用户名: 密码: 验证码:
AlCl_3-BMIC离子液体电解精炼铝中杂质行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着铝需求量的不断攀升和铝矿产资源的日益枯竭,铝的再生问题越来越受到人们的重视,尤其是再生铝的提纯问题已成为发展再生铝工业的研究热点。再生铝原料绝大部分是铝合金,通过目前的熔炼方法很难完全除去其中的金属杂质,主要通过再生处理生产铸造铝合金,大大限制了再生铝的应用范围。而采用离子液体电解精炼再生铝提纯得到金属铝可以扩大再生铝的应用范围。本文以x(AlC13)=0.667的AlCl3-BMIC室温离子液体作为电解质应用于再生铝的电解精炼,系统研究了再生铝中主要杂质金属及水在离子液体电解精炼铝过程中的行为。
     铝电极在AlCl3-BMIC离子液体中的阳极极化研究表明,铝电极电化学溶解会产生阳极钝化,阐明了AlCl4-浓度降低和Al2Cl7-浓度升高导致固体AlCl3在电极表面析出阻碍铝溶解的钝化机理,增加搅拌、升高温度、降低x(AlCl3)均有利于增加阳极极限氧化电流密度。
     恒电位库伦分析结果表明,再生铝中杂质金属Mn、Zn、Fe、Ni、Pb、Cu在AlCl3-BMIC离子液体中阳极氧化时,Mn、Zn、Fe、Ni、Pb以二价离子的形式,而Cu以一价离子进入离子液体。进一步测定了Zn(Ⅱ)/Zn、Pb(Ⅱ)/Pb、Fe(Ⅱ)/Fe、Cu(Ⅰ)/Cu、Ni(Ⅱ)/Ni相对与Al(Ⅲ)/Al参比的平衡电极电势,分别为0.02、0.21、0.32、0.63、0.64和0.86V;且发现它们的电化学活性顺序也与水溶液的Mn>Zn>Fe>Ni>Pb>Cu不同,为:Mn>Zn>Pb>Fe>Cu>Ni。
     测定了不同温度下Mn、Cu、Zn、Fe、Pb、Ni在AlCl3-BMIC离子液体中的腐蚀速率。在323-363K温度范围内,金属的腐蚀速率由大到小的顺序为Mn>Cu>Zn>Fe>Pb>Ni;而超过363K时,Ni的腐蚀速率超过了Pb。Mn、Cu、Zn、Fe、Pb、Ni在离子液体中的腐蚀活化能分别为52.23、66.42、53.02、50.42、41.11、60.55kJ/mol。
     电化学分析表明,进入离子液体中Cu(Ⅰ)、Zn(Ⅱ)和Ni(Ⅱ)对阴极Al(Ⅲ)的电还原具有去极化作用;Fe(Ⅱ)和Pb(Ⅱ)表现为极化作用;Mn(Ⅱ)浓度低于50mg/L时,表现为去极化作用,浓度为100mg/L时,呈现极化作用;Li(Ⅰ)、Na(Ⅰ)、K(Ⅰ)、Ca(Ⅱ)、Mg(Ⅱ)对Al(Ⅲ)的电还原影响不显著。
     采用恒电流电解精炼Al-Cu、Al-Zn、Al-Fe、Al-Mn、Al-Ni和Al-Pb合金,阴极铝纯度超过99.9%;离子液体中Li(Ⅰ)、Na(Ⅰ)、K(Ⅰ)、Ca(Ⅱ)、Mg(Ⅱ)浓度即使达到2000mg/L,电沉积铝时也不会在阴极析出;另外,电解精炼再生铝合金(铝含量为75.33wt%),在铜基体上得到了纯度超过99.8%的金属铝,电流效率超过93.8%,直流电单耗在1.59-1.82kW·h/kg-Al之间,再生铝中各主要金属杂质均可通过电解精炼除去。因此,离子液体电解精炼铝是可行的。
     随着含水量的增加,AlCl3-BMIC离子液体的黏度增加、电导率降低。恒电流电沉积实验表明,离子液体中含水量不超过1.39mol/L时,水的存在可以细化沉积层铝颗粒,改善铝的沉积层质量,使沉积层变的致密均匀,当含水量较高达至1.67mol/L时,沉积层变得疏松、易脱落。
As the rising demand for aluminum and the exhaustion of the aluminum mineral resource make the recovery of aluminum concerned, the purification of secondary aluminum has become the focus of researches. The metal impurities of aluminum scrap can not be fully removed by refining in melting furnace. Aluminum scrap is mainly recycled as aluminum alloy by remelting and purifying and mixing with primary aluminum, so its application is limited. Refining of aluminum scrap to pure metal would enable to increase its applications fields. In this paper, the x(AlCl3)=0.667AlCl3-BMIC ionic liquid is served as the electrolyte for the electrorefining of aluminum scrap. The effects of metal impurity of aluminum scrap and water on aluminum electrorefining have been investigated.
     The anode dissolution of aluminum in AlCl3-BMIC ionic liquid has been studied through linear sweep voltammetry test. The passivation phenomenon is observed. It is caused by formation of solid AlCl3layer at the surface of aluminum electrode resulting from concentration changes of AlCl4and Al2Cl7-. The agitation, increment of temperature and decrement of x(AlCl3) exhibits a notable effect on increasing anodic limiting current density.
     The controlled-potential coulometry measurement has been carried out to determine the oxidation state of metal species produced by the anodization of metal in ionic liquid. The results indicate that the Mn、Zn、Fe、Ni、Pb are oxidized to generate Mn(Ⅱ)、Zn(Ⅱ)、Fe(Ⅱ)、Ni(Ⅱ)、 Pb(Ⅱ) and Cu is oxidized to generate Cu(Ⅰ). The potentials of Mn(Ⅱ)/Mn, Zn(Ⅱ)/Zn, Pb(Ⅱ)/Pb, Fe(Ⅱ)/Fe, Cu(Ⅰ)/Cu and Ni(Ⅱ)/Ni are0.02,0.21,0.32,0.63,0.64and0.86V vs. Al(Ⅲ)/Al reference electrode respectively, which are much smaller than those in aqueous solutions. The metal activation taxis in AlCl3-BMIC ionic liquid is Mn>Zn>Pb>Fe>Cu>Ni, and is not a usual metal activation taxis.
     The corrosion of Mn, Cu, Zn, Fe, Pb and Ni in AlCl3-BMIC ionic liquid has been investigated. It is found that the order of metal corrosion rate is Mn>Cu>Zn>Fe>Pb>Ni in the range of323-363K while Ni is faster than Pb when the temperature is above363K. The corrosion activation energies of Mn, Cu, Zn, Fe, Pb and Ni in the ionic liquid are52.23,66.42,53.02,50.42,41.11and60.55kJ/mol respectively.
     Electrochemical analysis indicates the effects of impurities on electrode reaction are quite different. The Cu(I), Zn(II), Ni(II) are found to depolarize the cathode. The Fe(II) and Pb(II) are observed to polarize the cathode. Polarization of the cathode is noted when Mn(Ⅱ) concentrations are less than50mg/L whereas depolarization of cathode is found when Mn(Ⅱ) concentration is100mg/L. The Li(Ⅰ), Na(Ⅰ), K(Ⅰ), Ca(Ⅱ) and Mg(Ⅱ) have little effect on electrode reaction.
     The constant current electrolysis experiments results show that the aluminum with purity higher than99.8%is obtained with electrorefining Al-Cu, Al-Zn, Al-Fe, Al-Mn, Al-Ni and Al-Pb alloys. The purity of aluminum deposits is virtually unaffected by Li(Ⅰ), Na(Ⅰ), K(Ⅰ), Ca(Ⅱ) and Mg(Ⅱ) in AlCl3-BMIC ionic liquid electrolytes even though the concentration is up to2000mg/L. The aluminum deposits whose purity is higher than99.8%are obtained at cathode via electrolysis industrial aluminum alloy which aluminum purity is75.33wt%. The current efficiency is kept above93.8%, and the energy consumpution is in the range1.59-1.82kW·h/kg-Al. The metal impurities of secondary aluminum can be removed almost by electrorefining. It is indicate that electrorefining aluminum with AlCl3-BMIC ionic liquid is feasible.
     The effects of water on the properities of AlCl3-BMIC ionic liquid have been investigated. The results show that the AlCl3-BMIC ionic liquid viscosity increases and electrical conductivity decreases with water content increasing. The deposits from ionic liquid with water became more compact and grain size decreases when the water concentration is increased from0to1.39mol/L, but it become loosen when water concentration is up to1.67mol/L.
引文
[1]王恭敏.中国再生铝产业的回顾与展望[J].资源再生,2007,(6):6-9
    [2]中国有色金属工业协会,中国有色金属工业协会行业统计数据,2011.
    [3]翁利民,康军伟.再生铝:循环经济的亮点[J].世界有色金属,2009,(6):66-69
    [4]侯海红.再生铝市场发展.新疆有色金属,2002,(2):30-32
    [5]刘业翔,李劫.现代铝电解[M].北京:冶金工业出版社,2008
    [6]邱竹贤.预焙槽炼铝[M],北京:冶金工业出版社,2005,1:113-426.
    [7]杨重愚.轻金属冶金学[M].北京:冶金工业出版社,1991
    [8]李汝雄.绿色溶剂-离子液体的合成与应用[M].北京:化学工业出版社,2004.
    [9]邓友全.离子液体-性质、制备与应用[M].北京:中国石化出版社,2006.
    [10]张锁江,吕兴梅等.离子液体-从基础研究到工业利用[M].北京:科学出版社,2006.
    [11]张星辰.离子液体-从理论基础到研究进展[M].北京:化学工业出版社,2009.
    [12]刘建国,李治国,田鹏,等.一种新的绿色溶剂—室温离子液体[J].辽宁大学学报自然科学版,2003,30(2):179-184.
    [13]Hagiwara R and Ito Y. Room temperature ionic liquids of alkylimidazolium cations and fluoroanions[J]. Journal of Fluorine Chemistry,2000,105(2):221-227.
    [14]Marsh K N, Boxall J A, Lichtenthaler R. Room temperature ionic liquids and their mixtures-a review[J]. Fluid Phase Equilibria,2004,219(1):93-98.
    [15]Seki S, Kobayashi T, Kobayashi Y, et al. Effects of cation and anion on physical properties of room-temperature ionic liquids[J]. Journal of Molecular Liquids,2010,152(1-3):9-13.
    [16]Wilkes J S and Zaworotko M J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids[J]. Chem Commun,1992, (13):965-967.
    [17]Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis[J]. Chem. Rev.1999,99(8):2071-2083.
    [18]Nishida T, Tashiro Y, Yamamoto M. Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte[J]. Journal of Fluorine Chemistry,2003,120(2):135-141.
    [19]Freyland W. Liquid metals, molten salts, and ionic liquids:some basic properties[M]. Coulombic Fluids. Springer Series in Solid-State Sciences,2011,168:5-44.
    [20]Yue G K, Liu X M, Zhu Y L, et al. Conductivities of AlCl3/ionic liquid systems and their application in electrodeposition of aluminum[J]. The Chinese Journal of Process Engineering,2008,8(4):814-819.
    [21]Pereiro A B, Legido J L, Rodriguez A. Physical properties of ionic liquids based on 1-alkyl-3-methylimidazolium cation and hexafluorophosphate as anion and temperature dependence[J]. J. Chem. Themodynamics,2007,39(8):1168-1175.
    [22]BonhOte P, Papageorgiou N, Kalyanasundaram K, et al. Hydrophobic, highly condutive ambient-temperature molten salts[J]. Inorg Chem,1996,35(5):1168-1178.
    [23]Fuller J, Carlin R T, Osteryoung R A. The room temperature ionic liquid 1-ethyl-3-metylimidazolium tetrafluoroborate:Electrochemical couples and physical properties[J]. The Electrochemical Society, Inc,1997,144(11):3881-3885.
    [24]Galinski M, Lewandowski A, stepniak I. Ionic liquids as electrolytes[J]. Electrochimica Acta, 2006,51(26):5567-5580.
    [25]Takahashi S, Koura N, Kohara S, et al. Technological and scientific issues of room-temperature molten salts[J]. Plasmas & Ions,1992,2(3-4):91-105.
    [26]Lipsztajn M and Osteryoung R A. Electrochemistry in neutral ambient-temperature ionic liquids.1. Studies of iron(Ⅲ), neodymium(Ⅲ), and lithium(Ⅰ)[J]. Inorg. Chem.,1985,24(5): 716-719.
    [27]Chen P Y, Lin Y F, Sun I W. Electrochemistry of gallium in the Lewis acidic aluminum chloride-1-methyl-3-ethylimidazolium chloride room-temperature molten salt[J]. J. Electrochem. Soc.,1999,146(9):3290-3294.
    [28]Verbrugge M W and Carpenter M K. Microelectrode study of gallium deposition from chlorogallate melts[J]. AIChE J.,1990,36(7):1097-1106.
    [29]Tsuda T, Nohira T, Ito Y. Electrodeposition of lanthanum in lanthanum chloride saturated AlCl3-1-ethyl-3-methylimidazolium chloride molten salts[J]. Electrochimica Acta,2001, 46(12):1891-1897.
    [30]Xu X H and Hussey C L. Electrodeposition of Silver on Metallic and Nonmetallic Electrodes from the Acidic Aluminum Chloride-1-Methyl-3-Ethylimidazolium Chloride Molten Salt[J]. J. Electrochem. Soc.,1992,139(5):1295-1300.
    [31]Xu X H and Hussey C L. The Electrochemistry of Gold at Glassy Carbon in the Basic Aluminum Chloride-1-Methyl-3-ethylimidazolium Chloride Molten Salt[J]. J. Electrochem. Soc.,1992,139(11):3103-3108.
    [32]Liu J S Y and Sun I W. Electrochemical study of the properties of indium in room temperature chloroaluminate molten salts[J]. J. Electrochem. Soc.,1997,144(1):140-145.
    [33]Liu J S Y, Chen P Y, Sun I W. Electrochemical Studies of Chromium (Ⅲ) and Chromium (Ⅱ) Chloride Complexes in Basic Aluminum Chloride-1-Methy1-3-ethylimidazolium Chloride Room temperature molten Salts[J]. J. Electrochem. Soc.,1997,144(7):2388-2392.
    [34]Habboush D A and Osteryoung R A. Electrochemical studies of antimony (III) and antimony(V) in molten mixtures of aluminum chloride and butylpyridinium chloride[J]. Inorg. Chem.,1984,23(12):1726-1734.
    [35]Jeng E G S and Sun I W. Electrochemistry of Tellurium(IV) in the Basic Aluminum Chloride-1-Methy1-3-ethylimidazolium Chloride Room Temperature Molten Salt[J]. J. Electrochem. Soc.,1997,144(7):2369-2374.
    [36]Xu X H and Hussey C L. The Electrochemistry of Mercury at Glassy Carbon and Tungsten Electrodes in the Aluminum Chloride-1-Methy1-3-Ethylimidazolium Chloride Molten Salt[J]. J. Electrochem. Soc.,1993,140(5):1226-1233.
    [37]Gray G E, Kahl P A, Winnick J. Stability of Sodium Electrodeposited from a Room Temperature Chloroaluminate Molten Salt[J]. J. Electrochem. Soc.,1995,142(11): 3636-3642.
    [38]Gray G E, Winnick J, Kohl P A. Plating and Stripping of Sodium from a Room Temperature 1-Methyl-3-propylimidazolium Chloride Melt[J]. J. Electrochem. Soc.,1996,143(12): 3820-3824.
    [39]Piersma B J. Electrodeposition and Stripping of Lithium and Sodium on Inert Electrodes in Room Temperature Chloroaluminate Molten Salts[J]. J. Electrochem. Soc.,1996,143(3): 908-913.
    [40]Hussey C L and Xu X H. Electrodissolution and Electrodeposition of Lead in an Acidic Room Temperature Chloroaluminate Molten Salt[J]. J. Electrochem. Soc.,1991,138(7): 1886-1890.
    [41]Heerman L and D'Olieslager W. Electrochemistry of Bismuth in a 67 Mole% AlCl3-33 Mole% N-(n-Butyl)Pyridinium Chloride Room Temperature Molten Salt[J]. J. Electrochem. Soc.,1991,138(5):1372-1376.
    [42]Endres F, Bukowski M, Hempelmann R, et al. Electrodeposition of nanocrystalline metals and alloys from ionic liquids[J]. Angew. Chem., Int. Ed.,2003,42(29):3428-3430.
    [43]Nanjundiah C, Shimizu K and Osteryoung R A. Electrochemical Studies of Fe(Ⅱ) and Fe(Ⅲ) in an Aluminum Chloride-Butylpyridinium Chloride Ionic Liquid[J]. J. Electrochem. Soc., 1982,129(11):2474-2480.
    [44]Nanjundiah C and Osteryoung R A. Electrochemical Studies of Cu(I) and Cu(Ⅱ) in an Aluminum Chloride-N-(n-Butyl)Pyridinium Chloride Ionic Liquid[J]. J. Electrochem. Soc., 1983,130(6):1312-1318.
    [45]Endres F and Schweizer A. The electrodeposition of copper on Au(111) and on HOPG from the 66/34 mol% aluminium chloride/1-butyl-3-methylimidazolium chloride room temperature molten salt:an EC-STM study[J]. Phys. Chem. Chem. Phys.,2000,2: 5455-5462.
    [46]Mitchell J A, Pitner W R, Hussey C L, et al. Electrodeposition of Cobalt and Cobalt-Aluminum Alloys from a Room Temperature Chloroaluminate Molten Salt[J]. J. Electrochem. Soc.,1996,143(11):3448-3455.
    [47]Pitner W R and Hussey C L. Electrodeposition of Zinc from the Lewis Acidic Aluminum Chloride-1-Methyl-3-ethylimidazolium Chloride Room Temperature Molten Salt[J]. J. Electrochem. Soc.,1997,144(9):3095-3103.
    [48]Hussey C L and Xu X. Electrodissolution and Electrodeposition of Lead in an Acidic Room Temperature Chloroaluminate Molten Salt[J]. J. Electrochem. Soc.,1991,138(7): 1886-1890.
    [49]Chen P Y and Sun I W. Electrochemistry of Cd(Ⅱ) in the basic 1-ethyl-3-methylimidazolium chloride/tetrafluoroborate room temperature molten salt[J]. Electrochim. Acta,2000,45(19): 3163-3170.
    [50]Xu X H and Hussey C L. The Electrochemistry of Tin in the Aluminum Chloride-1-methyl-3-ethylimidazolium Chloride Molten Salt[J]. J. Electrochem. Soc.,1993, 140(3):618-626.
    [51]Liu J S Y and Sun I W. Electrochemical Study of the Properties of Indium in Room Temperature Chloroaluminate Molten Salts[J]. J. Electrochem. Soc.,1997,144(1):140-145.
    [52]Katayama Y, Dan S, Miura T, et al. Electrochemical Behavior of Silver in 1-Ethyl-3-methylimidazolium Tetrafluoroborate Molten Salt[J]. J. Electrochem. Soc.,2001, 148(2):C102-C105.
    [53]Schreiter E R, Stevens J E, Ortwerth M F, et al. A Room-Temperature Molten Salt Prepared from AuCl3 and 1-Ethyl-3-methylimidazolium Chloride[J]. Inorg. Chem.,1999,38(17): 3935-3937.
    [54]Morimitsu M, Tanaka T, Matsunaga M. Induced Codeposition of Al-Mg Alloys in Lewis Acidic AlCl3-EMIC Room Temperature Molten Salts[J]. Chemistry Letters,2000,29 (9): 1028-1029.
    [55]Pradhan D, Reddy R G. Electrochemical production of Ti-Al alloys using TiCl4-AlCl3-1-butyl-3-methyl imidazolium chloride (BmimCl) electrolytes[J]. Electrochimica Acta,2009,54(6):1874-1880.
    [56]Carlin R T, De Long H C, Fuller J, et al. Microelectrode Evaluation of Transition Metal-Aluminum Alloy Electrodepositions in Chloroaluminate Ionic Liquids[J]. J. Electrochem. Soc.,1998,145(5):1598-1607.
    [57]Zell C A, Freyland W. In situ STM and STS study of NixAl1-x alloy formation on Au(111) by electrodeposition from a molten salt electrolyte[J]. Chemical Physics Letters,2001,337: 293-298.
    [58]Moffat T P. Electrodeposition of Ni1-xAlx in a Chloroaluminate Melt[J]. J. Electrochem. Soc., 1994,141(11):3059-3070.
    [59]Freyland W, Zell C A, Zein El Abedin S, et al. Nanoscale electrodeposition of metals and semiconductors from ionic liquids[J]. Electrochimica Acta,2003,48:3053-3061.
    [60]Li J C, Nan S H, Jiang Q. Study of the electrodeposition of Al-Mn amorphous alloys from molten salts[J]. Surface and Coatings Technology,1998,106(2/3):135-139.
    [61]Zell C A, Endres F, Freyland W. Electrochemical insitu STM study of phase formation during Ag and Al electrodeposition on Au(111) from a room temperature molten salt[J]. Phys. Chem. Chem. Phys.,1999,1:697-704.
    [62]Endres F, Freyland W. Electrochemical Scanning Tunneling Microscopy Investigation of HOPG and Silver Electrodeposition on HOPG from the Acid Room-Temperature Molten Salt Aluminum Chloride-1-Methyl-3-butyl-imidazolium Chloride[J]. J. Phys. Chem. B, 1998,102(50):10229-10233.
    [63]Koura N, Kato T, Yumoto E. Electrodeposition of Nb-Al alloy from ambient-temperature molten salt electrolytes[J]. Hyomen Gijutsu,1994,45(8):805-809.
    [64]田鹏,杨家振,宋溪明,等.室温离子液体FeCl3-B PC体系的研究[J].东北大学学报(自然科学版),2002,23(7):691-693.
    [65]杨家振,李吉广,房大维,张庆国等.过渡金属离子液体的热化学性质研究-BMIC/ZnCl2体系[J].高等化学学报,2007,28(3):492-495.
    [66]Lin Y F, Sun I W. Electrodeposition of zinc from a Lewis acidic zinc chloride-1-ethyl-3-methylimidazolium chloride molten salt[J]. Electrochimica Acta,1999, 44(16):2771-2777.
    [67]Hsiu S I, Huang J F, Sun I W, et al. Lewis acidity dependency of the electrochemical window of zinc chloride-1-ethyl-3-methylimidazolium chloride ionic liquids[J]. Electrochimica Acta,2002,47(27):4367-4372.
    [68]Lin M C, Chen P Y, Sun I W. Electrodeposition of Zinc Telluride from a Zinc Chloride-1-Ethyl-3-methylimidazolium Chloride Molten Salt[J]. J. Electrochem. Soc.,2001, 148(10):C653-C658.
    [69]Huang J F, Sun I W. Electrochemical Study of Cadmium in Acidic Zinc Chloride-1-ethyl-3-methylimidazolium Chloride Ionic Liquids[J]. J. Electrochem. Soc., 2002,149(9):E348-E355.
    [70]Huang J F, Sun I W. Electrochemical Studies of Tin in Zinc Chloride-1-ethyl-3-methylimidazolium Chloride Ionic Liquids[J]. J. Electrochem. Soc., 2003,150(6):E299-E306.
    [71]Huang J F, Sun I W. Nonanomalous Electrodeposition of Zinc-Iron Alloys in an Acidic Zinc Chloride-l-ethyl-3-methylimidazolium Chloride Ionic Liquid[J]. J. Electrochem. Soc.,2005, 151(1):C8-C14.
    [72]Huang J F, Sun I W. Electrodeposition of PtZn in a Lewis acidic ZnCl2-1-ethyl-3-methylimidazolium chloride ionic liquid[J]. Electrochimica Acta,2004, 49(19):3251-3258.
    [73]Abbott A P, Capper G, Davies D L, et al. Ionic Liquid Analogues Formed from Hydrated Metal Salts[J]. Chem. Eur. J.,2004,10(15):3769-3774.
    [74]崔焱,华一新.ChCl/CrCl3·6H2O体系中Cr(Ⅲ)的电化学成核机理[J].材料科学与工程学报,2010,3(125):13-16.
    [75]崔焱,华一新.三价铬在ChCl/CrCl3·6H2O体系中的电沉积机理[J].有色金属(季刊),2011,63(1):92-96.
    [76]崔焱.氯化胆碱-CrCl3·6H2O体系中电沉积铬的研究[D].昆明,昆明理工大学博士学位论文,2011.
    [77]Nuli Y, Yang J, Wang P. Electrodeposition of magnesium film from BMIMBF4 ionic liquid[J]. Applied Surface Science,2006,252(23):8086-8090.
    [78]Nuli Y, Yang J, Wu R. Reversible deposition and dissolution of magnesium from BMIMBF4 ionic liquid[J]. Electrochemistry Communications,2005,7(11):1105-1110.
    [79]Amir N, Vestfrid Y, Chuside O, et al. Progress in nonaqueous magnesium electrochemistry[J]. Journal of Power Sources,2007,174(2):1234-1240.
    [80]Sakaebe H and Matsumoto H. N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13-TFSI)-novel electrolyte base for Li battery [J]. Electrochem. Commun.,2003,5(7):594-598.
    [81]Mukhopadhyay I, Aravinda C L, Borissov D, et al. Electrodeposition of Ti from TiCl4 in the ionic liquid 1-methyl-3-butyl-imidazolium bis (trifluoro methyl sulfone) imide at room temperature:study on phase formation by in situ electrochemical scanning tunneling microscopy[J]. Electrochim. Acta,2005,50(6):1275-1281.
    [82]Borisenko N, Zein El Abedin S and Endres F. In Situ STM Investigation of Gold Reconstruction and of Silicon Electrodeposition on Au(111) in the Room Temperature Ionic Liquid 1-Butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide[J]. J. Phys. Chem. B,2006,110(12):6250-6256.
    [83]Zein El Abedin S, Borissenko N and Endres F. Electrodeposition of nanoscale silicon in a room temperature ionic liquid[J]. Electrochem. Commun.,2004,6(5):510-514.
    [84]Chen P Y and Sun I W. Electrochemical study of copper in a basic 1-ethyl-3-methylimidazolium tetrafluoroborate room temperature molten salt[J]. Electrochim. Acta,1999,45(3):441-450.
    [85]Murase K, Nitta K, Hirato T, et al. Electrochemical behaviour of copper in neutral aerated chloride solution. I. Steady-state investigation[J]. J. Appl. Electrochem.,2001,31: 1089-1094.
    [86]Zein El Abedin S, Farag H K, Moustafa E M, et al. Electroreduction of tantalum fluoride in a room temperature ionic liquid at variable temperatures [J]. Phys. Chem. Chem. Phys.,2005, 7:2333-2339.
    [87]Chen P Y and Hussey C L. Electrodeposition of cesium at mercury electrodes in the tri-1-butylmethylammonium bis((trifluoromethyl)sulfonyl)imide room-temperature ionic liquid[J]. Electrochim. Acta,2004,49(28):5125-5138.
    [88]Zein El Abedin S, Saad AY, Farag H K, et al. Electrodeposition of selenium, indium and copper in an air- and water-stable ionic liquid at variable temperatures[J]. Electrochim. Acta, 2007,52(8):2746-2754.
    [89]Al-Salman R, Zein El Abedin S and Endres F. Electrodeposition of Ge, Si and SixGe1-x from an air- and water-stable ionic liquid[J]. Phys. Chem. Chem. Phys.,2008,10:4650-4657.
    [90]Abbott A P and McKenzie K J. Application of ionic liquids to the electrodeposition of metals[J]. Phys. Chem. Chem. Phys.,2006,8:4265-4279.
    [91]张欣.咪唑类离子液体合成及铝的电沉积研究[D].山东理工大学,2009:16-18.
    [92]田国才,李坚,华一新.离子液体在有色金属冶金中的应用[J].过程工程学报,2009,9(1):200-208.
    [93]Bebensee F, Klarhfer L, Endress F. Interaction of electrochemically deposited aluminum nanoparticles with reactive gases[J]. Surface Science,2007,601(18):3769-3773.
    [94]刘清泉,潘春跃.室温熔盐的研究进展[J].材料导报,2003,17(1):36-38.
    [95]Caporali S, Fossati A, Bardi U. Oxidative post-treatments for enhanced corrosion resistance of aluminum electrodeposited from ionic liquids[J]. Corrosion Science,2010,52(1): 235-241.
    [96]柳泉,刘奎仁,韩庆,等.低温电镀铝的研究进展[J].材料与冶金学报,2009,8(1): 40-16.
    [97]柳泉,刘奎仁,韩庆,等.TMPAC-AlCl3离子液体电镀铝研究[J].东北大学学报(自然科学版),2010,31(8):1149-1152.
    [98]柳泉,刘奎仁,韩庆,等.苯基三甲基氯化铵(TMPAC)-三氯化铝(AlCl3)离子液体+苯的电镀铝研究[J].中国表面工程,2010,23(6):34-39.
    [99]徐加民,安茂忠,苏彩娜,等.离子液体金属电沉积研究进展[J].电镀与环保,2009,29(2):1-6.
    [100]Zhang L, Yu X, Dong Y, et al. Electrodeposition of aluminum on magnesium from ionic liquid (EMIM)Br-AlCl3[J]. Trans. Nonferrous Met. Soc. China,2010,20:s245-s248.
    [101]Aravinda C L, Burger B, Freyland W. Nanosacle electrodeposition of Al on n-Si(111):H from an ionic liquid[J]. Chemical Physics Letters,2007,434(4-6):271-275.
    [102]马江华,李玉平,张懿,等.[EMIM]HSO4离子液体的合成及其在氧化铝电解中的应用[J].过程工程学报,2007,7(6):1083-1088.
    [103]杨培霞,安茂忠,梁淑敏,等.离子液体中金属的电沉积[J].电镀与环保,2006,26(5):1-5.
    [104]Shitanda I, Sato A, Itagaki, M et al. Electroless plating of aluminum using dissobutyl aluminum hydride as liquid reducing agent in room-temperature ionic liquid[J]. Electrochimica Acta,2009,54(24):5889-5893.
    [105]Tian G, Zhou X, Li J, et al. Quantum chemical aided molecular desigh of ionic liquids as green electrolytes for electrodeposition of active metals[J]. Transactions of Nonferrous Metals Society of China,2009,19(6):1639-1644.
    [106]王晓丹,吴文远,涂赣峰,等.离子液体中电沉积金属的研究现状[J].材料导报,2008,22(10):70-75.
    [107]薛红,韦风云,吴庆海.室温离子液体在镀层电沉积中的应用[J].有色金属,2007,59(4):115-117.
    [108]张桂凯,李炬,陈长安,等.HR-2不锈钢室温熔盐镀铝[J].稀有金属材料与工程,稀有金属材料与工程,2010,39(7):1219-1222.
    [109]Tang J and Azumi K. Optimization of pulsed electrodeposition of aluminum from AlCl3-1-ethyl-3-methylimidazolium chloride ionic liquid[J]. Electrochimica Acta.2011, 56(3):1130-1137.
    [110]Yang H, Guo X, Wu G, et al. Electrodeposition of chemically and mechanically protective Al-coatings on AZ91D Mg alloy[J]. Corrosion Science,2011,53(1):381-387.
    [111]Li B, Fan C, Chen Y, et al. Pulse current electrodeposition of Al from an AlCl3-EMIC ionic liquid[J]. Electrochimica Acta,2011,56(16):5478-5482.
    [112]Vaughan J, Tu J, Dreisinger D. Ionic liquid electrodeposition of reactive metals[J]. Mineral Processing and Extractive.2008,117(2):113-117.
    [113]李岩,凌国平,刘柯钊,等.不锈钢基体室温熔盐电沉积铝[J].浙江大学学报,2009,43(7):1317-1321.
    [114]苏立峰,李亚琼,吴开基.离子液体1-丁基-3-甲基咪唑-氯铝酸盐体系的电化学研究[J].材料与冶金学报,2009,8(2):95-99.
    [115]孙淑萍,李东春.铝在室温熔盐中的电沉积[J].轻合金加工技术,2003,31(11):28-30.
    [116]Moustafa E M, Zein El Abedin S, Shkurankov A, et al. Electrodeposition of Al in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide and 1-ethyl-3-metylimidazolium bis(trifluoromethylsulfonyl)amide ionic liquids:In situ STM and EQCM studies[J]. J. Phys. Chem. B 2007,111(18):4693-4704.
    [117]Zein El Abedin S, Giridhar P, Endress F. Electrodeposition of nanocrystalline aluminum from a chloroaluminate ionic liquid[J]. Electrochemistry Communications,2010,12(8): 1084-1086.
    [118]Gasparotto L H S, Prowald A, Borisenko N, et al. Electrochemical synthesis of macroporous aluminum films and their behavior towards lithium deposition/stripping[J]. Journal of Power Sources,2011,196(5):2879-2883.
    [119]张欣,张丽鹏,于先进.室温离子液体电沉积铝及其合金的研究进展[J].中国有色冶金,2009,4(2):63-70.
    [120]张丽鹏,于先进,洪淑翠,等.铝基离子液体(BMIM)Br-AlCl3的制备与电沉积应用[J].中国有色金属学报,2008,18(1):274-278.
    [121]杨海燕,郭兴伍,吴国华.离子液体中电沉积的研究进展[J].材料导报,2009,23(3):17-21.
    [122]范春华,李冰,江庐山.室温氯化铝-有机熔盐电沉积铝的研究进展[J].材料保护,2007,40(10):50-53.
    [123]G Oltean, L Nyholm, K EdstrOm. Galvanostatic electrodeposition of aluminum nano-rods for Li-ion three-dimensional micro-battery current collectors[J]. Electrochimica Acta,2011, 56(9):3203-3208.
    [124]尹振,翟玉春.室温离子液体在电化学沉积中的研究进展[J].有色矿冶,2005,21:49-51.
    [125]Tian G, Li J, Hua Y. Application of ionic liquids in hydrometallurgy of nonferrous metals[J]. Transactions of Nonferrous Metals Society of China,2010,20(3):513-520.
    [126]Jiang T, Chollier Brym M J, Dube Q et al. Studies on the AlCl3/dimethylsufone(DMSO2) electrolytes for the aluminum deposition processes[J]. Surface & Coatings Technology, 2007,201(14):6309-6317.
    [127]Chuang M H, Chang J K, Tsai P J, et al. Heat-treatment induced material property variations of Al-coated Mg alloy prepared in aluminum chloride/1-ethyl-3-methylimidazolium chloride ionic liquid[J]. Surface & Coatings Technology,2010,205(1):200-204.
    [128]Yang C C, Chang C P. Aluminum electrodeposition from room temperature molten AlCl3-BPC salt bath[J]. Journal of Marine Science and Technology,1993,1(1):31-37.
    [129]Lai P K, Skyllas-Kazacos M. Electrodeposition of aluminum in aluminum chloride/1-methyl-3-ethylimidazlolium chloride[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1988,248(2):431-440.
    [130]韩文生,谢锐兵,萧以德.钕铁硼稀土永磁材料室温熔盐电镀铝的研究[J].材料保护,2005,38(10):1-4.
    [131]王喜然,华一新.绿色电解液-离子液体电解铝的研究现状[J].云南冶金,2007,36(3):28-31.
    [132]王喜然,苌清华,赵新超.离子液体在金属铝电沉积方面的应用[J].轻金属,2010,(7):41-44.
    [133]杨英慧(摘译).离子液体熔体炼铝可节电20%[J].现代材料动态,2007,(7):8-9.
    [134]钱红妹.镁合金离子液体电沉积铝及耐腐蚀机理研究[D].浙江大学硕士学位论文,2010.
    [135]唐广涛.超重力环境下AlCl3-BMIC离子液体电解铝的研究[D].北京化工大学硕士学位论文,2010.
    [136]Hurley F H, Wier T P. Electrodeposition of Metals from Fused Quaternary Ammonium Salts [J]. J. Electrochm. Soc.,1951,98(5):203-206.
    [137]Hurley F H, Wier T P. The Electrodeposition of Aluminum from Nonaqueous Solutions at room Temperature [J]. J. Electrochm. Soc.,1951,98(5):207-212.
    [138]Safranek W H, Sehiekner W C, Fraust C L. Electroforming Aluminum Waveguides Using Organo-aluminum Plating Baths[J]. J. Electrochem. Soc.,1952,99:53-55.
    [139]Osteryoung R A, Robinson J. An Electrochemical and Spectroscopic Study of Some Aromatic in the Room Temperature Molten Salts System Aluminum Chloride-n-Butylpyridinium Chloride[J]. J. Am. Chem. Soc.,1979,102(2):323-327.
    [140]Gale R J, Osteryoung R A. Electrochemical reduction of pyridinium ions in ionic aluminum chloride:Alkylpyridinium halide ambient tenperature liquids[J]. J. Electrochem. Soc.,1980,127(10):2167-2172.
    [141]Osteryoung R A, Robinson J. The Electrochemical Behavior of Aluminum in the Low Temperature Molten Salt System n Butyl Pyridinium Chloride:Aluminum Chloride and Mixtures of This Molten Salt with Benzene[J]. J. Electrochem. Soc.,1980,127:122-128.
    [142]Yang C C. Electrodeposition of aluminum in molten AlCl3-n-butylpyridinium chloride electrolyte[J]. Materials Chemistry and Physics,1994,37:355-361.
    [143]Liao Q, Pitner W R, Stewart, G, Hussey. Electrodeposition of Aluminum from the Aluminum Chloride-1-Methyl-3-ethyimidazolium Chloride Room Temperature Molten Salt+Benzene[J]. J. Electrochem. Soc.,1997,144(3):936-943.
    [144]Jiang T, Chollier Brym M J, Dube G, et al. Electrodeposition of aluminum from ionic liquids:Part I-eletrodeposition and surface morphology of aluminum from aluminum chloride (AlCl3)-1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) ionic liquid[J]. Surface & Coatings Technology,2006,201(1/2):1-9.
    [145]Perre E, Nyholm L, Gustafsson T, et al. Direct electrodeposition of aluminum nano-rods[J]. Electrochem. Commun.,2008,10:1467-1470.
    [146]Zhang M M, Reddy R G. Ionic Liquids Electrowinning of Aluminum in Batch Mode Cells[J]. Light Metals,2006, (1):451-455.
    [147]Zhang M M, Reddy R G. Ionic Liquid Electrowinning of Aluminum-Modeling of Batch Reactor[J]. Light Metals,2007, (1):385-390.
    [148]Zhao Y G, VanderNoot T J. Electrodeposition of aluminum from room temperature AlCl3-TMPAC molten salts[J]. Electrochimica. Acta,1997,42(11):1639-1643.
    [149]Jiang T, Chollier Brym M J, Dube G, et al. Electrodeposition of aluminum from ionic liquids:Part Ⅱ-studies on the electrodeposition of aluminum from aluminum chloride(AlCl3)-trimethylphenylammonium chloride (TMPAC) ionic liquids[J]. Surface & Coatings Technology,2006,201(1/2):10-18.
    [150]Abbott A P, Eardley C A, Farley N S, et al. Electrodeposition of aluminum and aluminum/platinum alloys from AlCl3/benzyltrimethylammonium chloride room temperature ionic liquids[J]. J. App. Electrochem.,2001,21:1345-1350.
    [151]Abedin S Z E1, Moustafa E M, Hempelmann R, et al. Electrodepostion of Nano and Microcrystalline Aluminum in Three Diferent Air and Water Stable Ionic Liquids[J]. Chem. Phys. Chem.,2006,7:1535-1543.
    [152]Abedin S Z E1, Moustafa E M, Hempelmann R, et al. Additive free electrodeposition of nanocrystalline aluminum in a water and air stable ionic liquid[J]. Electrochem. Commun., 2005,7:1111-1116.
    [153]Abedin S Z E1, POlleth M, Meiss S A, et al. Ionic Liquids as Green Electrolytes for the Elctrodeposition of Nanomaterials[J]. Green Chem.,2007,9:549-553.
    [154]Vaughan J, Tu J, Dreisinger D. Ionic Liquid Electrodepostion of Reactive Metals[J]. TMS, 2008,117:6469-474.
    [155]Vaughan J, Dreisinger D. Electrodepostion of Aluminum from Aluminum Chloride-Trihexyl(tetradecy1)Phosphonium Chloride[J]. J. Electrochem. Soc.,2008, 155(1):D68-D72.
    [156]Zhang M M, Kamavaram V, Reddy R G. New Electrolytes for Aluminum Production: Ionic Liquids[J]. JOM,2003,55(9):54-57.
    [157]Moustafa E M, Abedin S Z El, Shkurankov A, et al. Electrodepostion of Al in 1-Butyl-1-methylpyrrolidinium Bis(trifluroromethylsulfonyl)amide and 1-Ethyl-3-methylimidazolium Bis(trifluroromethylsulfonyl)amide Ionic Liquids:In Situ STM and EQCM Studies[J]. J. Phys. Chem. B,2007,111:4693-4703.
    [158]高丽霞,王丽娜,齐涛,等.离子液体AlCl3/Et3NHCl中电沉积法制备金属铝[J].物理化学学报,2008,24(6):939-944.
    [159]Liu Q X, Zein El Abedin S, Endres F. Electroplating of mild steel by aluminum in a first generation ionic liquid:A green alternative to commercial Al-plating in organic solvents[J]. Surface & Coatings Technology,2006,201:1352-1356.
    [160]Chang J K, Chen S Y, Tsai W T, Deng M J, Sun I W. Electrodeposition of aluminum on magnesium alloy in aluminum chloride (AlCl3)-1-ethyl-3-methylimidazolium chloride (EMIC) ionic liquid and its corrosion behavior[J]. Electrochem. Commun.,2007,9: 1602-1606.
    [161]Caporali S, Fossati A, Lavacchi A, Perissi I, Tolstogouzov A, Bardi U. Aluminum electroplated from ionic liquids as protective coating against steel corrosion[J]. Corrosion Science,2008,50:534-539.
    [162]Bardi U, S Caporli, M Craig, et al. Electrodeposition of aluminum film on P90 Li-Al alloy as protective coating against corrosion[J]. Surface & Coatings Technology,2008, 203(10-11):1373-1378.
    [163]Barchi L, Bardi U, Caporli S, et al. Electroplated bright aluminum coatings for anticorrosion and decorative purposes[J]. Progress in Organic Coatings,2010,67(2): 146-151.
    [164]Koura N, Nagase H, Sato A, et al. Electroless Plating of Aluminum from a Room-Temperature ionic Liquid Electrolyte[J]. J. Electrochem. Soc.,2008,155 (2): D155-D157.
    [165]Ali M R, Nishikata A, Tsuru T. Electrodeposition of Co-Al alloys of different composition from the AlCl3-BPC-CoCl2 room temperature molten salt[J]. Electrochimica Acta,1997, 42(12):1819-1828.
    [166]Ali M R, Nishikata A, Tsuru T. Electrodeposition of Aluminum-chromium alloys from AlCl3-BPC melt and its corrosion and high temperature oxidation behaviors[J]. Electrochimica Acta,1997,42(15):2347-2354.
    [167]Ali M R, Nishikata A, Tsuru T. Electrodeposition of Al-Ni intermetallic compounds from aluminum chloride-N-(n-buty1)pyridium chloride room temperature molten salt[J]. Electroanalytical Chemistry,2001,513(2):111-118.
    [168]Ali M R, Nishikata A, Tsuru T. Electrodeposition of Al-Ti alloys from aluminum chloride-N (n-butyl)pyridinium chloride room temperature molten salt[J]. Indian Chem Techn,2003,10(1):14-20.
    [169]Tsuda T, Hussey C L, Stafford G R. Electrodeposition of Al-Mo alloys from the lewis acidic aluminum chloride-1-ethyl-3-methylimidazolium chloride molten salt[J]. J. Electrochem. Soc.,2004,151(6):C379-C384.
    [170]Tsuda T, Hussey C L, Stafford G R, Kongstein O. Electrodeposition of Al-Zr alloys from the lewis acidic aluminum chloride-1-ethyl-3-methylimidazolium chloride melt[J]. J. Electrochem. Soc.,2004,151(7):C447-C454.
    [171]Tsuda T, Hussey C L, Stafford G R, et al. Electrochemistry of titanium and the electrodeposition of Al-Ti alloys in the Lewis acidic aluminum chloride-1-ethyl-3-methylimidazolium chloride melt[J]. J. Electrochem. Soc.,2003,150(4): C234-C243.
    [172]Tsuda T, Arimoto S, Kuwabata S and Hussey C L. Electrodeposition of Al-Mo-Ti Ternary Alloys in the Lewis Acidic Aluminum Chloride-1-Ethyl-3-methylimidazolium Chloride Room-Temperature Ionic Liquid[J]. J. Electrochem. Soc.,2008,155(4):D256-D262.
    [173]Pitner W R, Hussey L C. Electrodeposition of nickel-aluminum alloys from the aluminum chloride-1-methyl-3-ethylimidazlium [J]. J Electrochem Soc.,1996,143(1):130-138.
    [174]Tierney B J, Pinter W R, Mitchell J A and Hussey C L. Electrodeposition of Copper and Copper-Aluminum Alloys from a Room-Temperature Chloroaluminate Molten Salt[J]. J. Electrochom. Soc.,1998,145(9):3110-3116.
    [175]Mitchell J A, Pitner W R, Hussey L C, et al. Electrodepo sition of cobalt and cobaIt-aluminum alloys from a room temperature chloroaluminate molten salt[J]. J. Electrochem. Soc.,1996,143(11):3448-3455.
    [176]Moffat T P. Electrodeposition of Al-Cr metallic glass[J]. J. Electrochem. Soc.,1994,141(9): L115-L117.
    [177]Kamavaram V, Mantha D, Reddy R G Electrorefining of aluminum alloy in ionic liquids at low temperatures[J]. Journal of Mining and Metallurgy,2003,39(1-2) B:43-58.
    [178]Kamavaram V, Mantha D, Reddy R G Recycling of aluminum metal matrix composite using ionic liquids:Effect of process variables on current efficiency and deposit characteristics[J]. Electrochimica Acta,2005,50:3286-3295.
    [179]Reddy R G Emerging technologies in extraction and processing of metals[J]. Metallurgical and Materials Transactions B,2003,34:137-152.
    [180]Reddy R G. Emerging technologies in extraction and processing of metals[J]. Metallurgical and Materials Transactions B,2002,34(2):137-152.
    [181]Pradhan D, Mantha D, Reddy R G The effectofelectrodesurface modification and cathode overpotentialon deposit characteristicsin aluminum electrorefining using EMIC-AlCl3 ionic liquid electrolyte[J]. Electrochimica Acta,2009,54(26):6661-6667.
    [182]Wu B, Reddy R G, Rogers R D. Production refining and recycling of light weight and reactive metals in ionic liquids:US2002070122[P].2002.
    [183]Wu B, Reddy R G, Rogers R D. Aluminum rudction via near room temperature electrolysis in ionic liquids [J]. Light Metals,2001, (1):237-243.
    [184]王喜然.BMIC-AlCl3离子液体电解精炼铝的研究[D].昆明:昆明理工大学硕士学位论文,2006.
    [185]赵秋凝.在BMIC-AlCl3-R离子液体中电解精炼铝的研究[D].昆明,昆明理工大学硕士学位论文,2007.
    [186]李艳,华一新,张启波,等.氯化胆碱添加剂对[Bmim]Cl-AlCl3离子液体体系电解精炼铝的影响[J].过程工程学报,2010,10(5):981-986.
    [187]李艳,华一新,张启波,等.四甲基氯化铵对AlCl3-BMIC离子液体体系在铜基体上电解精炼铝的影响[J].轻金属,2011,(6):33-36.
    [188]李艳.添加剂在AlCl3-BMIC离子液体电解精炼铝中的作用机理研究[D].昆明理工大学博士学位论文,2011.
    [189]杨绮琴,方北龙,童叶翔.应用电化学[M].广州:中山大学出版社,2005,2:49.
    [190]阿伦.J.巴德,拉里.R.福克纳[美].邵元华,朱果逸,董献堆等,译.电化学方法原理和应用[M].北京:冶金工业出版社,2005.
    [191]李荻.电化学原理[M].北京:北京航空航天大学出版社,2008.
    [192]贾铮,戴长松,陈玲.电化学测量方法[M].北京:化学工业出版社,2010.
    [193]查全性.电极过程动力学[M].北京:科学出版社,2002.
    [194]藤屿昭,相泽益男,井上撤[日].陈震,姚建年译.电化学测定方法[M].北京:北京大学出版社,1995.
    [195]张丝雨.最新金属材料牌号、性能、用途及中外牌号对照速用速查实用手册[M].中国科技文化出版社,2005:1181-1189.
    [196]王喜然,华一新,赵秋凝,李艳.AlCl3-BMIC离子液体电导率[J].中国有色金属学报,2006,16(12):2138-2142.
    [197]Melton T J, Joyce J, Maloy, et al. Electrochemical studies of sodium chloride as a Lewis buffer for room temperature chloroaluminate molten salts[J]. Journal of The Electrochemical Society,1990,137(12):3865-3869.
    [198]Lai P K, Skyllas-Kazacos M. Aluminium deposition and dissolution in aluminium chloride-n-butylpyridinium chloride melts[J]. Electrochimica Acta, 1987,32(10): 1443-1449.
    [199]Dymek JR C J, Wilkes J S, Einarsrud M-A,(?)ye H A. Spectral Identification of Al3Cl10- in 1-Methyl-3-Ethylimidazolium Chloroaluminate Molten Salt. Polyhedron,1988,7(13): 1139-1145.
    [200]华一新,冶金过程动力学导论[M].北京:冶金工业出版社,2004:205.
    [201]Fannin A A, Wilkes J S, Williams J L, et al. Properties of 1, 3-dialkylimidazolium chloride-aluminum chloride ionic liquids.2. Phase transitions, densities, electrical conductivities, and viscosities[J]. The Journal of Physical Chemistry, 1984,88(12):2614-2621.
    [202]Laher T M, Hussey C L. Electrochemical Studies of Chloro Complex Formation in Low-temperature Chloroaluminate Melts.1. Iron(Ⅱ), Iron(Ⅲ), and Nickel(Ⅱ) [J]. Inorg. Chem.,1982,21(11):4079-4083.
    [203]Laher T M, Hussey C L. Copper(I) and Copper(II) Chloro Complexes in the Basic Aluminum Chloride-1-methyl-3-ethylimidazolium Chloride Ionic Liquid[J]. Inorg. Chem., 1983,22(22):3247-3251.
    [204]Fletcher S. Some new formulae applicable to electrochemical nucleation/growth/collision. Electroehim Acta,1983,28(7):917-923.
    [205]Tripathy B C, Das S C, Hefter G T, Singh P. Zinc electrowinning from acidic sulphate solutions Part II:Effects of triethylbenzylammonium chloride[J]. Journal of Applied Electrochemistry,1998,28(9):915-920.
    [206]Xie J and Riechel T L. Room temperature chloroaluminate salts buffered with magnesium metal[J]. Journal of The Electrocheical Society,2000,147(11):4247-4251.
    [207]高颖,邬冰.电化学基础[M].北京:化学工业出版社,2004.
    [208]Ackermann B L, Tsarbopoulos A, Allison J. Fast atom bombardment mass spectrometric studies of the aluminum chloride/n-butylpyridinium chloride molten salt[J]. Analytical chemistry,1985,57(8):1766-1768.
    [209]傅崇说.有色冶金原理[M].北京:冶金工业出版社,2005.
    [210]Sahami S, Osteryoung R A. Voltammetric determination of water in an aluminum chloride-N-n-butylpyridinium chloride ionic liquid[J]. Analytical Chemistry,1983, 55(12):1970-1973.
    [211]Abdul-Sada A K, Greenway A M. A fast atom bombardment mass spectrometric study of room-temperature 1-ethyl-3-methylimidazolium chloroaluminate(Ⅲ) ionic liquids: evidence for the existence of the decachlorotrialuminate(Ⅲ) anion[J]. Organic Mass Spectrometry,1993,28(7):759-765.
    [212]Zawodzinski Jr T A, Osteryoung R A. Oxide and hydroxide species formed on addition of water in ambient-temperature chloroaluminate melts:An 17O NMR study[J]. Inorganic Chemistry,1990,29(15):2842-2841.
    [213]Danilov A I, Molodkina E B, Polukarov Y M. Effect of adsorption of anions on the kinetics of the copper adatom layer formation at polycrystalline platinum[J]. Russ. J. Electrochem. 2000,36(9):1236-1240.
    [214]Seharifker B and Hills G. Theoretical and experimental studies of multiple nucleation[J]. Electrochimica Acta,1983,28(7):879-889.
    [215]Danilov A I, Molodkina E B, Polukarov Y M. Initial stages of copper electrocrystallization from sulfate electrolytes:cyclic voltammetry on a platinum ring-disk electrode[J]. Russ. J. Electrochem.2000,36(9):1118-1129.
    [216]Abyaneh M Y, Hendrikx J, Visscher W. The Electrocrystallization of Zinc from Alkaline Media[J]. J. Electrochem. Soc.,1982,129(12):2654-2659.
    [217]邱竹贤.铝电解[M].北京:冶金工业出版社,1995:179-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700