用户名: 密码: 验证码:
铝粉末等径角挤扭工艺数值模拟及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着材料科学的飞速发展以及加工工艺的不断完善,块体超细晶材料因其具有不同寻常的物理和力学性能,近年来逐渐成为材料领域研究的热点之一。金属材料的性能与其组织有着密切的联系,细化材料晶粒一直是提高和改善材料综合性能的一种有效手段。目前,大塑性变形工艺(Severe Plastic Deformation, SPD)已被公认为获取无污染、无孔洞块体超细晶材料最行之有效的方法。等径角挤扭(Equal Channel Angular Pressing and Torsion, EC APT)是在等径角挤压(Equal Channel Angular Pressing, ECAP)和挤扭(Twist Extrusion, TE)基础上发展起来的一种新型复合大塑性变形工艺。它综合了ECAP和TE两种变形的特点,在传统ECAP模具的水平端型腔内加工出了螺旋状型槽。因此,在材料可加工性能允许的条件下,可在不改变试样横截面形状和尺寸的前提下,实现多道次重复变形,最终促进了材料晶粒的显著细化和性能的大幅提高。
     粉末材料是材料领域内的重要组成部分。然而,由于其塑性变形能力相对较弱,其变形、致密和细化的机理尤为复杂。传统的粉末塑性加工技术通常温度较高且工序繁琐,而且往往伴有材料的高温氧化和晶粒长大现象,很难制备出高致密度以及性能优良的块体超细晶材料,从而在某种程度上限制了它的发展和应用。大塑性变形法的出现,为以粉末材料为原料,制备和合成高性能的块体超细晶材料提供了一种有效而可行的新途径。
     为此,本文采用有限元数值模拟和实验分析研究相结合的手段,综合运用有限元分析技术、金属塑性成形原理、先进塑性成形技术、材料科学基础等科学知识,对纯铝粉末材料ECAPT变形过程中的变形致密行为、微观结构和力学性能演变以及晶粒细化机制进行了深入、系统地探讨与分析,并取得了一些有意义的成果。这些研究对于深入理解ECAPT工艺变形本质,促进大塑性变形在粉末材料领域内的研究和应用具有极其重要的理论意义和参考价值。
     本文首先基于可压缩连续介质理论,综合考虑变形场和温度场的影响,建立了用于求解粉末材料塑性变形的可压缩刚粘塑性热力耦合有限元方程,将变形材料视为多孔体,对带有包套的纯铝粉末材料单道次ECAPT变形过程进行了有限元模拟。结果表明,ECAPT工艺对粉末材料具有良好应变累积和组织致密效果,当试样头部退出螺旋通道时,挤压载荷达到了峰值。ECAPT变形过程中,试样在经过模具转角和螺旋通道时所受的剪切应变量最大,材料的内部静水压力值也最高。1道次ECAPT变形后,试样累积等效应变量约为1.4,整体相对密度高达0.999,但变形呈现出了不均匀分布的现象。温度场在试样纵向呈现出了逐渐递减的梯度分布,这表明在本文所设定的模拟条件下,坯料与模具之间的热交换以及坯料对周围环境的辐射传热要大于由塑性变形功转化而成的热能。
     在前述单道次ECAPT有限元模拟的基础上,对相同模拟条件下的ECAP和TE变形工艺进行了有限元分析。结果表明,ECAPT工艺在增大试样累积应变量、提高材料致密程度以及改善变形均匀程度三个方面均具有显著的优势。单道次ECAPT变形后,试样的有效累积应变量相比于ECAP和TE工艺,分别增大了17.6%和9.3倍。分析认为,单道次ECAPT变形过程中,螺旋通道的二次剪切和反向背压作用是使得粉末材料获得更大应变累积和更强致密效果的关键所在。
     为了进一步研究分析纯铝粉末材料在多道次ECAPT工艺下的变形和致密行为,设计了用于模拟不同变形工艺路径(A、BA、Bc和C)的连续多通道ECAPT模具。结果表明,随着挤压道次的增加,试样内部所累积的塑性应变量不断增大,材料出现了加工硬化现象,挤压载荷峰值不断上升。与此同时,试样的变形均匀程度随着变形道次的增加而逐渐增大。A和C两种路径可在较低的挤压载荷下实现材料有效的应变累积且试样整体变形较为均匀,是较为理想的挤压变形路径。多道次ECAPT变形有效提高了试样内部的静水压力,大大促进了材料内部残余孔隙的收缩和闭合,对改善材料变形的均匀程度起到了积极作用。
     在自行设计的ECAPT模具上,顺利完成了200℃下A路径纯铝粉末1-4道次的ECAPT变形实验。单道次ECAPT变形后,试样相对密度和显微硬度增幅明显。螺旋通道起到了反向背压的作用,可以有效提高ECAPT变形过程中材料内部的静水压力和A1原子的自扩散系数。随着变形道次的增加,晶粒的细化程度和材料的力学性能进一步提高。4道次ECAPT变形后,材料达到了完全致密,屈服强度高达123.3MPa,并表现出了良好的塑性-ECAPT变形过程中,{111}面衍射峰的形状和强度发生了变化。这表明随着变形程度的增大,晶粒在不断被细化的同时发生了转动。多道次ECAPT变形时,纯铝粉末材料的致密化过程主要体现在单道次的变形过程中。在剧烈剪切变形和强大静水压力作用下,原始孔隙数目不断减少,形状和体积都发生了明显改变,大量孔隙不断地收缩变小,最终实现了有效焊合。
     采用电子背散射衍射(EBSD)技术,对各道次ECAPT变形后的组织进行了表征和分析,深入研究了晶粒结构和显微织构的演化规律。结果表明,1道次ECAPT变形后,晶粒尺寸分布不均匀,组织为典型的混晶组织,但多为小角度晶界结构,平均晶粒尺寸约为5.20μm。随着变形道次的增加,晶粒不断被细化,取向差逐渐增大,变形更加趋于均匀。4道次ECAPT变形后,组织取向性消失,以细小、均匀且被大角度晶界所包围的等轴再结晶晶粒为主,平均晶粒尺寸约为1.67μm。ECAPT变形过程中,织构的产生和消失是动态连续变化的过程,存在着“织构起伏”效应,其转变过程为<101>→<111>→弥散状态。这是由于ECAPT变形时,晶粒在外力作用下其偏聚状态发生了改变,使得内应力向相邻晶界传递的过程中原来的聚集状态遭到了破坏。
     采用透射电镜(TEM),对200℃下各道次ECAPT变形组织的微观结构演变规律进行了观察和分析。结果表明,ECAPT变形初期,材料内部产生了许多近似平行的剪切带,位错密度较高且组态紊乱,形成了大量的位错缠结和位错胞,亚晶界和小角度晶界所占的比例较高。随着变形道次的增加,材料累积应变量进一步增大,晶界处位错密度大大升高,晶粒不断被新产生的位错界面所分割。亚晶在尺寸继续减小的同时发生了转动,亚晶之间的取向差增大,逐渐演变成了清晰、平直的大角度晶界,最终使得晶粒显著细化,组织均匀性大大提高,该变形过程中组织发生了连续动态再结晶。分析认为,机械剪切、应变累积和动态再结晶为纯铝粉末材料ECAPT变形过程中的晶粒细化机制。三种机制相互作用,密切相关,缺一不可。变形初期,晶粒细化机制主要为机械剪切和应变累积;而变形后期,连续动态再结晶机制占据了主导地位。
With the rapid development of material science and the further improvement of processing technique, bulk ultrafine grained materials (UFG) have attracted enormous attention because of their potential mechanical and physical properties as compared with conventional materials. Generally, the strength of polycrystalline materials is related to the grain size and grain refinement is usually an effective method for the enhancement of the mechanical properties of materials. At present, severe plastic deformation (SPD) is considered to be the most attractive and promising process in obtaining bulk UFG materials without any contamination and residual porosities. Equal Channel Pressing and Torsion (ECAPT) is a newly developed technique of SPD, which combines the advantages of both ECAP and TE. In this method, two processes of ECAP and TE occur subsequently in a single die and a twist channel has been manufactured on the horizontal part of conventional ECAP die. Therefore, it is possible to carry out multiple passes in ECAPT without changing the cross section of the sample. In addition, it leads to a larger strain accumulation of the materials which finally accounts for the grain refinement and properties enhancement.
     Powder metallurgy (PM) material represents an important part of material family. However, due to its weak plastic forming ability, the mechanisms of densification and grain refinement are usually complicated. In conventional powder metallurgy, powder consolidation is always accomplished through sintering at high temperatures, which tends to coarsen the special microstructures of the particles and limits the development and application of PM materials as well. Recently, SPD methods have been widely used to fabricate bulk UFG materials by the consolidation of powder particles and it has been proved that the efficiency and quality of the consolidated materials are greatly improved.
     Therefore, in the present work efforts were made to understand the deformation and densification behaviors, the evolution of microstructures and mechanical properties as well as the grain refinement mechanisms of ECAPT consolidation of pure Al powder particles. Many kinds of professional knowledge were employed including finite element method, metal plastic forming technique, advanced technology of plastic forming, basic material science and so on. Additionally, some useful conclusions were also obtained. All this research will play a significant role in promoting the further investigation and industrial application of PM materials fabricated by SPD methods.
     Based on the compressible continuous medium theories and with the full consideration of deformation and temperature fields, the compressible rigid viscoplastic thermodynamic coupling finite element formulas were established. Then the deformation behavior of pure Al porous materials with powder in tubes during a single pas of ECAPT was obtained by FEM simulation. It was found that ECAPT had a significant effect on the strain accumulation and compact densification of PM materials. Extrusion load reached to the peak when the head of sample exited from the twist channel. During ECAPT process, both accumulated strain and hydrostatic pressure of the sample achieved maximum when it passed through the intersection part and twist channel of ECAPT die. After a single pass of ECAPT, the strain imposed on each sample was about1.4and the relative density reached to0.999. However, the deformation was not homogeneous in general. On the longitudinal plane of the sample, temperature slowly decreased from the tail to the top, which indicated that under present simulation conditions, exchange and radiation of the heat were much more than the thermal energy converted from the deformation energy.
     For comparison, FEM simulations of ECAP and TE were also conducted on the pure Al porous materials with the same simulation parameters. The results showed that ECAPT possessed many advantages over ECAP and TE in terms of increasing strain accumulation, promoting material densification and improving the deformation homogeneity. In specific, the imposed strain was increased by17.6%and9.3times as compared to ECAP and TE respectively. This was attributed to the repetitive shearing and back pressure provided by the twist channel.
     In order to investigate the deformation behavior of pure Al porous materials during multiple passes of ECAPT, continuous multi-pass ECAPT dies were designed for different routes. It is found that with the increasing number of ECAPT passes, the imposed strain was increased. Due to the occurrence of work hardening behaviors, the peak load was also increased. Moreover, sample deformation became more and more homogeneous. Route A and C were two optimal ECAPT routes because the sample could accumulate large strain without the loss of deformation homogeneity. As the hydrostatic pressure was increased under multiple passes, residual porosities in the PM materials were effectively shrunk and closed, which finally contributed to the improvement of homogeneity and density of the compacts.
     Pure Al particles were consolidated successfully into full dense bulk UFG materials at200℃using ECAPT and further deformed up to4passes. After1pass of ECAPT, relative density and microhardness of the compacts were greatly improved. During ECAPT process, twist channel played a role of back pressure and offered a significant advantage to PM materials such as increasing the hydrostatic pressure of the compacts and self-diffusion coefficient of Al atoms. As the deformation developed, grains were further refined and mechanical properties were largely enhanced. Combined compressive yield strength of123.3MPa and good ductility were observed after4passes of ECAPT. XRD results showed that the shape and intensity of diffraction peak on{111} plane changed during different ECAPT passes, which demonstrated grains were refined as well as rotated under ECAPT. The densification process of pure Al particles mainly occurred at the first pass of ECAPT based on the severe shearing and high hydrostatic pressure provided by ECAPT.
     After that, Electron backscattered diffraction (EBSD) was employed to characterized the microstructure and microtexture during ECAPT process. It is found that after the1pass of ECAPT, the microstructure consisted of many elongated grains and few equiaxed grains, but most of them were low angle boundaries with the average grain size of5.20μm. With the increasing number of ECAPT passes, deformation became more homogeneous, grains were further refined and the misorientation angle was increased as well. After4passes of ECAPT, PM materials contained fine grains of1.67μm in size and equiaxed in shape with boundaries of higher misorientation angles. The formation of texture was a dynamic process, which showed a fluctuation of<101>→<111>→scattering during ECAPT. This is because the external force acting on crystal class makes the segregation orientation change, which leads to the broken of aggregation state in the process of internal stress transmitted on the neighboring grain boundaries.
     In the last part of this investigation, microstructures of the processed materials were characterized using TEM for revealing grains of the order of1μm or smaller in size and subgrain structure. At the beginning of ECAPT process, the microstructure consisted of bands of subgrains and high dislocation density with the formation of dislocation tangles and dislocation cells, but most of the boundaries had low angles of misorientation. With the mumber of ECAPT passes, the samples accumulated larger strain and the dislocation density increased. After4passes of ECAPT, many of the subgrain boundaries evolved into high angle boundaries and there was a concomitant evolution of the arrays of well-defined cell or subgrain bands array into reasonably equiaxed ultrafine grains. This evolution was accompanied by the process of dynamic recovery and dynamic recrystallization. Thus, it can be inferred that the mechanism of grain refinement during ECAPT at200℃was the multiple effects of intensive shearing, large accumulated strains and dynamic recrystallization. Simple shearing and large strain were predominant factors initially while dynamic recrystallization became the leading point in the subsequent ECAPT passes.
引文
[1]Valiev RZ, Langdon TG. Principles of equal-channel angular pressing as a processing tool for grain refinement[J]. Progress in Materials Science,2006,51(7):881-981.
    [2]Kecskes LJ, Cho K.C, Dowding RJ, et al. Grain size engineering of bcc refractory metals: Top-down and bottom-up-Application to tungsten[J]. Materials Science and Engineering A, 2007,467(1-2):33-43.
    [3]毕见强,孙康宁,高伟等.块体纳米材料的制备及其应用[J].金属成形工艺,2003,21:35-38.
    [4]Azushima A, Kopp R, Korhonen A, et al. Severe plastic deformation (SPD) processes for metals[J]. CIRP Annals-Manufacturing Technology,2008,57(2):716-735.
    [5]Orlov D, Todaka Y, Umemoto M, et al. Role of strain reversal in grain refinement by severe plastic deformation[J]. Materials Science and Engineering A,2009,499(1-2):427-433.
    [6]康志新,彭永辉,赖晓明等.剧塑性变形制备超细晶/纳米晶结构金属材料的研究现状和应用进展[J].’中国有色金属学报,2010,20(4):587-596.
    [7]Akbarimousavi SAA. Influence of strain accumulation on microstructrue[J]. International Journal of Modern Physics B,2008,22(18&19):2858-2865.
    [8]Segal VM. Severe plastic deformation:simple shear versus pure shear[J]. Materials Science & Engineering A (Structural Materials:Properties, Microstructure and Processing),2002, 338(1-2):331-344.
    [9]Valiev R, Estrin Y, Horita Z, et al. Producing bulk ultrafine-grained materials by severe plastic deformation[J]. Journal of the Minerals, Metals and Materials Society,2006,58(4):33-39.
    [10]Gubicza J, Chinh NQ, Labar JL, et al. Correlation between microstructure and mechanical properties of severely deformed metals[J]. Journal of Alloys and Compounds,2009,483(1-2): 271-274.
    [11]Langdon TG. Processing of ultrafine-grained materials using severe plastic deformation: potential for achieving exceptional properties[J]. Revista De Metalurgia.,2008,44(6):556-564.
    [12]Valiev RZ, Enikeev NA, Langdon TG. Towards superstrength of nanostructured metals and alloys produced by SPD[J]. Kovove Materialy-Metallic Materials,2011,49(1):1-9.
    [13]An XH, Wu SD, Zhang ZF, et al. Evolution of microstructural homogeneity in copper processed by high-pressure torsion[J]. Scripta Materialia,2010,63(5):560-563.
    [14]Cao Y, Wang YB, Alhajeri SN, et al. A visualization of shear strain in processing by high-pressure torsion[J]. Journal of Materials Science,2010,45(3):765-770.
    [15]Cao Y, Wang YB, Figueiredo RB, et al. Three-dimensional shear-strain patterns induced by high-pressure torsion and their impact on hardness evolution[J]. Acta Materialia,2011,59(10): 3903-3914.
    [16]FURUKAWA M HZ, NEMOTO M, et al. Review processing of metals by equal channel angular pressing[J]. Journal of Materials Science,2001,36:2835-2843.
    [17]R.E.Barber TD, P.B.Yasskin, et al. Product yield for ECAE processing[J]. Scripta Materialia, 2004,51:373-377.
    [18]刘咏,唐志宏,周科朝等.纯铝等径角挤技术(Ⅰ)——显微组织演化[J].中国有色金属学报,2003,13(01):21-26.
    [19]刘咏,唐志宏,周科朝等.纯铝等径角挤技术(Ⅱ)——变形行为模拟[J].中国有色金属学报,2003,13(02):294-299.
    [20]Jahedi M, Paydar MH. Study on the feasibility of the torsion extrusion (TE) process as a severe plastic deformation method for consolidation of Al powder[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2010,527(20): 5273-5279.
    [21]Orlov D, Beygelzimer Y, Synkov S, et al. Evolution of Microstructure and Hardness in Pure Al by Twist Extrusion[J]. Materials Transactions,2008,49(1):2-6.
    [22]Orlov D, Beygelzimer Y, Synkov S, et al. Microstructure Evolution in Pure Al Processed with Twist Extrusion[J]. Materials Transactions,2009,50(1):96-100.
    [23]Huang JY, Zhu YT, Jiang H, et al. Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening[J]. Acta Materialia, 2001,49(9):1497-1505.
    [24]Jianyu H, Zhu YT, Alexander DJ, et al. Development of repetitive corrugation and straightening[J]. Materials Science & Engineering A (Structural Materials:Properties, Microstructure and Processing,2004, A371(1-2):35-39.
    [25]Gluchowski W, Stobrawa J, Rdzawski Z, et al. Ultrafine grained copper alloys processed by continuous repetitive corrugation and straightening method[J]. Materials Science Forum,2011, 674:177-188.
    [26]Nakao Y, Miura H. Nano-grain evolution in austenitic stainless steel during multi-directional forging[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2011,528(3):1310-1317.
    [27]Takayama A, Yang X, Miura H, et al. Continuous static recrystallization in ultrafine-grained copper processed by multi-directional forging[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2008,478(1-2):221-228.
    [28]Miura H, Maruoka T, Yang X, et al. Microstructure and mechanical properties of multi-directionally forged Mg-Al-Zn alloy[J]. Scripta Materialia,2012,66(1):49-51.
    [29]Yang X-y, Sun Z-y, Xing J, et al. Grain size and texture changes of magnesium alloy AZ31 during multi-directional forging[J]. Transactions of Nonferrous Metals Society of China,2008, 18:S200-S204.
    [30]Rezaee-Bazzaz A, Ahmadian S, Reihani H. Modeling of microstructure and mechanical behavior of ultra fine grained aluminum produced by accumulative roll-bonding[J]. Materials & Design,2011,32(8-9):4580-4585.
    [31]Qiao XG, Starink MJ. Prediction of hardness of Al alloys processed by accumulative roll bonding[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2012,531:45-50.
    [32]Rezaei MR, Toroghinejad MR, Ashrafizadeh F. Production of nano-grained structure in 6061 aluminum alloy strip by accumulative roll bonding[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2011,529:442-446.
    [33]Roy S, Singh SD, Suwas S, et al. Microstructure and texture evolution during accumulative roll bonding of aluminium alloy AA5086[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2011,528(29-30):8469-8478.
    [34]刘英,李元元,张大童.金属材料的等通道转角挤压研究进展[J].材料科学与工程,2002,20(4):613-617.
    [35]张玉敏,丁烨,孝云祯等.等径弯曲通道变形(ECAP)的研究现状及发展趋势[J].材料与冶金学报,2002,12(4):258-262.
    [36]刘睿,孙康宁,毕见强.等径角挤压法制备块体超细晶材料的研究现状及展望[J].锻压技术,2005,6:85-89.
    [37]Valiev R Z LTG. Principles of equal-channel angular pressing as a processing tool for grain refinement[J]. Progress in Materials Science,2006,51(7):881-981.
    [38]Lee SC, Ha SY, Kim KT, et al. Finite element analysis for deformation behavior of an aluminum alloy composite containing SiC particles and porosities during ECAP[J]. Materials Science and Engineering A,2004,371(1-2):306-312.
    [39]Mufioz-Morris MA, Gutierrez-Urrutia I, Morris DG. Effect of equal channel angular pressing on strength and ductility of Al-TiAl composites[J]. Materials Science and Engineering A,2005, 396(1-2):3-10.
    [40]Dutkiewicz J, Kusnierz J, Maziarz W, et al. Microstructure and mechanical properties of nanocrystalline titanium and Ti-Ta-Nb alloy manufactured using various deformation methods[J]. physica status solidi (a),2005,202(12):2309-2320.
    [41]Lech-Grega M, Boczkal S, Senderski J, et al. Processing and Characterization of AlCu Aluminium Alloys by the ECAE Method[J]. Solid State Phenomena,2006,114:165-170.
    [42]Mazilkin AA, Baretzky B, Enders S, et al. Hardness of nanostructured Al-Zn, Al-Mg and Al-Zn-Mg alloys obtained by high-pressure torsion[J]. Diffusion in Solids-Past, Present and Future,2006,249:155-160.
    [43]Balog M, Simancik F, Bajana O, et al. ECAP vs. direct extrusion-Techniques for consolidation of ultra-fine Al particles[J]. Materials Science and Engineering A,2009,504(1-2): 1-7.
    [44]Botta Filho WJ, Fogagnolo JB, Rodrigues CAD, et al. Consolidation of partially amorphous aluminium-alloy powders by severe plastic deformation[J]. Materials Science and Engineering A,2004,375-377:936-941.
    [45]Moss M, Lapovok R, Bettles CJ. The Equal Channel Angular Pressing of Magnesium and Magnesium Alloy Powders[J]. Magnesium Fundamental Research,2007,8:54-57.
    [46]Senkov ON, Miracle DB, Scott JM, et al. Equal channel angular extrusion compaction of semi-amorphous Al85Ni10Y2.5La2.5 alloy powder[J]. Journal of Alloys and Compounds,2004, 365(1-2):126-133.
    [47]Zhang LC, Xu J, Ma E. Consolidation and properties of ball-milled Ti50Cu18Ni22Al4Sn6 glassy alloy by equal channel angular extrusion[J]. Materials Science and Engineering A,2006, 434(1-2):280-288.
    [48]Haouaoui M, Karaman I, Maier HJ, et al. Microstructure Evolution and Mechanical Behavior of Bulk Copper Obtained by Consolidation ECAE[J]. Metallurgical and Materials Transactions A, 2004,35A:2935-2949.
    [49]K.Xia XW, T.Honma, S.P.Ringer. Ultrafine pure aluminium through back pressure equal channel angular consolidation (BP-ECAP) of particles[J]. J.Mater Sci,2006,42:1551-1560.
    [50]Wu X, Xia K. Synthesis of Aluminium Based Bulk Materials from Micro and Nano Particles Using Back Pressure Equal Channel Angular Consolidation[J]. Materials Science Forum,2006, 519-521:1215-1220.
    [51]Yapici GG, Beyerlein IJ, Karaman I, et al. Tension-compression asymmetry in severely deformed pure copper[J]. Acta Materialia,2007,55(14):4603-4613.
    [52]Karaman I, Haouaoui M, Maier HJ. Nanoparticle consolidation using equal channel angular extrusion at room temperature[J]. Journal of Materials Science,2007,42(5):1561-1576.
    [53]Nagasekhar AV, Tick-Hon Y, Guduru RK, et al. Multipass equal channel angular extrusion of MgB2 powder in tubes[J]. Physica C:Superconductivity,2007,466(1-2):174-180.
    [54]Nagasekhar AV, Tick-Hon Y, Ramakanth KS. Mechanics of single pass equal channel angular extrusion of powder in tubes[J]. Applied Physics A,2006,85(2):185-194.
    [55]Elkhodary KI, Salem HG, Zikry MA. Equal Channel Angular Pressing of Canned 2124-Al Compacts:Processing, Experiments, and Modeling[J]. Metallurgical and Materials Transactions A,2008,39(9):2184-2192.
    [56]Salem HG, Sadek AA. Fabrication of High Performance PM Nanocrystalline Bulk AA2124[J]. Journal of Materials Engineering and Performance,2009,19(3):356-367.
    [57]Chang S-Y, Lee K-S, Choi S-H, et al. Effect of ECAP on microstructure and mechanical properties of a commercial 6061 Al alloy produced by powder metallurgy[J]. Journal of Alloys and Compounds,2003,354(1-2):216-220.
    [58]周明智.粉末多孔材料等通道转角挤压数值模拟及实验研究[D].合肥:合肥工业大学,2008.
    [59]李萍,黄科帅,薛克敏等.纯铝粉末多孔烧结材料等通道转角挤压[J].中国有色金属学报,2009,19(05):881-886.
    [60]李萍,薛克敏,周明智.铝粉烧结材料等通道转角挤压组织性能演变[J].材料研究学报.2009,23(06):577-581.
    [61]周明智,李萍,薛克敏.反压对粉末多孔材料等通道转角挤压过程的影响[J].中国有色金属学报,2009,19(11):1987-1992.
    [62]周明智,李萍,薛克敏.纯铝粉末多孔烧结材料等通道转角挤压致密化行为研究[J].锻压技术,2010,35(03):135-138.
    [63]李维杰,刘咏,刘延斌等.纯钛粉末室温单道次等径角挤压变形行为[J].粉末冶金材料科学与工程,2011,16(1):90-95.
    [64]Adamczyk-Cieslak B, Mizera J, Kurzydlowski KJ. Microstructures in the 6060 aluminium alloy after various severe plastic deformation treatments[J]. Materials Characterization,2011, 62(3):327-332.
    [65]Beygelzimer Y, Varyukhin V, Synkov S. Shears, Vortices, and Mixing During Twist Extrusion[J]. Int J Mater Form,2008,1 (Supplement 1):443-446.
    [66]Beygelzimer YE, Prokofeva OV, Varyukhin VN. Structural Changes in Metals Subjected to Direct or Twist Extrusion:Mathematical Simulation[J]. Russian Metallurgy (Metally),2004, 2006(1):30-38.
    [67]Beygelzimer YY, Orlov DV. Metal plasticity during the twist extrusion[J]. Defect and Diffusion Forum,2002,208-209:311-314.
    [68]Orlov D, Todaka Y, Umemoto M, et al. Plastic Flow and Grain Refinement Under Simple Shear-Based Severe Plastic Deformation Processing[J]. In:Cabibbo MSS, ed. Recent Developments in the Processing and Applications of Structural Metals and Alloys,2009, 604-605:171-178.
    [69]Beygelzimer Y, Varyukhin V, Synkov S, et al. Useful properties of twist extrusion[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2009,503(1-2):14-17.
    [70]Varyukhin V, Beygelzimer Y, Synkov S, et al. Application of Twist Extrusion[J]. Materials Science Forum,2006,503-504:335-340.
    [71]王成,李萍,王晓溪等.纯铝挤扭过程数值模拟研究[J].合肥工业大学学报(自然科学版),2010,33(12):1783-1785.
    [72]李萍,王成,薛克敏等.挤扭过程中应变量对纯铜组织性能影响[J].塑性工程学报,2011,18(03):30-34.
    [73]王成,李萍,薛克敏等.纯铜挤扭工艺数值模拟与实验研究[J].中国有色金属学报,2011,21(12):3071-3075.
    [74]Beygelzimer Y, Reshetov A, Synkov S, et al. Kinematics of metal flow during twist extrusion investigated with a new experimental method[J]. Journal of Materials Processing Technology, 2009,209(7):3650-3656.
    [75]Stolyarov VV, Beigel'zimer YE, Orlov DV, et al. Refinement of Microstructure and Mechanical Properties Properties of Titanium Processed by Twist Extrusion and Subsequent Rolling[J]. The Physics of Metals and Metallography,2005,99(2):204-211.
    [76]Berta M, Orlov D, Prangnell PB. Grain refinement response during TE of an Al-0.13% Mg alloy[J]. International Journal of Material Research,2007,97(3):200-204.
    [77]Orlov D, Reshetov A, Synkov A, et al. Twist extrusion as a tool for grain refinement in Al-Mg-Sc-Zr alloys[J]. In:Zhu YTVV, ed. Nanostructured Materials by High-Pressure Severe Plastic Deformation,2006,212:77-82.
    [78]Mousavi SAAA, Shahab AR, Mastoori M. Computational study of Ti-6A1-4V flow behaviors during the twist extrusion process[J]. Materials and Design,2008,29:1316-1329.
    [79]Varyukhin VN, Tkatch VI, Maslov VV, et al. Consolidation of amorphous A186Ni6Co2Gd6 melt-spun ribbons by twist extrusion[J]. Materials Science Forum,2006,503-504:699-704.
    [80]薛克敏,王晓溪,李萍.超细晶材料制备新工艺——挤扭[J].塑性工程学报.2009,16(5):130-136.
    [81]Paydar MH, Reihanian M, Bagherpour E, et al. Equal channel angular pressing-forward extrusion (ECAP-FE) consolidation of Al particles[J]. Materials & Design,2009,30(3): 429-432.
    [82]Mani B, Jahedi M, Paydar MH. Consolidation of commercial pure aluminum powder by torsional-equal channel angular pressing (T-ECAP) at room temperature[J]. Powder Technology,2012, (219):1-8.
    [83]Xia K, Wu X, Honma T, et al. Ultrafine pure aluminium through back pressure equal channel angular consolidation (BP-ECAC) of particles[J]. Journal of Materials Science,2007,42(5): 1551-1560.
    [84]Kocich R, Fiala J, Szurman I, et al. Twist-channel angular pressing:effect of the strain path on grain refinement and mechanical properties of copper[J]. Journal of Materials Science,2011, 46(24):7865-7876.
    [85]Kocich R, Greger M, Kursa M, et al. Twist channel angular pressing (TCAP) as a method for increasing the efficiency of SPD[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2010,527(23):6386-6392.
    [86]Xia K, Wu X. Back pressure equal channel angular consolidation of pure Al particles[J]. Scripta Materialia,2005,53(11):1225-1229.
    [87]Mani B, Paydar MH. Application of forward extrusion-equal channel angular pressing (FE-ECAP) in fabrication of aluminum metal matrix composites[J]. Journal of Alloys and Compounds,2010,492(1-2):116-121.
    [88]Paydar MH, Reihanian M, Bagherpour E, et al. Equal channel angular pressing-forward extrusion (ECAP-FE) consolidation of Al particles[J]. Materials & Design,2009,30(3): 429-432.
    [89]Lapovok R, Tomus D, Bettles C. Shear deformation with imposed hydrostatic pressure for enhanced compaction of powder[J]. Scripta Materialia,2008,58(10):898-901.
    [90]Xiaoxi WANG KX, Ping LI, et al. Equal Channel Angular Pressing and Torsion of Pure Al Powder in Tubes[J]. Advanced Materials research,2010,97-101:1109-1115.
    [91]王晓溪,薛克敏,李萍等.螺旋通道长度对纯铝粉末多孔材料等径角挤扭变形的影响[J].塑性工程学报,2010,17(6):97-102.
    [92]王晓溪,薛克敏,李萍等.含有残余试样的等径角挤扭变形工艺研究[J].中国机械工程,2011,22(8):976-979.
    [93]吴战立.等径角挤扭(ECAE-T)新工艺数值模拟及实验研究[D],合肥:合肥工业大学,2010.
    [94]薛克敏,吴战立,李萍等.纯铝等径角挤扭新工艺数值模拟及实验研究[J].中国机械工程,2010,21(12):1485-1489.
    [95]Senkov ON, Senkova SV, Scott JM, et al. Compaction of amorphous aluminum alloy powder by direct extrusion and equal channel angular extrusion[J]. Materials Science and Engineering A,2005,393(1-2):12-21.
    [96]范景莲.粉末增塑近净成形技术及致密化基础理论[M].北京:冶金工业出版社,2011.
    [97]李明怡.金属粉末温压工艺的研究现状和进展[J].世界有色金属,1999,(12):40-42.
    [98]王德广,周瑞庭,解挺等.粉末温压成形过程中的力学行为[J].机械工程材料,2007,31(05):66-71.
    [99]肖志瑜,李元元,倪东惠.粉末冶金温压的致密化机理[J].粉末冶金材料科学与工程,2006,11(02):85-90.
    [100]李元元.金属粉末温压成形原理与技术[M].广州:华南理工大学出版社,2008.
    [101]周照耀,李元元.金属粉末成形力学建模与计算机模拟[M].广州:华南理工大学出版社,2011.
    [102]刘心宇,张继仲,占美燕.粉末体成形的有限元数值模拟[J].中南工业大学学报(自然科学版),1999,20(03):279-282.
    [103]周洁.粉末成形过程的计算机模拟[D].昆明:昆明理工大学,2005.
    [104]任学平,康永林.粉末塑性加工原理及其应用[M].北京:冶金工业出版社,1998.
    [105]Park JJ. A yield function for copper powder in compaction[J]. Journal of Materials Processing Technology,2007,187:672-675.
    [106]Narayanasamy R, Ponalagusamy R, Subramanian KR. Generalised yield criteria of porous sintered powder metallurgy metals[J]. Journal of Materials Processing Technology,2001, 110(2):182-185.
    [107]汪俊.粉末金属成形过程建模及工艺计算机仿真[D].上海:上海交通大学,1999.
    [108]卫原平,阮雪榆.粉末烧结材料塑性变形过程的有限元分析[J].中国有色金属学报,1994,4(04):56-61.
    [109]卫原平,阮雪榆.金属成形过程中热力耦合分析技术的研究[J].塑性工程学报,1994,1(02):3-10.
    [110]康锋,王经涛.背压对ECAP塑性变形区影响的有限元分析[J].材料与冶金学报,2007,6(02):142-149.
    [111]唐向前.纯铜等径角挤压过程计算机模拟研究[D].兰州:兰州理工大学,2009.
    [112]Segal VM. Mechanics of continuous equal-channel angular extrusion[J]. Journal of Materials Processing Technology,2010,210(3):542-549.
    [113]吕哲,郑立静,于燕等.7050铝合金等通道多转角挤压过程的三维有限元模拟[J].稀有金属材料与工程,2008,37(12):2125-2128.
    [114]白朴存,聂浩,田春雨等.等通道转角多道次挤压有限元模拟[J].锻压技术,2007,32(05):125-129.
    [115]索涛,李玉龙,刘元镛.连续等径通道挤压三维有限元模拟[J].机械强度,2008,30(03):473-478.
    [116]运新兵,宋宝韫.连续等径角挤压及其成形过程的三维数值模拟[J].塑性工程学报,2006,13(04):38-42.
    [117]丁雨田,唐向前,袁训锋等ECAP条件下纯铜应变行为的等效应变规律及变形均匀性[J].兰州理工大学学报,2009,35(02):1-4.
    [118]郝南海,王全聪.等径侧向挤压变形均匀程度的有限元分析[J].中国有色金属学报,2001,11(S2):230-233.
    [119]赵国群,徐淑波.等通道弯角多道次挤压工艺累积变形均匀性研究[J].机械工程学报,2005,41(5):177-181.
    [120]徐淑波.等通道弯角挤压(ECAP)变形机理数值模拟与实验研究[D].济南:山东大学,2006.
    [121]石凤健,江理建,王亮等.背压对等径角挤压坯料变形的影响[J].江苏科技大学学报(自然科学版),2009,23(05):395-398.
    [122]Rebhi A, Makhlouf T, Njah N, et al. Characterization of aluminum processed by equal channel angular extrusion:Effect of processing route[J]. Materials Characterization,2009,60(12): 1489-1495.
    [123]Kubota M, Wu X, Xu W, et al. Mechanical properties of bulk aluminium consolidated from mechanically milled particles by back pressure equal channel angular pressing[J]. Materials Science and Engineering A,2010,527(24-25):6533-6536.
    [124]Lapovok R, Tomus D, Muddle BC. Low-temperature compaction of Ti-6A1-4V powder using equal channel angular extrusion with back pressure[J]. Materials Science and Engineering A, 2008,490(1-2):171-180.
    [125]李建萍.等通道转角挤压超细化合金组织性能的研究[J].江西师范大学学报(自然科学版),2006,30(1):38-42.
    [126]李强,赖祖涵.高纯铝等通道转角挤压引起的微观组织变化[J].兵器材料科学与工程,2001,24(06):.33-36.
    [127]黄新民等.材料研究方法[M].哈尔滨:哈尔滨工业大学出版社,2008.
    [128]毛卫民,杨平,陈冷.材料织构分析原理与技术[M].北京:冶金工业出版社,2008.
    [129]杨平.电子背散射技术及其应用[M].北京:冶金工业出版社,2007.
    [130]Kim KJ, Yang DY, Yoon JW. Investigation of microstructure characteristics of commercially pure aluminum during equal channel angular extrusion[J]. Materials Science and Engineering A, 2008,485(1-2):621-626.
    [131]Prangnell PB, Bowen JR, Apps PJ. Ultra-fine grain structures in aluminium alloys by severe deformation processing[J]. Materials Science and Engineering A,2004,375-377:178-185.
    [132]El-Danaf EA, Soliman MS, Almajid AA, et al. Enhancement of mechanical properties and grain size refinement of commercial purity aluminum 1050 processed by ECAP[J]. Materials Science and Engineering A,2007,458(1-2):226-234.
    [133]Kawasaki M, Horita Z, Langdon TG. Microstructural evolution in high purity aluminum processed by ECAP[J]. Materials Science and Engineering A,2009,524(1-2):143-150.
    [134]郭廷彪,丁雨田,袁训锋等.等通道角挤压中纯铜的晶粒取向演变及织构起伏效应[J].中国有色金属学报,2011,21(2):384-391.
    [135]Suwas S, Arruffat Massion R, Toth LS, et al. Evolution of texture during equal channel angular extrusion of commercially pure aluminum:Experiments and simulations[J]. Materials Science and Engineering A,2009,520(1-2):134-146.
    [136]Wei XS, Vekshin B, Kraposhin V, et al. Full density consolidation of pure aluminium powders by cold hydro-mechanical pressing[J]. Materials Science and Engineering A,.2011,528(18): 5784-5789.
    [137]刘国心,魏伟,魏坤霞.等通道变形高纯铝的显微组织与力学性能[J].机械工程材料,2008,32(6):66-69.
    [138]魏伟.块体超细晶铜的制备与组织性能研究[D].南京:南京理工大学,2004.
    [139]张忠明,徐春杰,田景来等ECAP挤压L2纯铝的微观组织演化规律[J].西安理工大学学报,2005,21(03):227-231.
    [140]赵润娴,张建,王志奇等.等通道转角挤压纯铝的组织结构[J].有色金属,2002,54(2):8-11.
    [141]张郑,王经涛,赵西成.7475铝合金ECAP的晶粒细化极限[J].中国有色金属学报,2004,14(5):741-745.
    [142]Iwahashi Y, Horita Z, Nemoto M, et al. An investigation of microstructural evolution during equal-channel angular pressing[J]. Acta mater,1997,45:4733-4741.
    [143]Iwahashi Y, Furukawa M, Horita Z, et al. Microstructural characteristics of ultrafine-grained aluminum produced using equal-channel angular pressing[J]. Metallurgical and Materials Transactions A,.1998,29A:2245-2251.
    [144]靳丽.等通道角挤压变形镁合金微观组织与力学性能研究[D].上海:上海交通大学,2006.
    [145]赵文娟.纯铝ECAP变形组织演化及变形过程模拟[D].沈阳:东北大学,2005.
    [146]Valiev RZ, Islamgaliev RK, Alexandrov IV. Bulk nanostructured materials from SPD[J]. Progress in Materials Science,2000,45:103-189.
    [147]D.L L, F S. Superplasticity in a large-grained Ti-Al alloy[J]. Intemetallics,2004,12:875-883.
    [148]Lin D.L, Hu J, Jiang D.M. Superplasticity of Ni-rich single phase Ni-Al intemetallics with large grains[J]. Intemetallics,.2005,13:343-349.
    [149]Lin D L, Liu Y. Microstructure evolution and mechanisms of superplasticity in large-grained iron aluminides[J]. Materials Science & Engineering A,.1999,268:83-89.
    [150]Hu J, Lin L D. Microstructure evolution of superplasticity in large grained Ni-48A1 intemetallics[J]. Materials Science & Engineering A,.2004,371:113-118.
    [151]刘友良,张新明,李慧中等.工业纯铝的动态再结晶行为[J].湖南有色金属,2006,22(03):33-36.
    [152]黄裕金,陈志国.2E12铝合金热变形过程中的动态软化机制[J].机械工程材料,2011,35(10):22-27.
    [153]Liu Jinxu, Li Shukui, Zhou Xiaoqing, et al. Dynamic Recrystallization in the Shear Bands of Tungsten Heavy Alloy Processed by Hot-Hydrostatic Extrusion and Hot Torsion[J]. Rare Metal Materials and Engineering,2011,40(6):0957-0960.
    [154]Rebhi A, Makhlouf T, Njah N, et al. Characterization of aluminum processed by equal channel angular extrusion:Effect of processing route[J]. Materials Characterization,2009,60(12): 1489-1495.
    [155]何运斌,潘清林,刘晓艳等.镁合金等通道转角挤压过程中的晶粒细化机制[J].中国有色金属学报,2011,21(8):1785-1793.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700