002,47(3):2007-210.
    [98]韦朝阳,陈同斌,黄泽春,等.大叶井口边草:一种新发现的富集砷的植物[J].生态学报,200522(5):777-778.
    [99]杨肖娥,龙新宪,倪吾钟,等.东南景天(Sedum alfredii H):一种新的锌超积累植物[J].科学通报,2002,47(13):1003-1006.
    [100]苏德纯,黄焕忠.油茶作为超积累植物修复镉污染土壤的潜力[J].中国环境科学,2002,22(1):48-51.
    [101]刘威,束文圣,蓝崇钰.宝山堇菜(Viola baoshanensis):一种新的镉超富集植物[J].科学通报,2003,48(19):2046-2049.
    [102]魏树和,周启星,王新.超积累植物龙葵及其对镉的富集特征[J].环境科学,2005,26(3):167-171.
    [103]熊愈辉,杨肖娥,叶正钱,等.东南景天对镉、铅的生长反应与积累特性比较[J].西北农林科技大学报:自然科学版,2004,32(6):101-106.
    [104]张学洪,罗亚平,黄海涛,等.一种新发现的湿生铭超积累植物:李氏禾(Leersia hexandra Swartz)[J].生态学报,2006,26(3):950-953.
    [105]陆晓怡,何池全,蓖麻对重金属锌的耐性与吸收积累研究[J].环境污染与防治,2005,27(6):414-419.
    [106]王广林,王立龙,李征,等.杂草对土壤重金属的富集与含量特征研究[J].生态学杂志,2005,24(6):639-643.
    [107]沈其荣,殷士学,杨超光等.~(13)C标记技术在土壤和植物营养研究中的应用[J].植物营养与肥料学报,2000,6(1):98-105.
    [108]Richard W.Hurst.Lead isotopes as age-sensitive genetic markers in Hydrocarbons.3.Leaded gasoline,1923-1990(Alas model)[J].Environmental Geoligy,2000,9(2):43-50.
    [109]S.R.Salman,Y.H.Abu Rukah.Multivariate and principal component statistical analysis of contamination in urban and agricultural soils from north Jordan[J].Environment Geology,1999,38(3):265-270.
    [110]Dale E.Buckley,John N.Smith,Gary V.Winters.Accumulation of contaminant metals in a marnine sedments of Halifax Harbour,Nora Scotia:evironmental factors and historical trends[]].Applied Geochemistry,1995,10:175-195.
    [111]Maylis Labnone,Dalila Ben Othman,Jan-Marc Luck.Use of mon-radioactive,mono-isotopic metal trace for studying metal(Zn,Cd,Pb) accumulation in the musel Mytilus galloprovincialis[J].Applied Geochemistry,2002,17:1351-1360.
    [112]R.W.Sheets,A.E.Lawrence.Temporal dynamics of airborne lead-210 in missouri(USA):implications for geochronological methods[J].Environmental Geology,1999,34(4):L343-348.
    [113]Maylis Labonene.Dalila Ben Othman,Jean-Marc Luck.Pb istopes in mussels as tracers of metal sources and water movements in a Cagon(Than Basin,S.France)[J].Chemical Geology,2001,181:181-191.
    [114]Assuncao A G L,Martins P D C,Folter S D.Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens[J].Plant,Cell and Environment,2001,24:217-226.
    [115]廖香俊,王平安,丁式江等.海南岛主要成矿系列与成矿规律研究.地质力学学报,2005,11(2):187-194.
    [116]《中国矿床发现史·海南卷》编委会.中国矿床发现史·海南卷.北京:中国地质出版社,1996:11-13.
    [117]李先琨,苏宗明.广东隆安蔗区环境地球化学初步研究[J].植物生态学报,1997,2l(3):290-296.
    [118]洪松,郑泽厚,陈俊生,湖北黄棕壤若干微量元素环境地球化学特征[J].土壤学报,2001,38(1):89-95.
    [119]洪松,陈静生,周智强等.长江中下游黄棕壤中若干元素的环境地球化学特征[J].地理科学,2000,20(4):320-324.
    [120]陶澍,曹军,李本纲等.深圳市土壤微量元素含量成因分析[J]:土壤学报,2001,38(2):248-255.
    [121]汪雅谷.上海地区绿色食品蔬菜的土壤环境质量标准[J].上海农业学报,1997,13(3):11-15.
    [122]张民,龚子同.我国菜园土壤某些重金属元素含量分布[J].土壤学报,1996,33(1):85-92.
    [123]韦家少,申志斌,洪彩香.海南芒果园土壤矿质营养诊断[J].热带农业科学,1999,(5):19-25.
    [124]陈琼贤,彭志平,刘国坚等.应用土壤肥力系统研究法诊断芒果园土壤的矿质营养[J].热带亚热带土壤科学,1994,3(4):213-218.
    [125]丁式江,廖香俊,冯亚生等.海南岛东北部生态环境地质[M]。北京:地质出版社,2007.
    [126]廖香俊,丁式江,吴丹等.海南省东北地区土壤农业地球化学评价.热带作物学报,2005,26(2):107-111.
    [127]廖香俊,丁式江,吴丹等.琼东北地区土壤微量元素地球化学特征.中国农业通报,2004,20(专刊):64-67.
    [128]廖香俊,唐树梅,吴丹等.海南芒果园土壤环境及其对芒果品质的影响.生态环境,2008,17(2).
    [129]廖香俊,丁式江,张本仁等.海南省东北地区土壤环境地球化学研究.地质与勘探,2003,39(6):68-70.
    [130]储玲,王友保,刘登义.安徽铜陵五公里铜尾矿废弃地的植被调查[J].生物学杂志,2003,1(20):15-19.
    [131]于云江,林庆功,石庆辉等.包兰铁路沙坡头段人工植被区环境与植被变化研究[J].生态学报,2002,22(30):433-439.
    [132]李影,王友保,刘登义.安徽铜陵狮子山铜尾矿场植被调查[J].应用生态学报,2003,14(11):1981-1984.
    [133]王友保,刘登义,张莉等.铜宫山铜尾矿库植被及土壤酶活性研究[J].应用生态学报,2003,14(5):758-759.
    [134]李影,王友保,刘登义.安微铜陵狮子山铜尾矿场植被调查[J].应用生态学报,2003,14(11):1981-1984.
    [135]郭涛,杨小波,廖香俊等.海南昌江石碌铁矿尾矿产库区植被调查[J].生态学报,2007,27(2):755-762.
    [136]王伯荪,余世孝,彭少鳞,等.植物群落学实验手册[M].广州:广东高等教育出版社,1996.
    [137]马克平.生物多样性的测定[M]:钱迎倩主编.生物多样性研究的原理与方法.北京:中国科学技术出版社,1994.141-165.
    [138]王伯荪.植物群落系[M].北京:高等教育出版社,1987,14-106.
    [139]陈叶海,胡乃盛.我国龙舌兰麻种质资源的研究现状及应用前景[J].福建热作科技,2002,27(1):42-44.
    [140]吴亦侠,白志健,蔡盛林等.剑麻栽培[M].北京:中国农业出版社,1996,281-282.
    [141]陈柳燕,张黎明,李福燕等.剑麻对重金属铅的吸收特征与累积规律初探[J].农业环境科学学报,2007,26(4):1-5.
    [142]阳承胜,蓝崇玉,东文圣等.凡口宽叶香蒲湿地植物群落恢复的研究[J].植物生态学报,2001,26(1):101-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700