用户名: 密码: 验证码:
板带热连轧轧制力及其设定的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在计算机控制的板带热连轧生产中,轧制力设定是一个非常重要的环节。它是板带热连轧精轧机组计算机设定模型的核心,其设定精度将直接影响到辊缝的设定,进而影响到穿带的稳定性、板厚精度以及最终的板形质量等等。目前,我国的轧制力设定技术与世界先进水平还存在较大的差距,同时用户对板带材的板厚精度和板形质量也提出了更高的要求。因此,对轧制力设定的研究有着非常重要的理论意义和实用价值。
     本文根据宝钢2050热轧厂提供的钢种和数据资料,采用物理模拟和数值模拟相结合的方法,同时引入鲁棒性设计的思想,对板带热连轧轧制规程设定进行了较为系统的研究。
     首先,对宝钢提供的钢种195在Gleeble-1500D热力物理模拟试验机上进行高温压缩变形实验,详细的分析了变形温度、变形程度和变形速度对材料变形抗力的影响,并根据实验数据建立了用于有限元模拟的材料变形抗力列表;同时,针对实验中所出现的相变对变形抗力的影响,引入修正因子,对现场中的轧制力进行了修正,从修正结果可以看出,各道次的轧制力精度都有较大幅度的提高,特别是在第三机架,轧制力计算精度提高5.7%。
     然后,根据现场轧制参数和实验所得的变形抗力列表,利用DEFORM-2D软件建立了板带热连轧的有限元模型。重点分析了板带热连轧过程温度和轧制力的变化,并将有限元计算的轧制力与宝钢轧制力模型计算值和实测值进行了对比。结果表明,有限元模型的计算值和实测值比较接近,相对误差在5.5%以内。同时,有限元模型的计算精度高于宝钢模型,特别是在第三机架,轧制力计算精度高出4.3%。
     最后,根据轧制规程的制定原则和制定方法,制定了传统轧制规程和末架大压下轧制规程两种规程。引入鲁棒性设计的思想,把轧辊偏心看作“噪声”因子,把轧制力的变化看作产品/过程的响应,利用DEFORM-2D对两种轧制规程的热连轧过程进行了有限元数值模拟,对比分析了不同偏心量时两种轧制规程各道次的轧制力变化,并着重分析计算了两种轧制规程的末架在各个偏心量的轧制力波动以及波动范围。结果表明,末架大压下轧制规程的轧制力波动明显小于传统轧制规程的轧制力波动,且前者的轧制力波动范围也小于后者。因此,本文提出的末架大压下轧制规程的轧制力抵抗轧辊偏心干扰的能力更强,具有较好的鲁棒性。
     总之,本论文的研究结果对实际生产具有重要的参考价值。
In modern computer controlled hot strip tandem mill production, the preset of rolling load is very important, which is the kernel of computer preset model in hot strip tandem mill. The precision of rolling load will directly affect the preset of roll gap, and then affect the stability of strip threading, the accuracy of strip thickness and the quality of strip shape. Presently, there is still a wide gap between our country and the advanced level of the world in the preset of rolling load. In addition, high demands of the thickness accuracy and shape quality are put forward by customers. Therefore, to research the preset of rolling load is very significant both in theory and practicality.
     Based on the steel samples and data which were from the 2050mm hot strip rolling plant of Baoshan steel, this thesis systematically researched the preset of rolling load by using the method which combined numerical simulation with physical simulation and referring to the concept of robustness design.
     Firstly, the steel samples were conducted compression deformation experiment at high temperature with Gleeble-1500D thermo-mechanical simulator. After this experiment, the influences of temperature, strain and strain rate on the deformation resistance were detailedly analyzed and the deformation resistance tabular data were obtained. Meanwhile, aimed at the influence of the phase transformation on the deformation resistance, the rolling loads were modified by the modifying factors. The result shows that the accuracy of rolling load at each pass is improved remarkably, especially at the third pass, the accuracy of rolling load upgrades 5.7%.
     Secondly, based on the rolling parameters and the deformation resistance tabular data obtained by the experiment, the finite element model of hot strip tandem mill process was established by using DEFORM-2D software. The variation of temperature and rolling loads were mainly analyzed and the simulated values were contrasted with the calculated values of Baoshan steel model and measured values. The result indicates that the simulated rolling forces are closer to the measured values, their errors are less than 5.5%; meanwhile, the accuracy of finite element method is higher than that of Baoshan steel model, especially at the third pass, the accuracy of rolling force is 4.3% higher than that of Baoshan steel model.
     Lastly, according to the principle and method of rolling schedule, the traditional schedule and the new rolling schedule with large reduction at the last pass were respectively formulated. Subsequently, regarding the roll eccentricity as the "noise" factor and regarding the variation of rolling load as the response of product by referring to the concept of robustness design, the hot strip tandem mill processes under different rolling schedules were simulated by using DEF0RM-2D software. After the simulation, the variations of rolling loads of different rolling schedules were analyzed and contrasted, and then the fluctuation ranges of rolling loads at the last pass were respectively calculated. The result displays that the fluctuation of rolling load of the new schedule is remarkably less than that of traditional schedule and the fluctuation range of the new one is also less than that of the traditional one. Accordingly, rolling load of the new schedule is able to restrain the influence of roll eccentricity better. In other words, the rolling load of the new schedule has a better robustness.
     In a word, the conclusion of this thesis can supply important reference to the hot strip tandem mill production.
引文
[1] 李俊洪.板带轧机板形计算理论及其在宽带轧制中的应用研究[D].秦皇岛:燕山大学,2003,1-2.
    [2] 孙蓟泉,战波.热轧带钢生产新技术及其新特点[J].山东冶金,2006,28(1):4-7.
    [3] 刘玢,孙一康.带钢热连轧计算机控制[M].北京:机械工业出版社,1997,1-1.
    [4] 余华胜.提高武钢1700热连轧机压力预报精度的研究[D].武汉:武汉科技大学,2002,1-3.
    [5] 康永林.轧制工程学[M].北京:冶金工业出版社,2004,58-59.
    [6] 韩丽琦.热连轧机轧制压力和轧辊磨损预报方法研究[D].北京:北京科技大学,2001,1-2.
    [7] 赵志业.金属塑性变形与轧制理论[M].冶金工业出版社,1980,351-352.
    [8] 谈芬芳.基于BP神经网络的冷轧轧制压力预报[D].武汉:武汉科技大学,2005,20-24.
    [9] 孙一康.带钢热连轧数学模型基础[M].冶金工业出版社,1979,44-45.
    [10] 王廷溥,齐克敏.金属塑性加工学——轧制理论与工艺[M].北京:冶金工业出版社,2001,56-57.
    [11] 曹鸿德.塑性变形力学基础与轧制原理[M].机械工业出版社,1981,228-229.
    [12] 周维海.板带热连轧过程的计算机仿真[D].秦皇岛:燕山大学,2003,17-18.
    [13] W. Johnson and H. Kudo. The Use of Upper Bound Solution for The Deformation of Temperature Distribution in Fast Hot-Rolling and Axisymmetric Extrusion Process [J]. Int. J. Mech. Sci. 1960, 1:175-191.
    [14] 黄传清,连家创.板带轧制变形区金属出口横向位移函数的能量法修正[J].钢铁,1997,32(2):33-37.
    [15] 赵志业,王国栋.现代塑性加工力学[M].沈阳:东北工学院出版社,1986,113.
    [16] S.I. Oh, S. Kobayashi. An Approximate Method for a Three Dimensional Analysis of Rolling [J]. International Journal of Mechanical Science, 1975, 17 (4):293-305.
    [17] 连家创.变分法求解辊缝中金属横向流动问题[J].东北重型机械学院学报,1980,(1):1-10.
    [18] Lian Jiachuang. Analysis of Profile and Shape Control in Flat Rolling [J]. Proceeding of the First International Conference on Steel Rolling, Tokyo, 1980, (3):713-724.
    [19] 连家创,段振勇.轧件宽展量的研究[J].钢铁,1984,19(11):15-20.
    [20] 胡前榕.铝箔轧机板形计算理论的建立和自调接触宽度支撑辊辊型的设计[D].秦皇岛: 燕山大学,1993,35-38.
    [21] 王宏旭.板形计算理论和工作辊辊型优化曲线的研究[D].秦皇岛:燕山大学,1996,35-38.
    [22] 王宏旭,连家创,陈淑云.四辊冷轧带材中张应力横向分布的求解[J].钢铁研究学报,1996,8(1):16-19.
    [23] 王宏旭,连家创,刘宏民.四辊冷轧机轧制过程中带材的板形和断面形状的模拟[J].冶金设备,1996,97(3):11-20.
    [24] 彭艳,刘宏民,于春义,等.板形理论中张力横向分布计算模型的改进[J].燕山大学学报,2002,26(1):10-13.
    [25] 王英睿.三维条元法及其对热轧板带轧制过程的仿真[D].秦皇岛:燕山大学,2003,3-10.
    [26] 张立昌.板带热轧轧制过程分析软件开发[D].秦皇岛:燕山大学,2006,4-5.
    [27] 刘宏民.三维轧制理论及其应用[M].北京:科学出版社,1999,22.
    [28] Hitomi Matsumoto, Takao Kawanami. Mechanism of Material Deformation Related to Shape and Crown Phenomena[J]. The Science and Technology of Flat Rolling, 4th International Steel Rolling Conference. Deauville, France, 1987, 2 (6): 1-12.
    [29] 连家创,段振勇,叶星.三维解析法求解辊缝中金属横向流动问题[J].东北重型机械学院学报,1984,(3):1-9.
    [30] 姚林龙.大型工业轧机德三维板带轧制解析[J].北京科技大学学报,2003,25(1):57-61.
    [31] 彭颖红.金属塑性成形仿真技术[M].上海交通大学出版社,1999,2-3.
    [32] 朱涛.宽板轧制过程金属变形规律德有限元法研究[D].秦皇岛:燕山大学,2002,9-10.
    [33] 刘相华.刚塑性有限元及其在轧制中的应用[M].冶金工业出版社,1994,4-24.
    [34] I.Yarita.金属轧制过程的压力和变形分析[M].世界塑性加工最新技术译文集.机械工业出版社,1987:889-893.
    [35] B.V. Kiefer. Three Dimensional Finite Element Prediction of Material Flow and Strain Distribution in Rolled Rectangular Billets[J]. Advanced Technology of Plasticity, 1984, 2:1116-1125.
    [36] C. liu, P. Hartly, C.E.N. Sturgess, et al. Analysis of Stress and Strain Distribution in Slab Rolling Using an Elastic-plastic Finite-Element Method[J]. International Journal for Numerical Methods in Engineering, 1988, 25:55-66.
    [37] 刘才,杜凤山,连家创.薄板带张力轧制时金属流动的计算机模拟[J].钢铁,1992,27(1):35-38.
    [38] H.R. Le, M.P.F. Sutcliffe. A Robust Model of Thin Strip and Foil[J]. International Journal of Mechanical sciences, 2001, 43: 1405-1419.
    [39] 刘才.有限元法在轧制理论中的应用[J].钢铁,1988,23(9):63-68.
    [40] K. Mori, K. Osakada. Simulation of Three-Dimensional Deformation in Rolling by the Finite Element Method [J]. International Journal of Mechanical sciences, 1984, 26 (9):515-525.
    [41] Liu Xianghua, Jiang Zhengyi, Wang Guodong. Analysis of 3-D Deformation for Crown Strip rolling by Rigid-Plastic FEM[C]. Proceeding of the 4th International Conference on Technology of Plasticity. 1993, 701-707.
    [42] S.M. Hwang, C.G. Sun, S.R. Ryoo, et al. An Integrated FE Process Model for Precision Analysis of Thermo-Mechanical Behaviors of Rolls and Strip in Hot Strip Rolling[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191:4015-4033.
    [43] A.K. Yieu, Z.Y. Jiang, C. lu. A 3-D Finite Analysis of the Hot Rolling of Strip with Lubrication [J]. Journal of Materials Processing Technology, 2002, 125 (9):638-644.
    [44] 张国民,肖宏,谢红飙,等.用显式动力学有限元法分析板带轧制压力分布[J].燕山大学学报,2003,27(2):146-149.
    [45] A. Mukhopadhyay, I.C. Howard, C.M. Sellars. Development and Validation of a Finite Element Model for Hot Rolling Using ABAQUS/STANDARDEJ]. Materials Science and Technology, 2004, 20 (9): 1123-1133.
    [46] 李传瑞,王宝峰,麻永林.CSP连轧过程金属变形的热力耦合模拟分析[J].特殊钢,2005,26(6):29-31.
    [47] 喻海良,赵宪明,刘相华.板带精轧过程轧制力的三维弹塑性有限元分析[J].钢铁研究,2005,(1):14-16.
    [48] 杨正波.热轧三机架连轧轧板过程的二维有限元模拟[J].梅山科技,2005,(1):50-53.
    [49] 张德丰,陆建生,宋鹏,等.有限元法在板材热轧中的应用[J].南方金属,2006,(1):18-20.
    [50] 肖宏.三维弹塑性边界元法模拟板带轧制过程的研究[D].秦皇岛:燕山大学,1991,2-3.
    [51] A. Chandra. Simulation of Rolling Process by the Boundary Element Method [C]. Advanced Boundary Element Method, Edited by Cruse, T. A., Spring-Verlg, 1987, 93-100.
    [52] J. Kihara, T. Aizawa, X.P.Ma. Application of BEM to Calculation of the Roll Profile in Flat Rolling[J]. The Science and Technology of Flat Rolling, 4th International Steel Rolling Conference, Deauville, France. 1987, 2 (1):1-12.
    [53] 肖宏,申光宪,连家创.三维弹塑性边界元法模拟板带轧制过程[J].钢铁,1993, 28(3):39-43.
    [54] 刘德义,申光宪,肖宏.三维弹塑性摩擦接触多极边界元法[J].燕山大学学报,2004,28(2):99-102.
    [55] 石萍.板带轧制边界元模拟系统的开发和利用[J].锻压技术,2005,(3):30-32.
    [56] 刘宏民,连家创,段振勇.分条离散法求解带材轧制时的前张力横向分布[C].冶金设备(轧机装备文集),1985,(1):1-12.
    [57] 刘玉礼,连家创,段振勇.DC轧机板厚板形控制特征研究[J].机械工程学报,1994,30(增刊):33-39.
    [58] 郑振忠,彭艳,刘宏民.研究冷轧带材三维变形的流线条元法[J].燕山大学学报,2001,25(1):47-52.
    [59] 彭艳.基于条元法的HC冷轧机板形预设定控制理论研究及工业应用[D].秦皇岛:燕山大学,2000,13-18.
    [60] 王英睿,刘宏民.精确接触边界条件下热轧带钢轧制力的仿真研究[J].钢铁研究学报,2004,16(1):34-39.
    [61] Y.S. Kim, B.J. Yum, M. Kim. Robust Design of Artificial Neural Network for Roll Force Prediction in Hot Strip Mill [J]. Proceedings of the International Joint Conference on Neural Networks, 2001, 4:2800-2804.
    [62] Y.Y. Yang, D.A. Linkens, J. Talamantes-Silva. Roll Load Prediction-Data Collection, Analysis and Neural Network Modelling[J]. Journal of Materials Processing Technology, 2004, 152 (3):304-315.
    [63] M. Mahfouf, Y.Y. Yang, M.A. Game, et al. Roll Speed and Roll Gap Control with Neural Network Compensation [J]. ISIJ International, 2005, 45 (6):841-850.
    [64] 李园,刘文仲,孙一康.神经网络在热连轧精轧机组轧制力预报中的应用[J].钢铁,1996,31(1):54-57.
    [65] 吕程,王国栋,刘相华.基于神经网络的热连轧精轧机组轧制力高精度预报[J].钢铁,1998,33(3):33-35.
    [66] 孙克,王长松,罗永军.基于小脑模型神经网络的轧制力预报模型[J].钢铁研究,2004,(1):55-57.
    [67] 丁小梅,刘鹏.基于小波神经网络的轧制压力高精度预报模型[J].工程建设与设计,2005,(6):69-70.
    [68] 杨景明,窦富萍,周涛,等.基于MATLAB和VB神经网络在轧制力预报中的应用[J].冶金设备,2006,(10):13-16.
    [69] 王秀梅,王国栋,刘相华.模糊控制在带钢轧制中的应用[J].钢铁研究,1999,(3): 42-45.
    [70] Takashi. Oda, Naoki. Satou, Toshiki. Yabuta. Adaptive Technology for Thickness Control of Finisher Set-up on Hot Strip Mill[J]. ISIJ International, 1995, 35 (1):42-49.
    [71] 贾春玉,宋耀增.在轧制力预报中应用模糊控制的研究[J].冶金设备,2000,(6):5-8.
    [72] 贾春玉,刘宏民,邱格君.基于模糊修正的Elman动态递归网络板形高精度预报[J].中国机械工程,2005,16(13):1142-1145.
    [73] 张延华,刘相华,王国栋.基于模糊理论的中厚板轧制力学习算法[J].钢铁研究学报,2005,17(6):43-46.
    [74] Liu Huaqiang, Tang Di, Yang Quan, et al. Rolling Force Prediction Model of a Multi-roll Cold Tandem Mill by Fuzzy Cerebellum Model Articulation Controller [J]. Journal of University of Science and Technology Beijing, 2006, 28 (10): 969-972.
    [75] 张云祥.轧制过程分析工具——热连轧轧制力模型校正软件[D].武汉:武汉科技大学,2000,11-12.
    [76] 单旭沂.一热轧和二热轧机组精轧数模剖析[J].宝钢技术,1998,(1):33-37.
    [77] 王秀梅.提高轧制力预报精度的智能化系统研究与开发[D].沈阳:东北大学,1999,13-14.
    [78] 万胜狄.金属塑性成形原理[M].机械工业出版社,1994,36-40.
    [79] 戴石锋.轧材组织性能预报——变形抗力及静态再结晶模型研究[D].北京:北京科技大学,2006,9-10.
    [80] 陈溪强.合金工具钢H11变形抗力及热轧过程模拟研究[D].北京:北京科技大学,2004,9-10.
    [81] 张作梅,赵仕达.不同温度、速度条件下G3、1Cr13钢铝铅等塑性变形抗力的研究[J].金属学报,1963,6(2):15-18.
    [82] 周纪华,管克智.高温高速下合金结构钢流动应力研究[J].金属学报,1986,22(10):25-29.
    [83] 周纪华,管克智.金属塑性变形阻力[M].北京:机械工业出版社,1989,218-223.
    [84] 熊尚武,王国栋,张强.新变形抗力数学模型的建立和应用[J].钢铁,1993,28(5):21-26.
    [85] 张大志,杜丰梅,蔡恒君,等.鞍钢冷轧厂Q195钢变形抗力的实验测定及应用[J].钢铁研究,2001,(6):31-32.
    [86] 李明.邯钢连铸连轧厂计算机控制用变形抗力数学模型的研究[D].北京:北京科技大学,1999,9-10.
    [87] S. Kobayashi, S. I. Oh, T. Altan. Metal Forming and the Finite Element Method[J]. New York Oxford: Oxford University Press, 1989, 3.
    [88] Z.Y. Jiang, S.W. Xiong, X.H. Liu, et al. 3D Rigid-Plastic FEM Analysis of the Rolling of a Strip with Local Residual Deformation[J]. Journal of Material Processing Technology. 1998, 79:109-112.
    [89] 孙晓光,傅云义,胡赓祥,等.遗传算法对热轧带钢精轧机组负荷分配BP网络参数的优化[J].钢铁,1998,33(7):33-36.
    [90] G. Taguchi, Y. Wu. Introduction to off-line Quality Control[M]. Central Japan Quality Control Association, Nayoya, Japan, 1980.
    [91] Parkinson, C. Sorensen, N. Pourhassan. A General Approach for Robust Design[J]. Joumal of Mechanical Design, 1993 (3):77-80.
    [92] Wei Chen, J.K. Allen, F. Mistree. System Configuration: Concurrent Subsystem Embodiment and System Synthesis [J]. Journal of Mechanical Design, 1996, 118 (6): 165-170.
    [93] 周继胜.船舶结构鲁棒设计研究[D].上海:上海交通大学,1999,4-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700