用户名: 密码: 验证码:
自冲铆连接机理及力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,随着轻量化设计在汽车工业、航天工业等领域的发展,铝、镁合金,纤维增强塑性材料等轻质材料得到了广泛的应用。传统的连接方法已经很难实现这些轻质材料的连接。作为一种新型的连接方法-自冲铆连接技术,呈现出独特的优势。本文基于试验和有限元数值模拟分析方法,具体开展的工作大致分为如下几个方面:
     1.采用ANSYS/LS-DYNA软件分析铆接过程中基板的材料变形、流动情况及成形接头中的应力/应变分布,推测成形接头中危险部位将会出现在铆钉头与上板接触部位、铆钉管腿与下板接触部位。
     AA5052自冲铆接头的金相试验和硬度测量结果表明,塑性大变形部位的材料由等轴晶粒拉伸成为细长的纤维组织,晶粒结构尺寸被大幅度细化,产生了加工硬化效果。与母材硬度(72.3HV)相比,最大硬度提高了40.6%。
     2.学生氏t分布对静力学测试数据分析结果表明,0°接头的抗剪切强度最高,30°接头最低。随着预成型角的继续增加,强度增大。60°接头的位移变形和能量吸收最强。基板厚度和宽度增加,接头最大抗剪切强度提高40.1%和12.6%,变形位移提高11.7%和14.9%,能量吸收提高75.0%和11.7%。两颗铆钉接头(SDL和SDT)最大抗剪切强度提高88.2%和99.6%,变形位移提高39.0%和25.8%,能量吸收提高154.8%和115.6%。三颗铆钉接头(SMI和SMO)最大抗剪切强度提高175.2%和163.3%,变形位移降低17.6%和35.2%,能量吸收增加187.9%和130.4%。
     基板预成型角、厚度、宽度、铆钉数量及其分布结构对接头的宏观失效模式几乎没有影响,所以测试接头失效模式均为下板脱离铆钉和上板。失效断口分析表明,上板中断裂路径由中心向两侧扩展;下板中膨胀部位为失效的最初部位。上板变形特征对接头变形位移有直接影响。下板变形特征及其过程对接头变形位移和抗剪切强度有直接影响。
     3.自冲铆接头主要疲劳失效模式为下板断裂;断口表面存在黑色微动疲劳磨损产物。当疲劳载荷较大时,基板宽度、铆钉数量及其分布结构会使上板成为失效部位。
     基于变差系数法,选择二参数Wemull分布对疲劳寿命数据有效性进行分析。获得双对数坐标下疲劳数据的最小二乘拟合直线及其二参数幂函数方程,分别为NN=107.139F-4.799、NW=109.578F-7.158、NSDL=107572F-3.397、 NSDT=108.673F-5.112、NSMI=108.687F-4.531和NSMO=109.105F-5.005。
     基板宽度、铆钉数量及其分布结构对接头疲劳寿命和F-N曲线的斜率具有显著影响。随着铆钉数量的增加,其分布结构对F.N曲线斜率和疲劳强度的影响程度减弱。
     提出首要和次要承载顺序的存在,并发现疲劳断裂表面为首要承载顺序的所在位置。失效断口分析表明,上板断裂,疲劳裂纹萌生于铆钉头与上板接触部位;下板断裂,裂纹萌生于铆钉管腿与下板接触部位,损伤区域自铆钉管腿底部向上蔓延和扩张。
     铆钉表面黑色物质元素分析结果表明:Al元素含量最高,即其所在位置处发生了剧烈的微动磨损。因此减缓这些部位的摩擦作用,可提高接头疲劳寿命。
     4.粘接-压印复合和粘接-自冲铆复合接头中的承载部位分别为压印互锁和自冲铆互锁结构。
     学生氏t分布对静力学测试数据分析结果表明,与Y2纯铝(Y2)粘接接头相比,压印、自冲铆接头及它们与粘接的复合接头的抗剪切强度提高8.0%、231.9%、21.3%和246.2%,失效位移增加221.4%1271.4%、178.6%和978.6%,能量吸收增强300%、4186.4%、254.6%和3800%。与T型自冲铆接头相比,单搭剪切自冲铆接头抗剪切强度增加169.3%,变形位移和能量吸收降低188.2%和52.3%。与Y2压印和自冲铆接头相比,AA5052压印和自冲铆接头的抗剪切强度增加117.6%和70.2%,变形位移增加-25.2和9.5%,能量吸收增加45.5%和128.4%。
As lightweight design is developing in manufacturing industries covering automobiles and aerospace components, lightweight materials such as aluminium alloy, magnesium alloy and fiber reinforced plastic material are increasingly being used. These lightweight materials are difficult or impossible to join by traditional joining methods. Self-piercing riveting (SPR) technology is a new joining method and has particular advantages. Based on experimental observations and Finite Element Analysis (FEA) of several types of joints, the research work was divided into several parts as follows:
     1. The deformation and fluxion state of substrate materials during the riveting process and the stress/strain distribution in shaped joints were analyzed using the ANSYS/LS-DYNA sofeware. Results showed that the interfaces between the rivet head and upper sheet and between the rivet shank and lower sheet were also the most vulnerable parts in shaped joints.
     Results of microscopic examination and hardness measure of SPR joints in AA5052showed that large plastic deformation of the joints resulted in the material structures of parts being stretched from the equiaxed grain into fibrous structures and also in significant thinning of the grain structure, which produced a work hardening effect. Compared with the hardness of parent metals (72.3HV), the hardness was improved by40.6%maximumly.
     2. The analysis results of static test data using the Student's t distribution showed that the shear strength of joints with0°preformed angle was largest and the strength of joints with30°preformed angle was smallest. With the increase of preformed angles continuously, the strength was magnified. The failure displacement and energy absorption of joints with60°preformed angle were highest. With the increase of thickness and width of substrates, the strength of joints was improved by40.1%and12.6%respectively,11.7%and14.9%responding to failure displacement and75.0%and11.7%for energy absorption. The strength of joints with two-rivet (SDL and SDT) was improved by88.2%and99.6%respectively,39.0%and25.8%responding to failure displacement, and154.8%and115.6%for energy absorption. The strength of joints with three-rivet (SMI and SMO) was improved by175.2%and163.4%respectively,17.6%and35.2%responding to failure displacement and187.9%and130.4%for energy absorption.
     The preformed angle, thickness and width of substrates, the number of rivets and their distribution had little influence on the macro-scale failure mode of joints. In all test cases the interlock structure failed, with the lower sheet separating from the upper sheet and rivet. Analysis of failure surfaces showed that the fracture started at the centre of the joint and propagated outward to the two sides. The locations of the initial failures were the'swell'parts of the lower sheets. Deformation characteristic of the upper sheet influenced directly the deformation displacement of stressed joints. The deformation displacement and the strength of joints were influenced by the deformation characteristic and its failure process in the lower sheet.
     3. The fracture of the lower sheet was the main fatigue failure mode. Black oxide debris caused by fretting fatigue damage was found on the fracture surfaces. When a bigger fatigue load was applied, the failure mode could be influenced by the width of substrates, the number and distribution of rivets, which led to the uppere sheet fracture.
     Based on the method of coefficient of variation, the effectiveness of fatigue test data was analyzed assuming a two-parameter Weibull distribution. The least squares best fit lines of fatigue data and its two-parameter power function equations were obtained, corresponding to NN=107.139F-4.799,NW=109.578F-7.158,NSDL=107.572F-3.397,NSDT=10A8.673F-5.112, NSMI=108.687F-4.531and NSMO=109.105F-5.005.
     The fatigue life and the slope of the F-N curves were influenced significantly by the width of the substrates and the number and distribution of rivets. Increasing the number of rivets reduced the extent to which the slopes of F-N curves and fatigue strength were affected by the rivet distribution.
     The existence of primary and secondary load bearing sequences was proposed. The fatigue fracture surface was the location of the primary load bearing sequence. An analysis of fatigue surfaces showed that for the upper sheet fracture, the fatigue crack started at the contact interfaces between the rivet head and the upper sheet. For the lower sheet fracture, the fatigue crack started at the interface between the rivet shank and lower sheet. The fretting damage region spread from the bottom of the rivet shank toward the rivet head.
     Results of element analyses of black debris on the rivet surface showed that the element content of Al was highest. This indicated that the violent fretting damage happened at those locations. It can be inferred that reducing the friction at those locations can improve the fatigue life of joints.
     4. Load bearing part in adhesive bond-clinch hybrids and adhesive bond-SPR hybrids joints was the clinching and the SPR interlock structure respectively.
     The analysis results of static test data using the Student's t distribution showed that compared with adhesive bonded joints in Y2, the strength of clinched, SPR and their adhesive bond hybrid joints was improved by8.0%,231.9%,21.3%and246.2%respectively,221.4%,1271.4%,178.6%and978.6%responding to failure displacement, and300%,4186.4%,254.6%and3800%for energy absorption. Compared with T-SPR joint, the strength, failure displacement and energy absorption of lap-shear SPR joints was enhanced by169.3%,-188.2% and-52.3%. Compared with clinched and SPR joints in Y2, the strength of clinched and SPR joints in AA5052was enlarged by117.6%and70.2%respectively,-25.2and9.5%responding to failure displacement, and45.5%and128.4%for energy absorption.
引文
[1]Y. J. Xu. Characterization of self-piercing riveting joints. [PhD Dissertation]. Ohio, University of Toledo,2005
    [2]J. Zheng. Fatigue of self-piercing riveted joints in 5754 aluminum alloy sheets. [PhD Dissertation]. Michigan, University of Michigan, 2005
    [3]T. A. Barnes, I. R. Pashby. Joining techniques for aluminium spaceframes used in automobiles Part I-solid and liquid phase welding. Journal of Materials Processing Technology,2000,99(1-3):62-71
    [4]T. A. Barnes, I. R. Pashby. Joining techniques for aluminium spaceframes used in automobiles Part Ⅱ-adhesive bonding and mechanical fasteners. Journal of Materials Processing Technology,2000,99(1):72-79
    [5]H. Moshayedi, I. Sattari-Far. Numerical and experimental study of nugget size growth in resistance spot welding of austenitic stainless steels.Journal of Materials Processing Technolgoy,2012,212(2):347-354
    [6]刘博.铝合金电阻点焊接头疲劳损伤研究[硕士学位论文].南京,南京航空航天大学,2011
    [7]D. W. Zhao, Y. X. Wang, L. Zhang, etal. Effects of electrode force on microstructure and mechanical behavior of the resistance spot welded DP600 joint. Materials and Design,2013,50:72-77
    [8]L. Han, M. Thornton, M. Shergold. A comparison of the mechanical behaviour of self-piercing riveted and resistance spot welded aluminium sheets for the automotive industry. Materials and Design, 2010,31(3):1457-1467
    [9]X. C. He, Finite Element Analysis of Laser Welding:A State of Art Review, Materials and Manufacturing Processes,2012,27(12): 1354-1365
    [10]顾春影.白车身激光焊接单元设计与搭接焊接头性能研究[硕士学位论文].长沙,湖南大学,2011
    [11]宋荣武.铝合金激光-MIG复合焊温度场的数值模拟[硕士学位论文].安徽,合肥工业大学,2010
    [12]X. C. He, F. S. Gu, A. Ball, "A Review of Numerical Analysis of Friction Stir Welding", Progress in Materials Science, in press
    [13]鄢东洋.铝合金薄壁结构搅拌摩擦焊热-力学过程的研究及模拟[博士学位论文].北京,清华大学,2010
    [14]张永红.同种及异种镁合金搅拌摩擦焊工艺研究[硕士学位论文].兰州,兰州理工大学,2008
    [15]吴海亮.航空铝合金搅拌摩擦焊接头疲劳裂纹扩展速率试验研究[硕士学位论文].天津,天津大学,2008
    [16]游敏,郑小玲.胶接强度分析及应用(第1版).武汉:华中科技大学出版社,2009
    [17]X. C. He. A review of finite element analysis of adhesively bonded joints. International Journal of Adhesion & Adhesives,2011, 31(4):248-264
    [18]A. M. Pereira, J. M. Ferreira, F. V. Antunes, P. J. Bartolo. Study on the fatigue strength of AA 6082-T6 adhesive lap joints. International Journal of Adhesion & Adhesives,2009,29(6):633-638
    [19]B. Kilic, E. Madenci, D. R. Ambur. Influence of adhesive spew in bonded single-lap joints. Engineering Fracture Mechanics,2006, 73(11):1472-1490
    [20]R. Gunes, M. Kemal Apalak, M. Yildirim, I. Ozkes. Free vibration analysis of adhesively bonded single lap joints with wide and narrow functionally graded plates. Composite structures,2010,92(1):1-17
    [21]X. C. He. Recent development in finite element analysis of clinched joints. Int J Adv Manuf Technol,2010,48(5-8):607-612
    [22]F. Lambiase. Influence of process parameters in mechanical clinching with extensible dies. Int JAdv Manuf Techno 1,2013,66(9- 12):2123-2131
    [23]E. Roux, P.-O. Bouchard. Kriging metamodel global optimization of clinching joining processes accounting for ductile damage. Journal of Materials Processing Technology,2013,213(7):1038-1047
    [24]S. Coppieters, S. Cooreman, P. Lava, H. Sol, P. V. Houtte, D. Debruyne. Reproducing the experimental pull-out and shear strength of clinched sheet metal connections using FEA. Int J Mater Form,2011,4(4):429-440
    [25]X. C. He, I. Pearson, K. Young. Self-pierce riveting for sheet materials:state of the art. Journal of Materials Processing Technology,2008,199(1):27-36
    [26]L. M. LaPensee. No Holes, No Problem. Assembly,2007,50(12):52-55
    [27]J. Mucha. The effect of material properties and joining process parameters on behavior of self-pierce riveting joints made with the solid rivet. Materials and Design,2013,52:932-946
    [28]万淑敏.半空心铆钉自冲铆接技术的研究[博士学位论文].天津,天津大学,2007
    [29]何晓聪,何家宁,柯建宏,谢金葵,丁燕芳.自冲铆接接头的质量评价.2010年中国汽车车身技术国际研讨会论文集,长沙,2010
    [30]何晓聪,何家宁,柯建宏,谢金葵,丁燕芳.自冲铆接头的质量评价及强度可靠性预测.湖南大学学报(自然科学版),2010,37(12):1-4
    [31]康少伟.不同模具半空心铆钉自冲铆接有限元模拟及实验[硕士学位论文].南昌,华东交通大学,2008
    [32]黄绍泽,朱江新.金属成形模拟过程中局部网格重划技术研究.锻压技术,2012,37(5):137-139
    [33]李军超,耿佩,潘俊杰.金属板材多道次渐进成形的模拟分析.热加工工艺,2012,41(13):79-84
    [34]鲍益东,杜国康,陈文亮,王志国.冲压成形模拟中有限元方程组求解算法.南京航空航天大学学报,2009,41(5):606-610
    [35]王泽文.汽车铝合金转向节锻造成形模拟与试验研究[硕士学位论文]. 重庆,重庆大学,2010
    [36]刘维,吴建军,张深.板料成形模拟中三维构型网格节点的运动控制.西北工业大学学报,2011,29(5):818-823
    [37]周平,郭威,申国哲,胡平.薄板成形模拟中切边回弹算法.吉林大学学报(工学版),2010,40(4):931-936
    [38]李萍,章凯,薛克敏,王晓溪.新型药型罩温压扭成形模拟与实验研究,兵工学报,2012,33(4):437-442
    [39]张铧.铝合金变压边力冲压成形的模拟分析及智能预测[硕士学位论文].合肥,合肥工业大学,2010
    [40]X. C. He, F. S. Gu, A. Ball. Recent development in finite element analysis of self-piercing riveted joints. The International Journal of Advanced Manufacturing Technology,2012,58(5-8):643-649
    [41]X. C. He. Influence of sheet material characteristics on the torsional free vibration of single lap-jointed cantilevered SPR joints. International conference on measuring technology and mechatronics auto mat ion,Piscataway,2009
    [42]X. C. He, I. Pearson, K. Young. Finite element analysis of self-pierce riveted joints. Sheet Metal 2007:Proceedings of the 12th International Conference, Trans Tech Publications Ltd, Switzerland, 2007
    [43]白玉峰,杜茂华,李露露.基于ANSYS/LS-DYNA的自冲铆接铆钉腿部尖端几何参数的优化.新技术新工艺,2011,(7):44-47
    [44]黄志超,王建忠,姜宁.实心铆钉自冲铆接过程的数值模拟及其参数优化.锻压技术,2008,33(6):144-147
    [45]岁波,都东,常保华,等.铝合金板自冲铆连接过程的模拟分析.材料科学与工艺,2007,15(5):713-717
    [46]占金青.基于数值模拟的半空心铆钉自冲铆接工艺研究[硕士学位论文].南昌,华东交通大学,2007
    [47]J.-L. Chenot, E. Massoni. Finite element modeling and control of new metal forming processes. International Journal of Machine Tool & Manufacture,2006,46(11):1194-1200
    [48]R. Porcaro, A. G. Hanssen, M. Langseth, etal. An experimental investigation on the behaviour of self-piercing riveted connections in aluminium alloy AA6060.U Crash,2006,11(5):397-417
    [49]R. Porcaro, A. G. Hanssen, M. Langseth, etal. Self-piercing riveting process:An experimental and numerical investigation. Journal of Materials Processing Technology,2006,171(1):10-20
    [50]P. Porcaro, A. G. Hanssen, M. Langseth, etal. The behaviour of a self-piercing riveted connection under quasi-static loading conditions. International Journal of Solids and Structures,2006,43(17):5110-5131
    [51]R. Porcaro, M. Langseth, A. G. Hanssen, etal. Crashworthiness of self-piercing riveted connections. International Journal of Impact Engineering,2008,35(11):1251-1266
    [52]K. Mori, T. Kato, Y. Abe, et al. Plastic joining of ultra high strength steel and aluminium alloy sheets by self piercing rivet. CIRP Annals-Manufacturing Technology,2006,55(1):283-286
    [53]Y. Abe, T. Kato, K. Mori. Self-piercing riveting of high tensile strength steel and aluminium alloy sheets using conventional rivet and die. Journal of materials processing technology, 2008,209(8):3914-3922
    [54]Y. Abe, T. Kato, K. Mori. Joinability of aluminium alloy and mild steel sheets by self piercing rivet. Journal of Materials Processing Technology,2006,177(1-3):147-421
    [55]P. O. Boucharda, T. Laurenta, L. Tollier. Numerical modeling of self-pierce riveting-From riveting process modeling down to structural analysis. Journal of materials processing technology, 2008,202(1-3):290-300
    [56]E. Atzeni, R. Ippolito, L. Settineri. Experimental and numerical appraisal of self-piercing riveting. CIRP Annals-Manufacturing Technology,2009,58(1):17-20
    [57]A. G. Hanssen, L. Olovsson, R. Porcaro, etal. A large-scale finite element point-connector model for self-piercing rivet connections. European Journal of Mechanics A/Solids,2010,29(4):484-495
    [58]G. Casalino, A. Rotondo, A. Ludovico. On the numerical modeling of the multiphysics self piercing riveting process based on the finite element technique. Advances in Engineering Software,2008,39(9): 787-795
    [59]C. Connolly. Friction spot joining in aluminium car bodies. Industrial Robot:An International Journal,2007,34(1):17-20
    [60]J. Eckstein, E. Roos, K. Roll, etal. Experimental and Numerical Investigations to Extend the Process Limits in Self-Pierce Riveting. CP907,10th ESAFORM Conference on Material Forming, Zaragoza, 2007
    [61]W. Cai, P. C. Wang, W. Yang. Assembly dimensional prediction for self-piercing riveted aluminum panels. International Journal of Machine Tools & Manufacture,2005,45(6):695-704
    [62]P. Johnson, J. D. Cullen, L. Sharples, A. Shaw, etal. Online visual measurement of self-pierce riveting systems to help determine the quality of the mechanical interlock. Measurement,2009,42(5):661-667
    [63]R. Haque, J. H. Beynon, Y. Durandet. Characterisation of force-displacement curve in self-pierce riveting. Science and technology of welding and joining,2012,17(6):476-488
    [64]P. K. C. Wood, C. A. Schley, M. A. Williams, etal. A model to describe the high rate performance of self-piercing riveted joints in sheet aluminium. Materials and Design,2011,32(4):2246-2259
    [65]K. Mori, Y. Abe, T. Kato. Mechanism of superiority of fatigue strength for aluminium alloy sheets joined by mechanical clinching and self-pierce riveting. Journal of Materials Processing Technology, 2012,212(9):1900-1905
    [66]M. Ueda, S. Miyake, H. Hasegawa, etal. Instantaneous mechanical fastening of quasi-isotropic CFRP laminates by a self-piercing rivet. Composite Structures,2012,94(11):3388-3393
    [67]G. Di Franco, L. Fratini, A. Pasta. Fatigue behaviour of self-piercing riveting of aluminium blanks and carbon fibre composite panels. Proceedings of the institution of mechanical engineers part L-Journal of materials-design and applications,2012,226(3):230-241
    [68]L. Han, K. W. Young, A. Chrysanthou, etal. The effect of pre-straining on the mechanical behavior of self-piercing riveted aluminium alloy sheets. Materials and Design,2006,27(10):108-1113
    [69]L. Han, A. Chrysanthou, K. W. Young. Mechanical behaviour of self-piercing riveted multi-layer joints under different specimen configurations. Materials and Design,2007,28(7):2024-2033
    [70]L. Han, A. Chrysanthou. Evaluation of quality and behaviour of self-piercing riveted aluminium to high strength low alloy sheets with different surface coatings. Materials & Design,2008,29(2): 458-468
    [71]C. G. Pickin, K. Young, I. Tuersley. Joining of lightweight sandwich sheets to aluminium usingself-pierce riveting. Materials and Design,2007,28:2361-2365
    [72]L. Fratini, V. F. Ruisi. Self-piercing riveting for aluminium alloys-composites hybrid joints. Int J Adv Manuf Techno 1,2009,43(1-2):61-66
    [73]X. Sun, M. A. Khaleel. Dynamic strength evaluations for self-piercing rivets and resistance spot welds joining similar and dissimilar metals. International Journal of Impact Engineering,2007, 34(10):1668-1682
    [74]K. Iyer, S. J. Hu, F. L. Brittman, etal. Fatigue of single-and double-rivet self-piercing riveted lap joints. Fatigue Fract Engng Master Struct,2005,28(11):1-11
    [75]X. C. He. Coefficient of variation and its application to strength prediction of self-piercing riveted joints. Scientific Research and Essays,2011,6(34):6850-6855
    [76]X. C. He, S. O. Oyadiji. Application of coefficient of variation in reliability-based mechanical design and manufacture. Journal of Materials Processing Technology,2001,119(1-3):374-378
    [77]何晓聪.变差系数及其在概率分布特性分析中的应用.昆明理工大学学报,1996,21(1):69-74
    [78]李永利.板料自冲铆接试验研究及数值模拟[硕士学位论文].呼和浩特,内蒙古工业大学,2009
    [79]李永利,佟铮.铝板件自冲铆接的实验分析.内蒙古工业大学学报,2009,28(3):204-208
    [80]楼铭,李永兵,黄舒彦,等.模钉体积比对异种金属自冲铆接接头成形性能影响分析.中国机械工程,2009,20(15):1 873-1876
    [81]楼铭.自冲铆接设备研制及轻量化材料自冲铆接工艺开发[硕士学位论文].上海,上海交通大学,2009
    [82]黄舒彦.铝钢异种金属自冲铆接工艺与质量评价研究[硕士学位论文].上海,上海交通大学,2011
    [83]黄舒彦,李永兵,楼铭,等.基于力与位移信号的自冲铆接质量在线监测.机械设计与研究,2011,27(3):86-90
    [84]金鑫,李永兵,楼铭,等.基于正交试验的铝合金-高强钢异种金属自冲铆接工艺优化.汽车工程学报,2011,1(3):185-191
    [85]王军伟.AZ31镁合金的自冲铆接工艺研究[硕士学位论文].郑州,郑州大学,2010
    [86]万淑敏,胡仕新,张连洪,等.模具工艺参数对自冲铆接工艺过程及铆接质量的影响.机械设计,2008,25(4):62-65
    [87]万淑敏,S.Jack Hu,李双义,等.半空心铆钉自冲铆接的工艺参数及铆接质量的判定.天津大学学报,2007,40(4):494-498
    [88]杜越,王明星,刘忠侠,等.摩擦加热AZ31镁合金板材的自冲铆接.热加工工艺,2011,40(15):152-156
    [89]L. Han, A. Chrysanthou, J. M. O'Sullivan. Fretting behaviour of self-piercing riveted aluminium alloy joints under different interfacial conditions. Materials and Design,2006,27(3):200-208
    [90]X. Sun, E. V. Stephens, M. A. Khaleel. Fatigue behaviors of self-piercing rivets joining similar and dissimilar sheet metals. International Journal of Fatigue,2007,29(2):370-386
    [91]尚勇.镁合金自冲铆接及自冲铆接-粘接接头的疲劳性能[硕士学位论文].郑州,郑州大学,2010
    [92]X. Sun, E. V. Stephens, M. A. Khaleel. Fatigue behaviors of self-piercing rivets joining similar and dissimilar sheet metals. International Journal of Fatigue,2007,29(2):370-386
    [93]尚勇.镁合金自冲铆接及自冲铆接-粘接接头的疲劳性能[硕士学位论文].郑州,郑州大学,2010
    [94]谢希文,路若英.金属学原理(第1版).北京:航空工业出版社,1989
    [95]ANSYS 12.1 Help.V12.1.ANSYS
    [96]LS-DYNA Theoretical Manual.V5.5.LSTC 公司.1996
    [97]X. C. He, B. Y. Xing, K. Zeng, etal. Numerical and experimental investigations of self-piercing riveting. International Journal of Advanced Manufacturing Technology,2013,69(1-4):715-721
    [98]W. Cai, P. C. Wang, W. Yang. Assembly dimensional prediction for self-piercing riveted aluminum panels. International Journal of Machine Tool & Manufacture,2005,45(6):695-704
    [99]郑俊超.压印接头力学性能研究及微观组织形态分析[硕士学位论文].昆明,昆明理工大学,2012
    [100]GB/T 3246.1-2000.变形铝及铝合金制品组织检验方法.北京,国家质量技术监督局,2000
    [101]王岚,杨平,李长荣.金相实验技术(第2版).北京:冶金工业出版社,2010
    [102]谢希文,路若英.金属学原理(第1版).北京:航空工业出版社,1989
    [103]William N著;杨文强,罗强译.统计学-科学与工程应用(第1版).北京:清华大学出版社,2007
    [104]William M, Terry S著;梁冯珍等译.统计学(第5版).北京:机械工业出版社,2009
    [105]钟群鹏,赵子华.断口学(第1版).北京:高等教育出版社,2006
    [106]吕箴.基于历史数据的小样本结构疲劳可靠性分析方法[硕士学位论文].南京,南京航空航天大学,2007
    [107]牟致忠.机械可靠性-理论·方法·应用(第1版).北京:机械工业出版社,2011
    [108]金良琼.两参数Weibull分布的参数估计[硕士学位论文].昆明,云南大学,2010
    [109]V. M. Karbhari, Q. Wang. Influence of triaxial braid denier on ribbon-based fiber reinforced dental compositers. Dental materials, 2007,23(8):969-976
    [110]王长江,姚卫星.引入三参数S-N曲线的DFR法.南京航空航天大学学报,2010,42(3):294-297
    [111]高镇同,傅惠民,梁美训.S-N曲线拟合法.北京航空学院学报,1987,(1):115-119
    [112]J. A. Pape, R. W. Neu. Influence of contact configuration in fretting fatigue testing. Wear,1999,225:1205-1214
    [113]D. Li, L. Han, M. Thornton, M. Shergold. Influence of rivet to sheet edge distance on fatigue strength of self-piercing riveted aluminium joints. Materials Science & Engineering A,2012,558: 242-252
    [114]R. Haque, J. H. Beynon, Y. Durandet, O. Kirstein, S. Blacket. Feasibility of measuring residual stress profile in different self-pierce riveted joints. Science and technology of welding and joining, 2012,17(1):60-68
    [115]L. Han, A. Chrysanthou, K. Young, J. O'sullivan. Characterization of fretting fatigue in self-piercing riveted aluminium alloy sheets. Fatigue & Fracture of Engineering Materials & Structures,2006,29 (8):646-654
    [116]K. Ishii, M. Imanaka, H. Nakayama, H. Kodama. Fatigue failure criterion of adhesively bonded CFRP/metal joints under multiaxial stress conditions. Composites part A-applied science and manufacturing,1998,29(4):415-422
    [117]周仲荣,Leo Vincent.微动磨损(第1版).北京:科学出版社,2002
    [118]冯模盛,何晓聪,严柯科等.压印连接工艺过程的数值模拟及实验研究.科学技术与工程,2011,23:5538-5541

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700