用户名: 密码: 验证码:
金属的铝液熔蚀—磨损及新型合金铸铁研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝液熔蚀-磨损常见于铝合金熔炼、成形及热浸镀铝生产中,不仅造成部件使用寿命的降低,而且可能会造成铝液的污染,使铝及其合金产品性能的下降,甚至报废。
     本文采用自制高温金属熔蚀-磨损试验装置研究了不同金属材料在铝液中的熔蚀-磨损特性,提出铝液熔蚀-磨损工况下材料设计原则,在此基础之上,设计制备新型耐铝液熔蚀-磨损合金铸铁并与304不锈钢进行复合。
     采用750℃×24h静态铝液浸没试验研究了QT350、HT300、高铬铸铁、合金HT、Q235、H13、Cr13、SKH51、W、Mo、Nb、Ta和Zr在铝液中的熔蚀行为。结果表明:Zr因在铝液中熔解度大而完全熔解,其余金属材料与铝液发生互扩散形成金属间化合物。钢铁中碳以石墨形式存在时,具有阻隔铝液腐蚀金属的作用,其效果与石墨形态、大小和分布有关;以碳化物形式存在时,其耐铝液熔蚀性能不如石墨,但远较铁基体优异,对基体具有保护作用。钢铁中石墨或碳化物的数量越多、间隙越小则其耐铝液熔蚀性能越好。难熔金属与铝液形成的金属间化合物和金属基体的结合强度很差,无法起扩散屏障作用,但难熔金属在铝液中的熔解度很小,因而具有优异的耐铝液熔蚀性能。
     为了研究金属材料在铝液中的熔蚀-磨损行为,研制了高温金属熔蚀-磨损试验机,该设备实现了金属液熔蚀-磨损工况的模拟,并具有金属液用量少、载荷施加准确及摩擦力准确传递与测量的特点,为研究材料在熔融金属中的熔蚀-磨损机理,开发新型耐高温金属液熔蚀-磨损材料提供了技术支持。
     采用自制高温金属熔蚀-磨损试验装置研究了QT350、HT300、高铬铸铁、Q235、H13、Cr13、SKH51、W、Mo在750℃铝液中的熔蚀-磨损行为。结果表明:金属材料在铝液中熔蚀-磨损所形成的金属间化合物的相组成与其在铝液中的熔蚀所形成的金属间化合物的相组成相同。由于铝液熔蚀形成的脆硬金属间化合物在摩擦磨损的切削作用下与金属基体分离形成磨粒对金属基体产生犁削,金属材料在铝液中的磨损机制以磨粒磨损为主。熔蚀-磨损交互作用量占熔蚀-磨损总量的比例均在95%以上,熔蚀与磨损的交互作用造成材料损伤急剧增大。
     在金属材料铝液熔蚀-磨损行为研究基础上,提出了铝液熔蚀-磨损工况下材料设计原则:以铸铁为基体,加入足够数量的碳化物形成元素如Cr、W,以在基体中获得具有较好耐铝液熔蚀性能并在熔蚀-磨损过程中起支撑作用的高硬度碳化物,此外,加入少量其它合金元素如Mo、V等改善材料的组织与性能。
     在铝液熔蚀-磨损工况下材料设计原则提出的基础上,以高铬铸铁为基体,添加W、Mo、V、B合金元素,成功研制一种新型耐铝液熔蚀-磨损合金铸铁。结果表明:与H13钢相比,新型合金铸铁耐铝液熔蚀性能提升3倍以上,耐铝液熔蚀-磨损性能提升12倍以上。
     为使新型合金铸铁可用于大尺寸部件的制备,利用瞬时液相扩散连接成功制得304不锈钢/新型合金铸铁复合材料。研究了连接温度、保温时间及连接压力对接头组织和力学性能的影响。当连接温度为1080℃,连接压力为6MPa,保温时间为6min时,获得了具有良好组织和力学性能的接头,接头的拉伸强度超过新型合金铸铁的拉伸强度,剪切强度达317.5MPa。
Some parts such as sink roll used in hot dip aluminizing and tube used in squeeze castingare not only corroded by molten aluminum, but also worn by other contact materials. The partin such condition must be replaced after a certain time of use. Moreover, molten aluminumwill be contaminated because of dissolution of the part into molten aluminum, which willmake the capability of product made of aluminum worse, or even scrapped.
     In this paper, the corrosion–wear characteristics of metals in molten aluminum have beenidentified by a self-made high temperature test rig, design principle of corrosion–wearresistant materials in molten aluminum has been proposed, and a new alloy cast iron with highcorrosion-wear resistance in molten aluminum has been prepared and synthesized.
     Corrosion of QT350, HT300, high chromium cast iron, alloy grey cast iron, Q235, H13,Cr13, SKH51, W, Mo, Nb, Ta and Zr in molten aluminum have been investigated by750℃×24h static molten aluminum immersion test under the same experimental conditions. Theresults show that: Except Zr is completely dissolved in molten aluminum, other chosen metalsenable mutual diffuse with molten aluminum, and intermetallic layers are formed. For ironbased materials, C in form of graphite or carbides plays a role of barrier to molten aluminum.The corrosion resistance in molten aluminum of graphite is better than carbides. Moreover,the barrier effect of graphite to molten aluminum is related to its shape, size and distribution.As the gap between graphits or carbides is smaller, the corrosion resistance in moltenaluminum of iron based materials is better. The intermetallic compound layer formed betweenrefroctory metals and molten aluminum cannot play a role of barrier for poor bond strengthbetween intermetallic compound layer and refroctory metals, but the corrosion resistance inmolten aluminum of refroctory metals is excellent because of small solubility of refroctorymetals in molten aluminum.
     Since the existing high temperature test apparatus have a lot of deficiencies inperformance and structure, such as over consumption of molten metal, uncertaintyload and the lack of friction coefficient measurement, a self-made high temperature test righas been developed. The new device has characteristics such as less consumption of liquidmetal for the use of lift type heating furnace, accurate loading for the use of flexible wire rope hanging weight loading, accurate transmission and measurement of friction for the use ofspecial suspension mechanism. The device can accurately simulate corrosion-wear behave ofmetals in different molten metal, and can provide technical supporting for the research aboutcorrosion-wear mechanism of metals.
     Corrosion-wear characteristics of QT350, HT300, high chromium cast iron, Q235, H13,Cr13, SKH51, W and Mo in molten aluminum were investigated by self-made hightemperature test rig. The results show that: The intermetallic compound layer that formedbetween chosen metals and molten aluminum in the process of corrosion-wear is as same asthe layer formed in the process of corrosion. The intermetallic compound layer formedbetween metals and molten aluminum is cut from metal matrix and separated to abrasive toproduce plowing on the metal substrate. The wear mechanism of cast irons in moltenaluminum is mainly abrasive wear. The synergistic amounts between corrosion and wear ofmetals are more than95%and the synergistic effect between corrosion and wear leads torapidly increased weight loss of metals.
     On the basis of the research results about the corrosion-wear characteristics of metals inmolten aluminum, design principle of corrosion–wear resistant materials in molten aluminumhas been proposed: by adding carbide forming elements such as Cr and W, high hardnesscarbides with good corrosion resistance in molten aluminum are formed in cast iron matrix,and play a role of bearing in the process of corrosion-wear in molten aluminum. Moreover,other alloy elements such as Mo and V are added into cast iron matrix in order to obtainperfect organization and performance.
     On the basis of design principle of corrosion–wear resistant materials in moltenaluminum, a new alloy cast iron with high corrosion-wear resistance in molten aluminum hasbeen successfully developed by adding W, Cr, Mo, V alloying elements into high chromiumcast iron. The corrosion resistant in molten aluminum of new alloy cast iron is more than3times than H13steel, and the corrosion-wear resistant in molten aluminum of it is more than12times than H13steel.
     In order to prepare large size parts, new alloy cast iron and304stainless steel have beensuccessfully synthesized by transient liquid phase diffusion bonding technology. Underparameters as follows: bonding temperature1080℃, holding time6min and bonding pressure 6MPa, the tensile strength of joint is bigger than new alloy cast iron, and the shear strength ofjoint is317.5MPa.
引文
[1]张鹏,杜云慧,曾大本.熔铝灰铁坩埚的腐蚀与防护[J].特种铸造及有色合金,2000(5):25-27.
    [2] Chen Z.W, Jahedi M.Z. Die erosion and its effect on soldering formation in high pressuredie casting of aluminium alloys [J]. Materials and Design,1999(20):303-309.
    [3] Sumanth Shankar, Diran Apelian. Die Soldering: Mechanism of the Interface Reactionbetween Molten Aluminum Alloy and Tool Steel [J]. Metallurgical and MaterialsTransactions B,2002(33):465-476.
    [4] Zhu Hanliang, Guo Jingjie, Jia Jun. Experimental study and theoretical analysis on diesoldering in aluminum die casting [J]. Journal of Materials Processing Technology,2002(123):229-235.
    [5]Joshi V, Srivastava A, Shivpuri R. Intermetallic formation and its relation to interface massloss and tribology in die casting dies [J]. Wear,2004(256):1232-1235.
    [6] Miller A E, Maijer D M. Investigation of erosive-corrosive wear in the low pressure diecasting of aluminum A356[J]. Materials Science and Engineering A,2006(435-436):100-111.
    [7] Cheng Wei-Jen, Wang Chaur-Jeng. Growth of intermetallic layer in the aluminide mildsteel during hot-dipping [J]. Surface&Coatings Technology,2009(204):824-828.
    [8]Nazari K A, Shabestari S G. Effect of micro alloying elements on the interfacial reactionsbetween molten aluminum alloy and tool steel [J]. Journal of Alloys and Compounds,2009(478):523-530.
    [9]Shigeaki Kobayashi, Takao Yakou. Control of intermetallic compound layers at interfacebetween steel and aluminum by diffusion-treatment Materials [J]. Science andEngineeringA,2002(338):44-53.
    [10]Massalski T B. Binary Alloy Phase Diagrams [M]. ASM International, Ohio,1990.
    [11]黄守伦,杨明红.铁基合金铝液腐蚀机理的研究[J].武汉交通科技大学学报,2000,24(6):663-566.
    [12]Bouche′K, Barbier F, A Coulet. Intermetallic compound layer growth between solid ironand molten aluminium [J]. Materials Science and EngineeringA,1998(249):167-175.
    [13]刘树勋,李培杰,曾大本.液态金属腐蚀的研究进展[J].腐蚀科学与防护技术,2001,13(5)275-278.
    [14]Shahverdi H R, Ghomashchi M R, Shabestari S, et al. Microstructural analysis ofinterfacial reaction between molten aluminium and solid iron [J]. Journal of MaterialsProcessing Technology,2002(124):345-352
    [15]娄本浊.从耐腐蚀性能看高温熔铝坩埚的选材[J].材料保护,2009,42(3):71-72.
    [16]David Balloy, Tissier Jean-Charles, Giorgi Marie-laurence, et al. Corrosion Mechanismsof Steel and Cast Iron by Molten Aluminum[J]. Metallurgical and Materials TransactionsA,2010(41):2366-2376.
    [17] Hou Xiaoxia, Yang Hua, Zhao Yan, et al. Effect of Si on the interaction between diecasting die and aluminum alloy [J]. Materials Letters,2004(58):3424-3427.
    [18]祝汉良,郭景杰,贾均.硅对压铸模与铝合金相互作用的影响[J].特种铸造及有色合金,1998(06):22-25.
    [19]Vaillant Ph, Petitet J P. Interaction under hydrostatic pressure of a mild steel with liquidaluminum alloys [J]. Journal of materials science,1995(30):4659-4668.
    [20]Barmak K, Dybkov V I. Interaction of iron-chromium alloys containing10and25mass%chromium with liquid aluminium Part I Dissolution kinetics [J]. Journal of MaterialsScience,2003(38):3249-3255.
    [21]Barmak K, Dybkov V I. Interaction of iron-chromium alloys containing10and25mass%chromium with liquid aluminium Part II Formation of intermetallic compounds [J].Journal of Materials Science,2004(39):4219-4230.
    [22]王晓亮.含Cr钢在Al液中腐蚀行为研究[J].热加工工艺,2011,40(8):38-40.
    [23]Dybkov V I. Interaction of iron-nickel alloys with liquid aluminium Part I Dissolutionkinetics [J]. Journal of materials science,1993(28):6371-6380.
    [24]Dybkov V I. Interaction of iron-nickel alloys with liquid aluminium Part II Formation ofintermetallics [J]. Journal of materials science,2000(35):1729-1736.
    [25]Hwang Sung-Ha, Song Jin-Hwa, Kim Yong-Suk. Effects of carbon content of carbon steelon its dissolution into a molten aluminum alloy [J]. Materials Science and EngineeringA,2005(390):437-443.
    [26]Han Yi, Ban Chunyan, Ba Qixian, et al. Effect of an alternating magnetic field on theinterfacial microstructure between molten aluminium and solid iron[J]. Materials Letters,2006(60):1884-1887.
    [27]Hou Hua, Yang Ruifeng. Study on stainless steel electrode based on dynamic aluminumliquid corrosion mechanism[J]. Journal of Environmental Sciences Supplement,2009:S170-S173.
    [28]Yang Ruifeng, Zhang Peng, Wu Jin Hui. The corrosion mechanism of a stainless steelelectrode in the dynamic melting of Al at high temperature[J]. Materials Science andEngineering A,2009(499):134-137.
    [29]张国伟,侯华,毛红奎.不锈钢电极材料在高温动态铝液中腐蚀机理研究[J].热加工工艺,2008,37(7):15-19.
    [30]张国伟,侯华,毛红奎.铝液腐蚀1Cr18Ni9Ti不锈钢的机理研究[J].铸造设备研究,2008(2):1-4.
    [31]孙大仁,曹占义,杨晓红,等.低碳钢在铝合金熔体中冲蚀磨损的研究[J].腐蚀科学与防护技术,2003,15(5):288-291.
    [32]Yeremenko V N, Natanzon Ya V, Dybkov V I. Interaction of the refractory metals withliquid aluminium [J]. J Less-Common Met1976(50):29-48.
    [33]Robin Alain, Sandim Hugo R Z. Degradation behavior of niobium in molten aluminum[J]. International Journal of Refractory Metals&Hard Materials,2002,20:221-225.
    [34]Batchelor A W, Hung N P, Lee T K. Wear of metal stirring rods in molten aluminium andsuspensions of alumina particles in molten aluminium [J]. Tribology International,1996,29:41-50.
    [35]Takemoto T, Okamoto I. Intermetallic compounds formed during brazing of titanium withaluminium filler metals [J]. Journal of Materials Science,1988,23:1301-1308.
    [36]Mithelich J, Decker R F. Apparatus for processing corrosive molten metals [P]. US Patentno,5711366.1998.
    [37]Tunca N, Delamore G W, Smith R.W. Corrosion of Mo, Nb, Cr, and Y in MoltenAluminum[J]. Metallurgical Transactions A,1990(21A):2919-2928.
    [38]Tunca N, Smith R W. Intermetallic compound layer growth at the interface of solidrefractory metals molybdenum and niobium with molten aluminum[J]. MetallurgicalTransactions A,1989(20A):825-836.
    [39]Ali Sangghaleh, Mohammad Halali. An investigation on the wetting of polycrystallinealumina by aluminium[J]. Journal of Materials Processing Technology,2008(197):156-160.
    [40]Roulet F, Tristant P, Desmaison J, et al. Corrosion Behaviour of Aluminium Nitride inLiquid Aluminium: Influence of the Microstructure[J]. Journal of the European CeramicSociety,1997(17):1877-1883.
    [41]黄向东,沈峰,李强.铝液对氮化硼基导电陶瓷蒸发舟表面腐蚀的研究[J].硅酸盐通报,2006,25(5):171-175.
    [42]黄向东,沈峰,陈永虹,等.蒸发镀铝过程中铝液对蒸发舟表面腐蚀的研究[J].福州大学学报(自然科学版),2006,34(4):538-542.
    [43]El-Raghy T, Barsoum M W, Sika M. Reaction of Al with Ti3SiC2in the800-1000°Ctemperature range [J]. Materials Science and EngineeringA,2001(298):174-178.
    [44]Lebeau T, Strom-Olsen J O, Gruzleski J E, et al. Aluminum Alloy/Alumina-BasedCeramic Interactions [J]. Materials Characterization,1995(35):11-22.
    [45]Brondyke K J. Effect of Molten Aluminum on Alumina-Silica Refractories[J]. Journal ofthe American Ceramic Society,1953,36(5):171-174.
    [46]Afshar S, Allaire C. The corrosion of refractory aggregates by molten aluminum[J]. JOM2000,52(5):43-36.
    [47]Souza W De, Zirpoli C. New refractories for aluminum melting furnaces[J]. Ref. Appl.News,2002,7(1):17–25.
    [48]Felice F T. Aluminum Resistance Refractory Compositions[P]. US Patent no,4522926.1985.
    [49]Talley R W, Henrichsen R A, Bakker W T. Refractory for Aluminum Melting Furnaces[P]. US Patent no,4126474.1978.
    [50]Porterfield A D. Aluminum Resistance Refractory Compositions[P]. US Patent no,4806509.1989.
    [51]Oprea G. Refractories for the next millennium[C]. TMS, Washington,2000.
    [52]Dunsing T W. Tips on Good Refractory Practice for Aluminum-Melting Furnaces[J].Industrial heating,2002(4):27-29.
    [53]Allahevrdi M, Afshar S, Allaire C. Additives and the corrosion resistance ofaluminosilicate refractories in molten Al–5Mg[J]. JOM,1998:30–34.
    [54]Afshar S, Allaire C. Furnaces: improving low cement castables by nonwetting additives[J]. JOM,2001:24–27.
    [55]Siljan O J, Hydro N. Refractories for molten aluminum contact part I: thermodynamicsand kinetics[J]. Ref. Appl. News,2002,7(6):17–25.
    [56]Obrien M H, Aking M. Role of ceria in enhancing the resistance of aluminosilicaterefractories to attack by molten aluminum alloy[J]. Journal of the American CeramicSociety,1989,72:896-904.
    [57]Lin C S, Kea C S, Peng H. Corrosion of CrN and CrNyTiN coated heat-resistant steels inmolten A356aluminum alloy[J]. Surface and Coatings Technology,2001(146-167):168-174.
    [58]Lin J, Carrera S, Kunrath A O, et al. Design methodology for optimized die coatings: Thecase for aluminum pressure die-casting [J]. Surface&Coatings Technology,2006(201):2930-2941.
    [59]Khan Faisal Farooq, Bae Gyuyeol, Kang Kicheol, et al. Development of cermet coatingsby kinetic spray technology for the application of die-soldering and erosion resistance[J].Surface and Coatings Technology,2009(204):345-352.
    [60] Joshi V, Kulkarni K, Shivpuri R, et al. Dissolution and soldering behavior of nitrided hotworking steel with multilayer LAFAD PVD coatings[J]. Surface and Coatings Technology,2001,146-147:338-343.
    [61]Panjan P, ekada M, Kirn R, et al. Improvement of die-casting tools with duplextreatment[J]. Surface and Coatings Technology,2004(180-181):561-565.
    [62]Anders Persson, Jens Bergstr m, Christer Burman, et al. Influence of depositiontemperature and time during PVD coating of CrN on corrosive wear in liquidaluminium[J]. Surface and Coatings Technology,2001(146-147):42-47.
    [63]Gulizia S, Jahedi M Z, Doyle E D. Performance evaluation of PVD coatings for highpressure die casting[J]. Surface and Coatings Technology,2001(140):200-205.
    [64]Vourlias G, Pistofidis N, Psyllaki P, et al. Plasma-sprayed YSZ coatings: Microstructuralfeatures and resistance to molten metals[J]. Journal of Alloys and Compounds,2009(483):382-385.
    [65]Tentardini E K, Aguzzoli C, Castro M, et al. Reactivity between aluminum and (Ti, Al) Ncoatings for casting dies[J]. Thin Solid Films,2008(516):3062-3069.
    [66]Eduardo K Tentardini, Augusto O Kunrath, Cesar Aguzzoli, et al. Soldering mechanismsin materials and coatings for aluminum die casting[J]. Surface&Coatings Technology,2008(202):3764-3771.
    [67]Ho Wei-Yu, Huang Dung-Hau, Huang Li-Tian, et al. Study of characteristics ofCr2O3/CrN duplex coatings for aluminum die casting applications[J]. Surface andCoatings Technology,2004(177-178):172-177.
    [68]Nastasi Michael, He Xiao-Ming, Walter Kevin C, et al. The use of plasma immersion ionprocessing in the synthesis of protective coatings for Al die casting[J]. Surface andCoatings Technology,2001(136):162-167.
    [69]谈轶文,张军,尤国刚.熔铝铁质坩埚开裂机制及预防对策[J].铸造,2004,53(4):317-319.
    [70]陈维平,朱士銮.熔铝铸铁坩埚新型材质的研究[J].湖南大学学报自然科学版,1991,18(4):71-76.
    [71]江绍财.熔铝坩埚的研制[J].一重技术,2002(2-3):88-89.
    [72]关敏权,柯志敏.熔铝坩埚的生产[J].中国铸造装备与技术,2008(5):49-50.
    [73]张友寿,赵昌旭.炼钢厂熔铝坩埚的研制[J].现代铸铁,2003(4):28-30.
    [74]李鹏,崔传孟,王魁汉.新型铁基合金材料在铝液中耐腐蚀性能的研究[J].有色矿冶,1998(3):39-41.
    [75]马状,赵越超,张心渊.中硅耐热球墨铸铁在铸铝坩埚上的应用[J].辽宁工程技术大学学报自然科学版,1998,17(1):43-36.
    [76]李战雄,郭春和.耐热球铁坩埚的生产[J].现代铸铁,2001(2):49-51.
    [77]童杏林,李远才,张军.一种生产长寿命熔铝铁埚工艺的研究[J].中国铸造装备与技术,1999(3):19-21.
    [78]曾辉.球墨铸铁件表面片状石墨层的应用[J].铸造技术,2001(3):22-23.
    [79]Zhu Yulong, David Schwam, John F Wallace, et al. Evaluation of soldering, washout andthermal fatigue resistance of advanced metal materials for aluminum die-casting dies[J].Materials Science and EngineeringA,2004(379):420-431.
    [80]李宁.铁硅金属间化合物的制备及耐铝液腐蚀、抗热震性研究[D].西安:长安大学硕士学位论文,2006.
    [81]Yan M, Fan Z. Durability of materials in molten aluminum alloys[J]. Journal of MaterialsScience,2001(36):285-295.
    [82]Jensen M S, Pezzotta M, Zhang Z L, et al. Degradation of TiB2ceramics in liquidaluminum[J]. Journal of the European Ceramic Society,2008(28):3155-3164.
    [83]王兆文,孙淑萍,李冰,等. MoSi2对二硼化钛惰性阴极材料性能的影响[J].东北大学学报(自然科学版),1999,20(6):619-621.
    [84]Miyahara H, Muraoka R. Influence of alloying elements on wettability and reaction ofmolten aluminum with alumina[J]. Journal of the Japan Institute of Metals,1995(59):660-665.
    [85]Long G, Foster L M. Aluminum Nitride, a Refractory for Aluminum to2000℃[J]. Journalof the American Ceramic Society,1959(42):53-49.
    [86]TOY C, SCOTT W D. Wetting and spreading of molten aluminium against AlN surfaces[J]. Journal of Materials Science,1997(32):3243-3248.
    [87]高炳亮,王启权,邱竹贤,等.碳化硅耐火材料在铝电解槽中应用的可行性[J].轻金属,2001(4):40-43.
    [88]陈福山,李世斌,鞠银燕,等.硅/碳化硅材料用作电解铝热电偶保护管的可行性研究[J].佛山陶瓷,2005(12):8-10.
    [89]Miyahara H, Otani J, et al. Wettability and reaction between molten aluminum andAl2O3-SiO2substrate[J]. Journal of the Japan Institute of Metals,1992(56):1056-1063.
    [90]ALLAIRE C, DESCLAUX P. Effect of alkalis and of a reducing atmosphere on thecorrosion of refractories by molten aluminum[J]. Journal of the American Ceramic Society,1991(74):2781-2785.
    [91]Mouradoff L, Tristant P, et al. Interaction between liquid aluminium and non-oxideceramics (AlN, Si3N4, and SiC)[J]. Corrosion of Advanced Ceramics,1996(113):177-185.
    [92]PENKOV I, PASCOVA R, et al. A new glass ceramic material with high resistance tomolten aluminium[J]. Journal of Materials Science Letters,1997(16):1544-1546.
    [93]曾辉,黎东涛,李国彪,等.陶瓷-金属-合金三层复合材料坩埚的液态成形法研究[J].热加工工艺,2007,36(17):5-7.
    [94]赵玉成,樊三新.钢铁陶瓷复合管[J].石油工程建设,1998(1):42-43.
    [95]Odawara O. Long ceramic-lined pipes produced by a centrifugal-thermit process[J].Journal of the American Ceramic Society,1990(73):629-633.
    [96]王荣,吴晓春,闵永安.铝合金压铸模的焊合熔损现象及其预防措施[J].金属热处理,2005,3(2):68-72.
    [97]潘应君,吴新杰,张细菊等. H13模具钢离子渗氮层的组织与性能[J].金属热处理,2003,28(5):39-42.
    [98]陈玉华,吴晓春,闵永安.表面处理对H13钢抗动态热熔损性能的影响[J].钢铁研究学报,2008,20(10):49-52.
    [99]Ueda M, Leandro C, Reuther H, et al. Plasma immersion ion implantation of nitrogen intoH13steel under moderate temperatures[J]. Nuclear Instruments and Methods in PhysicsResearch B,2005(240):204–207.
    [100]Nur en, Saklako lu. Characterization of surface mechanical properties of H13steelimplanted by plasma immersion ion implantation[J]. Journal of Materials ProcessingTechnology,2007(189):367-373.
    [101]Silva L L G da, Ueda M, Nakazato R Z. Enhanced corrosion resistance of AISI H13steel treated by nitrogen plasma immersion ion implantation[J]. Surface&CoatingsTechnology,2007(201):8291-8294.
    [102]姜训勇,刘智勇,朱穗东.渗硼对45钢耐液态金属腐蚀性能影响的研究[J].材料热处理学报,2005,26(2):99-103.
    [103]Lou D C, Akselsen O M, Ons ien M I, et al. Surface modification of steel and cast ironto improve corrosion resistance in molten aluminium[J]. Surface and CoatingsTechnology,2006(200):5282-5288.
    [104]Tsipas D N, Triantafyllidis G K, Kiplagat J Kipkemoi, et al. Degradation behaviour ofboronized carbon and high alloy steels in molten aluminium and zinc[J]. MaterialsLetters,1998(37):128-131.
    [105]王荣,闵永安,吴晓春. H13钢经不同表面处理后的静态抗铝热熔损性能比较[J].金属热处理,2003,28(12):5-8.
    [106]胡正前,张文华,马晋. H13模具钢表面处理和热疲劳-热熔损性能[J].特殊钢,1997,18(5):24-26.
    [107]闵永安,王荣,吴晓春,等.蒸汽氧化H13钢的抗铝热熔损性能研究[J].上海金属,2004,26(3):5-9.
    [108]叶升平,罗吉荣,赵金生,等.熔铝保护性涂料的研制与应用[J].特种铸造及有色合金,1998(2):35-36.
    [109]张军,谈轶文,付凯. TGT复合陶瓷涂料在工频炉熔铝铁坩埚上的应用[J].特种铸造及有色合金,2002(6):47-48.
    [110]Albert S J. Method for producing a TiB sub-based coating[P]. US Patent no,5837327.1998.
    [111]郭面焕,邵德春,孟繁玉,等.铸铁坩埚抗铝融蚀等离子喷涂技术[J].焊接,2000(9):25-28.
    [112]Mitterer C, Holler F, Reitberger D, et al. Industrial applications of PACVD hardcoatings[J]. Surface and Coatings Technology,2003(163-164):716-722.
    [113]Wang Yucong. A study of PVD coatings and die materials for extended die-casting dielife[J]. Surface and Coatings Technology,1997(94-95):60-63.
    [114]Zhou Q G, Bai X D, Chen X W, et al. Corrosion resistance of duplex and gradient CrNxcoated H13steel[J]. Applied Surface Science,2003(211):293-299.
    [115]黄小鸥,汪瑞军,徐林.电火花沉积金属陶瓷材料耐铝液热浸蚀研究[J].焊接,2001(3):22-24.
    [116]Kazuki Kawata, Hiroyuki Sugimura, Osamu Takai. Characterization of multilayer filmsof Ti-Al-O-C-N system prepared by pulsed D.C. plasma-enhanced chemical vapordeposition[J]. Thin Solid Films,2001(390):64-69.
    [117]Swapnil V Shah, Narendra B Dahotre. Laser surface-engineered vanadium carbidecoating for extended die life[J]. Journal of Materials Processing Technology,2002(124):105-112.
    [118]Jiang Wenping, Molian Pal. Nanocrystalline TiC powder alloying and glazing of H13steel using a CO laser for improved life of die-casting dies[J]. Surface and CoatingsTechnology,2001,135:139-149.
    [119]高占勇,张金龙,武文霞等.石墨形态对铸铁在铝液中耐腐蚀性的影响[J].铸造,2009,58(9):937-939.
    [120]姜晓霞,李诗卓,李曙.金属的腐蚀磨损[M].北京:化学工业出版社,2003
    [121]黎清宁,蒋业华,卢德宏,等.湿磨工况下冲击功对高锰钢腐蚀磨损交互作用的影响[J].摩擦学学报,2009,29(1):75-80
    [122]丁红燕,戴振东. TC11钛合金在人造海水中的腐蚀磨损特性研究[J].摩擦学学报,2008,28(2):139-144
    [123]林冠发,仝明信,白真权,等.两种油套管钢在两相流中的腐蚀磨损特性研究[J].摩擦学学报,2006,126(1):88-91
    [124]曹晓明,马瑞娜,王岩,等.钴基合金在液锌中的腐蚀磨损性能[J].天津大学学报,2008,141(12):1485-1491
    [125]杨景顺.多功能高温金属磨损腐蚀试验机的研制[D].天津:天津大学,2005.
    [126]Zhang K, Battiston L. Friction and wear characterization of some cobalt and iron-basedsuperalloys in zinc alloy baths[J]. Wear,2002,252(3-3):332-344.
    [127]张丽敏.热镀锌板沉没辊轴套材料腐蚀磨损机理的研究[D].天津:天津大学,2006.
    [128]陈维平,吴晶,罗洪峰.新型高温金属腐蚀-磨损试验机及其应用[J].特种铸造及有色合金,2012,32(10):883-785.
    [129]Wagner C. The evaluation of data obtained with diffusion couples of binary single-phaseand multiphase systems[J]. Acta Metallurgica,1969,17(2):99-107.
    [130]Shatynski S R, Hirth J P, Rapp R A. A theory of multiphase binary diffusion[J]. ActaMetallurgica,1976,24(12):1071-1078.
    [131]Li Guan-Xing, Powell G W. Theory of reaction diffusion in binary systems[J]. ActaMetallurgica,1985,33(1):23-31.
    [132]张贵锋,张建勋,王士元,等.瞬间液相扩散焊与钎焊主要特点之异同[J].焊接学报,2002(06):92-96.
    [133]MacDonald W D, Eagar T W. Isothermal solidification kinetics of diffusion brazing[J].Metallurgical and Materials Transactions A,1998,29(1):315-325.
    [134]Zhou Y, Gale W F, North T H. Modeling of transient liquid phase bonding [J].International Materials Reviews,1995,40(5):181-196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700