用户名: 密码: 验证码:
铝合金薄板搅拌摩擦焊残余应力及失稳变形的预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
搅拌摩擦焊作为一种新型固态连接技术,目前在航空航天、造船及交通运输等铝合金结构制造领域获得广泛推广应用。尽管在搅拌摩擦焊过程中不会发生熔化现象,但由于铝合金导热系数和线膨胀系数大,仍会产生较大的残余应力和变形,对工程应用尤其是对薄板焊接构件的失稳变形带来很大的影响。目前国内外许多学者通过试验手段及数值模拟方法对搅拌摩擦焊接热过程及焊接残余应力进行了许多研究,但针对铝合金薄板失稳变形的研究较少,因此通过试验与数值模拟相结合的方法来研究铝合金薄板搅拌摩擦焊接头的残余应力和失稳变形规律,对在大型铝合金薄板结构制造中推广和应用搅拌摩擦焊技术具有重要工程应用意义。
     本文以厚度为5mm的5A06-H112和6061-T6铝合金薄板构件为研究对象,对搅拌摩擦焊接过程中产生的焊接失稳变形和残余应力分布规律进行了详细探讨。首先通过试验方法对搅拌摩擦焊铝合金薄板构件的焊接失稳变形和残余应力进行测试。失稳变形试验结果表明,铝合金薄板呈马鞍形,变形挠度约为13mm。残余应力试验结果表明,纵向残余应力是应力场中的主要应力形式,5A06和6061的残余应力分别为71.2MPa和83.7MPa,为各自屈服强度的37.5%和30.3%,明显低于熔焊接头的残余应力水平。
     其次建立了三维有限元模型并分析搅拌摩擦焊过程中温度场的分布。在温度场模型中施加边界条件,确定搅拌摩擦焊热源模型,得到整个焊接过程中的热循环曲线,最高温度值均在各自的高塑性温度区间。
     最后采用间接热耦合法把在温度场中得到的热载荷施加到构件模型中,获得了薄板焊后的残余应力及焊接热弹塑性失稳变形分布特征。残余应力计算分析表明,5A06和6061接头的残余应力数值较大,接近材料的屈服强度,与试验测量值有较大差异。但基于残余应力计算的等效热载荷法和间接热耦合法得到的失稳变形结果,与数显百分表的试验测量结果趋势相同,同时相对变形量吻合较好,误差控制在30%以内,说明预测失稳变形的两种模拟方法是可行的。失稳变形分析结果表明铝合金薄板搅拌摩擦焊后存在较大的残余应力,明显高于测量值,但残余应力的数值分析结果与试验测量值具有相似的应力分布趋势,说明间接热耦合模型预测铝合金薄板搅拌摩擦焊接残余应力是基本可行的。
As a new type of solid connection, Friction stir welding(FSW) is used widely in manufacturing the aluminum structural parts in the airspace、shipbuilding and transportation industry. Although there is no melting phoneme in the FSW process, the residual stress and distortion is still obvious because of the high thermal conduc-tivity and linear expansion coefficient. This has a great influence on the application in engineering,especially in the buckling deformation of the thin sheet。Most scholars at home and abroad researched thermal process and the residual stress of the FSW by means of experiment and numerical simulation。But only a little research was about aluminum alloy sheets buckling deformation. So it is necessary to inte-grate the numerical simulation and experiment to analysis the residual stress and buckling deformation in the aluminum sheet FSW joints. then analyze the feasibility of the prediction model。
     In this thesis,5A06-H112 and 6061-T6 aluminum alloy sheets with 5mm thickness are chose as the study objects. The welding buckling and resistant stress caused in the FSW process was investigated in detail. First the resistant stress and buckling deformation of friction stir welded aluminum sheets was tested through experiments. The buckling testing results showed that the sheets had a saddle shape after welded. The deformation flexibility is about 13mm. The resistant stress results showed that the main stress direction was along vertical. The resistant stress of 5A06 and 6061 is respectively 71.2MPa and 83.7MPa, which is respectively 37.5% and 30.3% of its yield strength. This result was obviously lower than the average resis-tant stress of fusion weld joints.
     On the other hand, a three-dimensional finite element model was established and the temperature distribution in the FSW process was analyzed. Through impos-ing the boundary conditions in the temperature model, the heat source model of FSW was defined and the thermal cycle curve of the whole welding process was obtained. The results showed that the maximum temperature values were all in their high plas-tic temperature range。
     At last, the heat load obtained in the temperature distribution was applied to the component model through indirect thermal coupled method. The resistant stress and the thermal elastic-plastic buckling deformation of welded sheets were obtained. The results of calculating resistant stress showed that the resistant stress of 5A06 and 6061 joints were nearly equal to the material yield strength. The difference between calculating and experiment was large. But after calculating by equivalent heat load method and indirect heat coupled method which were based on the resistant stress, the result trend was as same as the experiment. At the same time, the relative defor-mation is anatomized well and errors were all limited below 30%. This improved that this two kinds of methods to predict the buckling deformation were feasible. The results of buckling deformation showed that there was high resistant stress in the aluminum sheets after FSW, which was obviously higher than the experimental re-sults. The numerical analysis results of resistant stress and the experimental results showed the similar stress distributing trend. This proved that it was feasible to pre-dict the resistant stress in FSW aluminum sheets through indirect heat coupled model.
引文
[1]周万盛,姚君山.铝及铝合金的焊接[M].北京:机械工业出版社,2006.
    [2] David S A,Debroy T.Current issues and problems in welding science[J]. Science,1992,257(5069):497~502.
    [3] David S A,FengZhili.Friction stir welding of advanced materials:challenges[C]//.IIW Materials Conference.Craz,Austria,2004.
    [4]杨立君.材料连接设备及工艺[M].北京:机械工业出版社,2008.
    [5]陈先民,廖江海,弓云昭.新型制造技术—搅拌摩擦焊的研究现状、应用及趋势[J].结构强度研究,2009(4):9~13.
    [6]秦红珊,杨新岐.搅拌摩擦点焊技术及在汽车工业应用前景[J].汽车技术,2006(1):1~5.
    [7]盛建辉,彭家仁,李光,等.搅拌摩擦焊工艺及其在地铁铝合金车体上的应用[J].电力机车与城轨车辆,2009,32(3):28~31.
    [8] P J Webster,Oosterkamp L,Browne P A.Synchrotron X-ray residual strain scanning of a friction stir weld[J].The Journal of Strain Aanlysis for Engi-neering Design,2001,1(36):61~70.
    [9] Omar Hatamle.h,Iris V Rivero,Shayla E Swain.An investigation of the residual stress characterization and relaxion in peened friction stir welded aluminum-lithium alloy joints[J].Materials and Design,2009,3367~3373.
    [10] Omar Hatamleh,Iris V Rivero,Arif Maredia.Residual stress in Friction-Stir -Welded 2195 and 7075 Aluminum alloys[J].The Minerals,Metals&Materials Society and ASM International,2008(39):2867~2874.
    [11] Peel M,Steuwer A,Preuss M,et al.Microstructure,mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds[J].Acta Materialia.2003,51(16):4791~4801.
    [12] P Reynolds,W Tang,T Gnaupel-Herold,and H Prask:Scripta Mater.,2003, 48(9):1284~1294.
    [13] P Staron,M Kocak,S Williams,et al.Residual stress in friction stir-welded Al sheets[J].Condensed Matter.2004,350(3):491-493.
    [14]王训宏,王快社,沈洋,等.搅拌摩擦焊和钨极氩弧焊焊接接头的残余应力[J].机械工程材料,2007,31(1):26~28.
    [15] Michael B Prime,Thomas Gnaupel-Herold,John A Baumann et al.Residual Stress measurements in a thick,dissimilar aluminum alloy firciton stir weld[J].Acta Materialia,2006(54):4013~4021.
    [16] P Staron,M Kocak,S Williams.Residual stresses in friction stir welded Al sheets[J].Materials Science and processing.2002,74(2):1161~1162.
    [17] G S Schajer.Measurement of non-uniform residual stresses using the hole- drilling method[J].Part I and II.1988,110(4):338~343.
    [18]李亭,史清宇,李红克,等.铝合金搅拌摩擦焊接头残余应力分布[J].焊接学报,2007,28(6):105~108.
    [19]陈贺静,杨新岐.搅拌摩擦焊接残余应力的研究进展[J].有色金属加工, 2007,36(4):34~39.
    [20]亚敏,戴福隆,吕坚.搅拌摩擦焊接头残余应力的试验[J].焊接学报, 2002,23(5):53~56.
    [21] Min Ya,Fulong Dai,Jian Lu.Study of Nonuniform In-Plane and In-Depth Residual Stress of Friction Stir Welding[J].Journal of Pressure Vessel Tech-nology,2003(125):201~208.
    [22] Mir Zahedel,H.Khandkar,Jamil A Kan,et al.Prediction residual thermal stresses in friction stir welded metals[J].Jourmal of Materials Processing Technology,2006(174):195~203.
    [23] Khandkar,M H Khandkar,J A Khan,et al.Prediction of temperature distribution and thermal history during friction stir welding:an input torque based model.Sci[J].American Society of Mechanical Engineers.2003,374(3):165~174.
    [24] A Askari,S Siling,B London,M Mahoney.Modeling and analysis of friction stir welding processes in Friction stir Welding and Processing[J].TMS Pub-lication.2001,43~54.
    [25] Rajesh S R,Han Sur Bang,Woong Seong Chang,et al.Numerical determination of residual stress in friction stir weld using 3D-analytical model of stir zone[J].Journal of Materials Processing Technology,2007:224~226.
    [26]张昭,陈金涛,张洪武.搅拌摩擦焊接构件的残余应力分析[C]//.第十一次全国焊接会议论文集.2-54~2-57.
    [27] C M Chen,R Kovacevic.Finite element modeling of friction stir welding thermal and thermomechanical analysis[J].International Journal of Machine Tools &Manufacture,2003(43):1319~1326.
    [28] Livan Fratini,Gandolfo Macaluso,Salvatore Pasta.Residual stresses and FCP prediction in FSW through a continuous FE model[J].Journal of Materials Processing Technology,2009(2009):5465~5474.
    [29] Pouget G,Reynolds AP.Residual stress and microstructure effects on fatigue crack growth in AA2050 friction stir welds[J].Int J Fatigue.2008(30):463~472.
    [30] John R,Jata K,Sadananda K.Residual stress effects on near-threshold fatigue crack growth in friction stir welds in aerospace alloys[J].International Journal of Fatigue,2003(25):939~948.
    [31] Kodama S.The behaviour of residual stress during fatigue stress cy-cles[C]//.In:International conference on mechanical behaviour of materials;1971.
    [32] Sakai T,Akita K,Ohya S,Sano Y,et al.The effect of static and fatigue loading on residual stress induced by laser peening[J].Jourmal of the Society of Materials Science,2008,57(7):648~653.
    [33] S W Williams,D A Price,A Wescott,et al.Distortion Control in Welding by Mechanical Tensioning[J].2007,12(7):620~633.
    [34]柴鹏,栾国红,郭德伦,等.FSW接头残余应力分布及控制技术[J].焊接学报,2005,26(11):79~82.
    [35]李光,李从卿,栾国红等.薄壁铝合金搅拌摩擦焊焊接应力变形与控制[J].焊接学报,2009(1):29~32.
    [36]李光,李从卿,栾国红,等.阵列式射流冲击热沉搅拌摩擦焊接方法及装置[P],中国专利,200710097893.6,2007.09.05.
    [37] Richards D G,Pranqnell P B,Withers P J.FE modeling of mechanical tensioning for controling residual stresses in friction stir welds[C]//.Materials Science Forum,2007(4):4025~4030.
    [38] C L Tsai,M S Han,G H Jung.Investigation the bifurcation phenomenon in plate welding[J].Welding Journal.2006,85(7):151~162.
    [39] S R Bhide,P Michaleris,M Posada,et al.Comparison of buckling distortion propensity of SAW,GMAW,and FSW[J].Welding Journal.2006,85(9):189~194.
    [40]陆皓,陈俊梅,陈家本.薄板结构焊接变形数值模拟及其应用[J].电焊机,2007,37(6):71~74.
    [41] Dean Deng,Hidekazu Murakawa.FEM prediction of buckling distortion induced by welding in thin plate panel structures[J].Computational Materials Science,2008(43):591~607.
    [42]鄢东洋,史清宇,吴爱萍,等.铝合金薄板搅拌摩擦焊接残余变形的数值分析[J].金属学报,2009,45(2):183~188.
    [43]郭绍庆,徐文立,刘雪松,等.温差拉伸控制铝合金薄板的焊接变形[J].焊接学报,1999,20(1):34~42.
    [44] M Adak,N R Mandal.Numerical and experimental study of mitigation of welding distortion[J].Applied Mathematical Moldlling,2010(34):146~158.
    [45]章明明,李敬勇.预拉伸控制铝合金焊接变形[J].材料开发与应用,2005: 36~38.
    [46] Xu D,Liu XS,Wang P.New technique to control welding buckling distortion and residual stress with non-contact electromagnetic impact[J].Science and Technology of welding and Joining,2009,14(8):753~759.
    [47]汪建华,焊接数值模拟技术及其应用[M].上海:上海交通大学出版社,2003.
    [48]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社:知识产权出版社,2009
    [49]张朝辉.ANSYS8.0热分析教程与实例解析[M].北京:中国铁道出版社,2003.
    [50]刘相新,孟宪颐.ANSYS基础与应用教程[M].北京:科学出版社,2006.
    [51]唐兴伦,范群波,张朝辉,等.ANSYS工程应用教程[M].北京:中国铁道出版社,2002.
    [52]邢丽.搅拌摩擦焊焊缝二维材料塑性流动形态研究[C]//.第七届华东地区焊接技术交流会,温州,2003.
    [53]张彦富,柯黎明,孙德超,等.搅拌摩擦焊焊缝区温度分布及对材料流动的影响[J].南昌航空工业学院学报,2003,17(3):12~16.
    [54] Frigaard O.A process model for friction stir welding of age hardening Aluminumalloy[J].Metallurgical and Materials Transactions,2001,32(5): 1189.
    [55] Song M,Kovacevic R.Thermal modeling of friction stir welding in a moving coordinate system and its validation[J].International Jourmal of Machine Toolsand Manufacture,2003,43(6):605.
    [56]汪建华.焊接数值模拟技术及其应用[M].上海:上海交通大学出版社,2003.
    [57] Chen C M,Kovacevic R.Finite element modeling of friction stir welding- thermal and thermomechanical analysis[J].International Journal of Machine Tools &Manufacture,2003(43):1319~1326.
    [58]王大勇,冯吉才,王攀峰.搅拌摩擦焊接热输入数值模型[J].焊接学报, 2005,26(12):17~20.
    [59]宋天民.焊接残余应力的产生与消除[M].北京:中国石化出版社,2005.
    [60]吴芸,张其林.焊接铝合金构件残余应力试验研究[J].钢结构,2007,2 (22):30~32.
    [61]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [62]方洪渊.焊接结构学[M].北京:机械工业出版社,2008.
    [63]闫俊霞,霍立兴,张玉凤,等.焊接薄板失稳变形预测方法[J].焊接学报,2005,26(6):50~53.
    [64]陈家权,肖顺湖,尹秉升.薄板焊接特征屈曲的数值分析[J].焊接技术,2006,35(3):13~15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700