用户名: 密码: 验证码:
透明氧化铝陶瓷成型与烧结工艺的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
透明氧化铝陶瓷材料是第一个实现透明的陶瓷材料。它具有耐高温、耐腐蚀、高强度、高硬度、化学稳定性和生物相容性等结构陶瓷所固有的属性,同时具备透光这一功能属性,已在能源、机械、军工、电子、半导体、医学等高技术领域得到愈来愈多的应用。本文从助烧剂的引入方式、注射成型粉体表面改性、颗粒优化堆垛、烧结动力学四个角度对透明氧化铝陶瓷成型与烧结工艺的基础问题展开了研究。
     本论文首先采用化学沉淀方法以硝酸盐的形式引入助烧剂离子(Mg2+和Y3+)制备透明氧化铝陶瓷,实现了助烧剂离子在氧化铝粉体表面的包覆,阐述了助烧剂离子的化学沉淀机理,对烧结体中助烧剂在基体中的微观结构及分布状态进行了表征。结果表明,相比传统的湿法球磨该法可实现助烧剂离子以较精细的尺寸更加均匀地分布在氧化铝基体中,化学沉淀法制备的透明氧化铝陶瓷在紫外-可见光区域直线透过率最高可达21.3%。采用高温气氛烧结在生产成本及透光率之间寻求了较好的平衡。
     采用硬脂酸球磨预改性方法注射成型制备透明氧化铝陶瓷,与传统工作中在混料的过程中引入硬脂酸不同,本研究在混料之前通过球磨的方式引入硬脂酸,可将极限固含量由58vol%提升到64vol%。硬脂酸在粉体表面形成了稳定的包覆层,论证了硬脂酸改性机理系酯化反应,修正了前人关于硬脂酸改性路易斯酸碱反应机理的解释。通过坯体气孔结构分析证明了62vol%为最优固含量,在该固含量下制备的透明氧化铝陶瓷在紫外-可见光区域的透光率最高达到15.3%。该技术已经应用到生物陶瓷和陶瓷工艺品的制备中,在一定程度上解决透光率低下与鼓泡开裂等缺陷问题。
     采用喷雾冷冻造粒制备了结构均匀,无团聚,无粘结剂偏析的造粒颗粒,该法能够促使陶瓷颗粒获得非常均匀的堆垛状态。建立了高纯超细氧化铝粉体常压烧结和放电等离子烧结的动力学窗口。通过对比两种烧结方式的动力学窗口,提出了粉体处理过程中的颗粒堆垛优化及烧结过程中的颗粒重排过程是制备透明氧化铝陶瓷的关键因素这一理念。采用放电等离子烧结制备了透明氧化铝陶瓷,在紫外-可见光区域直线透光率最高达到20.3%。
Transparent alumina is the first transparent ceramic. It posses the inherentattributes of structural ceramics such as high temperature resistance, corrosion resitance,resistance to corrosion, high strength, high hardness, chemical stability andbiocompatibility, along with the functional attribute of translucency. There is anincreasing trend for transparent alumina in the application of energy, machinery,military, electronics, semiconductor, medical, and other high-tech areas. BasicResearches are conducted concerning the forming and sintering technologies oftransparent alumina in this thesis from three aspects: the introduction of sintering aids,injection molding of surface modified powders, and the sintering kinetics.
     A novel approach was adopted to fabricate transparent alumina ceramics inducedby doping additives via chemical precipitation. It realized the coating of sintering aidsions onto the surface of the alumina powder. The mechanism of chemical precipitationof the sintering aid ions was explained. The microstructure and the distribution state ofsintering aids in the sintered body were characterized. It is found that the dopants aresmaller and more homogeneously dispersed via chemical precipitation in the transparentalumina sample as compared with conventional wet ball milling. The real in-linetransmission in the UV-VIS region of the sample prepared by chemical precipitationtransmittance is up to21.3%. Furthermore, it is believed that the approach of chemicalprecipitation followed by H2sintering at high temperature within short sintering timecould make a good balance between the real in-line transmission and the cost.
     A strategy to greatly improve solid loading for ceramic injection molding by aprior ball milling treatment of ceramic powders with SA was adopted to fabricatetransparent alumina. Different from the traditional work in which SA has beenintroduced just in the powder blending process, we have successfully prepared thefeedstock with a much higher solid loading up to64vol%by a prior ball millingtreatment of ceramic powders with a small amount of SA before the traditional blendingprocess. It can be attributed to that SA can be coated homogeneously around the powdersurfaces by an esterification reaction induced by ball milling treatment. The Lewis acid-base reaction mechanism raised by previous literatures is corrected.62vol%isproved to be the optimal solid loading through the analysis of pore structure of thecompacts. The real in-line transmission in the UV-VIS region at such solid loadingreaches15.3%. The technology has been applied to bio-ceramics and light sourcematerial (metal halide lamp). It solves the problems of low transparency and defectssuch as bubbling and cracking to some extent.
     Spray freeze granulation was adopted to prepare granules with uniform structure,without agglomeration and without binder segregation. The kinetics windows were builton both pressureless sintering and spark plasma sintering of high-purified and ultrafinealumina. The idea that particle packing in the powder treatment and particlerearrangement in sintering is key factors to obtain complete densification were raised.Transparent alumina was prepared via spark plasma sintering and the real in-linetransmission is no less than20.3%in the UV-VIS region.
引文
[1] Kumar G A, Chen C W, Riman R, et al. Optical properties of a transparent CaF2: Er3+fluoropolymer nanocomposite. Applied Physics Letters,2005,86:
    [2] Misawa T, Moriyoshi Y, Yajima Y, et al. Effect of silica and boron oxide on transparencyof magnesia ceramics. Journal of the Ceramic Society of Japan,1999,107:343-348.
    [3] An L Q, Ito A, Goto T. Two-step pressure sintering of transparent lutetium oxide by sparkplasma sintering. Journal of the European Ceramic Society,2011,31:1597-1602.
    [4] Meir S, Kalabukhov S, Froumin N, et al. Synthesis and densification of transparentmagnesium aluminate spinel by sps processing. Journal of the American Ceramic Society,2009,92:358-364.
    [5] Ikesue A, Kinoshita T, Kamata K, et al. Fabrication and optical-properties ofhigh-performance polycrystalline nd-yag ceramics for solid-state lasers. Journal of TheAmerican Ceramic Society,1995,78:1033-1040.
    [6] Cheng J P, Agrawal D, Zhang Y J, et al. Microwave reactive sintering to fully transparentaluminum oxynitride (alon) ceramics. Journal of Materials Science Letters,2001,20:77-79.
    [7] Fu Z Y, Liu J F, Wang H, et al. Spark plasma sintering of aluminium nitride transparentceramics. Materials Science and Technology,2004,20:1097-1099.
    [8] Su X, Wang P, Chen W, et al. Translucent α-sialon ceramics by hot pressing. Journal of theAmerican Ceramic Society,2004,87:730-732.
    [9]谢志鹏.结构陶瓷.北京:清华大学出版社,2011.
    [10] Krell A, Hutzler T and Klimke J. Transmission physics and consequences for materialsselection, manufacturing, and applications. Journal of the European Ceramic Society,2009,29:207-221.
    [11][苏]维德利克г. A.(陈婉华译).透明陶瓷.北京:轻工业出版社,1980.
    [12]施剑林,冯涛.无机光学透明材料.上海:上海科学普及出版社,2008.
    [13] Hiroshi Y T M, Satoshi I. Translucent polycrystalline ceramic and method for making same:US,6417127B1.2002-07-09.
    [14] O Y T, Koo J B, Hong K J, et al. Effect of grain size on transmittance and mechanicalstrength of sintered alumina. Materials Science and Engineering: A,2004,374:191-195.
    [15] Apetz R, van Bruggen M P B. Transparent alumina: A light-scattering model. Journal of theAmerican Ceramic Society,2003,86:480-486.
    [16]谢志鹏,刘伟,薄铁柱.透明氧化铝陶瓷制备的研究进展.硅酸盐通报,2011,30:1-6.
    [17] Mao X J, Wang S W, Shimai S, et al. Transparent polycrystalline alumina ceramics withorientated optical axes. Journal of the American Ceramic Society,2008,91:3431-3433.
    [18]田增英.来自西方的知识——精密陶瓷及应用.背景:科学普及出版社,1993.
    [19] Wei G C. Transparent ceramic lamp envelope materials. Journal of Physics D-AppliedPhysics,2005,38:3057-3065.
    [20] Yoshimura H N, Goldenstein H. Light scattering in polycrystalline alumina withbi-dimensionally large surface grains. Journal of the European Ceramic Society,2009,29:293-303.
    [21] Krell A, Blank P, Ma H W, et al. Transparent sintered corundum with high hardness andstrength. Journal of the American Ceramic Society,2003,86:12-18.
    [22] Krell A, Klimke J and Hutzler T. Advanced spinel and sub-μm Al2O3for transparentarmour applications. Journal of the European Ceramic Society,2009,29:275-281.
    [23] Bernard-Granger G, Guizard C, Addad A. Influence of co-doping on the sintering path andon the optical properties of a submicronic alumina material. Journal of the AmericanCeramic Society,2009,92:2801-2801.
    [24] Promdej C, Pavarajarn V, Wada S, et al. Effect of hot isostatically pressed sintering onmicrostructure of translucent alumina compact. Current Applied Physics,2009,9:960-966.
    [25] Echeberria J, Tarazona J, He J Y, et al. Sinter-hip of α-alumina powders with sub-microngrain sizes. Journal of the European Ceramic Society,2002,22:1801-1809.
    [26] Grasso S, Kim B-N, Hu C, et al. Highly transparent pure alumina fabricated byhigh-pressure spark plasma sintering. Journal of the American Ceramic Society,2010,93:2460-2462.
    [27] Kim B N, Hiraga K, Morita K, et al. Spark plasma sintering of transparent alumina. ScriptaMaterialia,2007,57:607-610.
    [28] Kim B N, Hiraga K, Morita K, et al. Effects of heating rate on microstructure andtransparency of spark-plasma-sintered alumnia. Journal of the European Ceramic Society,29,2:323-327.
    [29] Aman Y, Garnier V and Djurado E. Influence of green state processes on the sinteringbehaviour and the subsequent optical properties of spark plasma sintered alumina. Journalof the European Ceramic Society,2009,29:3363-3370.
    [30] Jin X H, Gao L and Sun J. Highly transparent alumina spark plasma sintered fromcommon-grade commercial powder: The effect of powder treatment. Journal of theAmerican Ceramic Society,2010,93:1232-1236.
    [31] Stuer M, Zhao Z, Aschauer U, et al. Transparent polycrystalline alumina using sparkplasma sintering: Effect of mg, y and la doping. Journal of the European Ceramic Society,2010,30:1335-1343.
    [32] Moritz T. Two-component CIM parts for the automotive and railway sectors. PowderInjection Moulding International.2008,2:38-39
    [33] Hausnerova B. Powder injection moulding-An alternative processing method forautomotive items//Chiaberge M. New Trends and Developments in Automotive SystemEngineering. Rijeka: Intech,2011:129-146
    [34] González-Gutiérrez J, Stringari G, Emri I. Powder injection molding of metal and ceramicparts//Wang J. Some Critical Issues for Injection Molding. Rijeka: Intech,2012:65-88
    [35] German R M, Bose A. Injection molding of metals and ceramics. Newjersey: Metal PowderIndustries,1997.
    [36] Edirisinghe M J, Evans J R G. Properties of ceramic injection-molding formulations.2.Integrity of moldings. Journal of Materials Science,1987,22:2267-2273.
    [37] Edirisinghe M J and Evans J R G. Properties of ceramic injection-molding formulations.1.Melt rheology. Journal of Materials Science,1987,22:269-277.
    [38] Hunt K N, Evans J R G, Mills N J, et al. Computer modeling of the origin of defects inceramic injection-molding.4. Residual-stresses. Journal of Materials Science,1991,26:5229-5238.
    [39] Hunt K N, Evans J R G and Woodthorpe J. Computer modeling of the origin of defects inceramic injection-molding.1. Measurement of thermal-properties. Journal of MaterialsScience,1991,26:285-291.
    [40] Hunt K N, Evans J R G and Woodthorpe J. Computer modeling of the origin of defects inceramic injection-molding.2. Shrinkage voids. Journal of Materials Science,1991,26:292-300.
    [41] Woodthorpe J, Edirisinghe M J and Evans J R G. Properties of ceramic injection-moldingformulations.3. Polymer removal. Journal of Materials Science,1989,24:1038-1048.
    [42] Xie Z P, Huang Y and Wu J G. Effects of powder characteristics and grinding processes onfluidity of ceramic injection-molding mixtures. Journal of Materials Science Letters,1995,14:1165-1167.
    [43] Xie Z P, Yang J L and Huang Y. The effect of silane contents on fluidity and green strengthfor ceramic injection moulding. Journal of Materials Science Letters,1997,16:1286-1287.
    [44] McLean A F. Ceramic technology for automotive turbines. American Ceramic SocietyBulletin,1982,61:861-863.
    [45] Edirisinghe M J. The effect of processing additives on the properties of a ceramic polymerformulation. Ceramics International,1991,17:89-96.
    [46] Edirisinghe M J and Evans J R G. Systematic development of the ceramicinjection-molding process. Materials Science and Engineering A-Structural MaterialsProperties, Microstructure and Processing,1989,109:17-26.
    [47] Evans A G, Burlingame N, Drory M, et al. Martensitic transformations in zirconia-particle-size effects and toughening. Acta Metallurgica,1981,29:447-456.
    [48] Evans A G and Heuer A H. Transformation toughening in ceramics-martensitictransformations in crack-tip stress-fields. Journal of the American Ceramic Society,1980,63:241-248.
    [49] Hunt K N, Evans J R G and Woodthorpe J. The influence of mixing route on the propertiesof ceramic injection-molding blends. British Ceramic Transactions and Journal,1988,87:17-21.
    [50] Hunt K N, Evans J R G and Woodthorpe J. On the role of coupling agents inzirconia-polypropylene suspensions for ceramic injection-molding. Polymer Engineeringand Science,1988,28:1572-1577.
    [51] Edirisinghe M J. The use of silane coupling agents in ceramic injection-molding-effect onpolymer removal. Journal of Materials Science Letters,1990,9:1039-1041.
    [52] Hunt K N, Evans J R G. A heated sprue bush for ceramic injection-molding. Journal ofMaterials Science Letters,1991,10:730-733.
    [53] Hunt K N, Evans J R G, Woodthorpe J. Computer modeling of the origin of defects inceramic injection-molding.3. Sprue closure. Journal of Materials Science,1991,26:2143-2149.
    [54] Song J H, Evans J R G. The assessment of dispersion of fine ceramic powders forinjection-molding and related processes. Journal of The European Ceramic Society,1993,12:467-478.
    [55] Song J H, Evans J R G. The injection-molding of fine and ultra-fine zirconia powders.Ceramics International,1995,21:325-333.
    [56] Song J H, Evans J R G. Ultrafine ceramic powder injection moulding: The role ofdispersants. Journal of Rheology,1996,40:131-152.
    [57] Song J H, Evans J R G, Edirisinghe M J, et al. Effect of powder bed on critical heating ratesfor thermolysis of ceramic injection moldings. AICHE Journal,1996,42:1715-1722.
    [58] Zhang T, Evans J R G. The properties of a ceramic injection moulding suspension based ona preceramic polymer. Journal of the European Ceramic Society,1991,7:405-412.
    [59] Zhang T, Evans J R G. The solidification of large sections in ceramic injection-molding.2.Modulated pressure molding. Journal of Materials Research,1993,8:345-351.
    [60] Zhang T, Evans J R G. The use of a heated sprue in the injection-molding of large ceramicsections. British Ceramic Transactions,1993,92:146-151.
    [61] Zhang T, Evans J R G, Bevis M J. The control of fibre orientation in ceramic and metalcomposites by open-ended injection moulding. Composites Science and Technology,1996,56:921-928.
    [62] Zhang T, Evans J R G, Bevis M J. On the heat balance during double-gated,modulated-pressure injection moulding. International Journal of Heat and Mass Transfer,1998,41:963-974.
    [63] Zhang T, Evans J R G, Woodthorpe J. Injection-molding of silicon-carbide using an organicvehicle based on a preceramic polymer. Journal of the European Ceramic Society,1995,15:729-734.
    [64] Tseng W J, Liu D M, Hsu C K. Influence of stearic acid on suspension structure and greenmicrostructure of injection-molded zirconia ceramics. Ceramics International,1999,25:191-195.
    [65] Tseng W J. Influence of surfactant on rheological behaviors of injection-molded aluminasuspensions. Materials Science and Engineering A-Structural Materials: Properties,Microstructure and Processing,2000,289:116-122.
    [66] Lin S I E. Near-net-shape forming of zirconia optical sleeves by ceramics injection molding.Ceramics International,2001,27:205-214.
    [67] Soykan H S, Karakas Y. Injection moulding of thin walled zirconia tubes for oxygensensors. Advances in Applied Ceramics,2005,104:285-290.
    [68] Yang W-W, Hon M-H. In situ evaluation of dimensional variations during water extractionfrom alumina injection-moulded parts. Journal of the European Ceramic Society,2000,20:851-858.
    [69] Chartier T, Ferrato M, Baumard J F. Supercritical debinding of injection-molded ceramics.Journal of the American Ceramic Society,1995,78:1787-1792.
    [70] Xie Z P, Huang Y, Wu J G, et al. Microwave debinding of a ceramic injection-molded body.Journal of Materials Science Letters,1995,14:794-795.
    [71] Krug S, Evans J R G, ter Maat J H H. Transient effects during catalytic binder removal inceramic injection moulding. Journal of the European Ceramic Society,2001,21:2275-2283.
    [72] Ni X L, Yin H Q, Liu L, et al. Injection molding and debinding of micro gears fabricated bymicro powder injection molding. International Journal of Minerals Metallurgy andMaterials,2013,20:82-87.
    [73] Barreiros F M, Vieira M T. Pim of non-conventional particles. Ceramic International,2006,32:297-302.
    [74] Dihoru L V, Smith L N, German R M. Experimental analysis and neural network modellingof the rheological behaviour of powder injection moulding feedstocks formed with bimodalpowder mixtures. Powder Metallurgy,2000,43:31-36.
    [75]谢志鹏,罗杰盛,李建保.陶瓷注射成型研究进展.陶瓷科学与艺术,2003,37:16-18.
    [76] Quinard C, Barriere T, Gelin J C. Development and property identification of316l stainlesssteel feedstock for pim and mu pim. Powder Technology,2009,190:123-128.
    [77] Liu L, Loh N H, Tay B Y, et al. Mixing and characterisation of316l stainless steelfeedstock for micro powder injection molding. Materials Characterization,2005,54:230-238.
    [78] Ahn S, Park S J, Lee S, et al. Effect of powders and binders on material properties andmolding parameters in iron and stainless steel powder injection molding process. PowderTechnology,2009,193:162-169.
    [79] Thomas-Vielma P, Cervera A, Levenfeld B, et al. Production of alumina parts by powderinjection molding with a binder system based on high density polyethylene. Journal of theEuropean Ceramic Society,2008,28:763-771.
    [80] German R M. Powder injection moulding. Princeton: Metal Powder Industries Federation,1990.
    [81] Stringari G B, Zupancic B, Kubyshkina G, et al. Time-dependent properties of bimodalpom-application in powder injection molding. Powder Technology,2011,208:590-595.
    [82] Yang X F, Xie Z P, Jia C, et al. Computer simulation analysis of ceramic powder injectionmolding process and molding defects formation. Rare Metal Materials and Engineering,2011,40:514-517.
    [83] Mannschatz A, Hohn S, Moritz T. Powder-binder separation in injection moulded greenparts. Journal of the European Ceramic Society,2010,30:2827-2832.
    [84] Cima M J, Lewis J A, Devoe A D. Binder distribution in ceramic greenware duringthermolysis. Journal of the American Ceramic Society,1989,72:1192-1199.
    [85] Liu W, Yang X F, Xie Z P, et al. Study of water-debinding for ceramic parts with thickcross-section by injection molding. Rare Metal Materials and Engineering,2011,40:238-240.
    [86] Xiong Y, Hu J F, Shen Z J, et al. Preparation of transparent nanoceramics by suppressingpore coalescence. Journal of the American Ceramic Society,2011,94:4269-4273.
    [87] Akash A, Mayo M J. Pore growth during initial-stage sintering. Journal of the AmericanCeramic Society,1999,82:2948-2952.
    [88] Lange F F. Sinterability of agglomerated powders. Journal of the American CeramicSociety,1984,67:83-89.
    [89] Vandeven T G M, Hunter R J. Energy-dissipation in sheared coagulated sols. RheologicaActa,1977,16:534-543.
    [90] Bernard-Granger G, Guizard C, Addad A. Influence of co-doping on the sintering path andon the optical properties of a submicronic alumina material. Journal of the AmericanCeramic Society,2008,91:1703-1706.
    [91] Nagashima M, Motoike K, Hayakawa M. Fabrication and optical characterization ofhigh-density Al2O3doped with slight MnO dopant. Journal of the Ceramic Society of Japan,2008,116:645-648.
    [92] Berry K A, Harmer M P. Effect of mgo solute on microstructure development in Al2O3.Journal of the American Ceramic Society,1986,69:143-149.
    [93] Mao X J, Shimai S Z, Dong M J, et al. Gelcasting and pressureless sintering of translucentalumina ceramics. Journal of the American Ceramic Society,2008,91:1700-1702.
    [94] Miller L, Avishai A, Kaplan W D. Solubility limit of mgo in Al2O3at1600oC. Journal ofthe American Ceramic Society,2006,89:350-353.
    [95] Lange F F, Hirlinger M M. Hindrance of grain-growth in Al2O3by ZrO2inclusions. Journalof the American Ceramic Society,1984,67:164-168.
    [96] Sato E, Carry C. Yttria doping and sintering of submicrometer-grained α-alumina. Journalof the American Ceramic Society,1996,79:2156-2160.
    [97] Suarez M, Fernandez A, Menendez J L, et al. Grain growth control and transparency inspark plasma sintered self-doped alumina materials. Scripta Materialia,2009,61:931-934.
    [98] Winkler P M, Steiner G, Vrtala A, et al. Heterogeneous nucleation experiments bridging thescale from molecular ion clusters to nanoparticles. Science,2008,319:1374-1377.
    [99] Wang W, Xie Z P, Liu G W, et al. Fabrication of blue-colored zirconia ceramics viaheterogeneous nucleation method. Crystal Growth&Design,2009,9:4373-4377.
    [100] Bennison S J, Harmer M P. Effect of mgo solute on the kinetics of grain growth in Al2O3.Journal of the American Ceramic Society,1983,66: C-90-C-92.
    [101]廉姣.透明氧化铝陶瓷的制备与研究[硕士学位论文].北京:北京科技大学材料学院,2009.
    [102] Hwang K S, Hsieh C C. Injection-molded alumina prepared with Mg-containing binders.Journal of the American Ceramic Society,2005,88:2349-2353.
    [103] Liu G, Xie Z, Liu W, et al. Fabrication of translucent alumina ceramics from pre-sinteredbodies infiltrated with sintering additive precursor solutions. Journal of the EuropeanCeramic Society,2012,32:711-715.
    [104] Scott C, Kaliszewski M, Greskovich C, et al. Conversion of polycrystalline Al2O3intosingle-crystal sapphire by abnormal grain growth. Journal of the American Ceramic Society,2002,85:1275-1280.
    [105] Lin S T, German R M. Interaction between binder and powder in injection-molding ofalumina. Journal of Materials Science,1994,29:5207-5212.
    [106] Liu D M, Tseng W J. Yield behavior of zirconia-wax suspensions. Materials Science andEngineering A-Structural Materials: Properties, Microstructure and Processing,1998,254:136-146.
    [107] Liu D M, Tseng W J. Influence of powder agglomerates on the structure and rheologicalbehavior of injection-molded zirconia-wax suspensions. Journal of the American CeramicSociety,1999,82:2647-2652.
    [108] Liu D M. Effect of dispersants on the rheological behavior of zirconia-wax suspensions.Journal of the American Ceramic Society,1999,82:1162-1168.
    [109] Liu D M, Tseng W J. Rheology of injection-molded zirconia-wax mixtures. Journal ofMaterials Science,2000,35:1009-1016.
    [110] Chan T Y, Lin S T. Effects of stearic-acid on the injection-molding of alumina. Journal ofthe American Ceramic Society,1995,78:2746-2752.
    [111] Yan L T, Si W J, Lin S W, et al. Influence of coupling agents on the chemical compatibilitybetween ultrafine Si3N4powders and organic binders. High-Performance Ceramics2001,Proceedings,2002,224-2:691-695.
    [112] Lindqvist K, Carlstrom E, Persson M, et al. Organic silanes and titanates as processingadditives for injection-molding of ceramics. Journal of the American Ceramic Society,1989,72:99-103.
    [113] Liao H M, Coyle T W. Effects of organotitanate additions on the dispersion of aluminumnitride in nonpolar-solvents. Journal of the American Ceramic Society,1995,78:1291-1296.
    [114] Takahashi M, Hayashi J, Suzuki S, et al. Improvement of the rheological properties of thezirconia polypropylene system for ceramic injection-molding using coupling agents.Journal of Materials Science,1992,27:5297-5302.
    [115] Liang S Q, Tang Y, Zhang Y, et al. The rheologyical effect of carbon nanotubes on the ironbased metal powder injection molding feedstock. Multi-Functional Materials and StructuresIi, Pts1and2,2009,79-82:469-472.
    [116] Liu D M. Influence of solid loading and particle size distribution on the porositydevelopment of green alumina ceramic mouldings. Ceramics International,1997,23:513-520.
    [117] Wang L L, Yang X F, Zhang Z T, et al. Mechanism of thermal debinding and waterdebinding for ceramic injection, molding. Rare Metal Materials and Engineering,2007,36:330-333.
    [118] Gutierrez J A E, Fredel M C, Wendhausen P P, et al. Preparation of hard metal (WC-10Co)components by powder injection moulding. Key Engineering Materials,2001,189,1:579-585.
    [119] Liu W, Xie Z, Bo T, et al. Injection molding of surface modified powders with high solidloadings: A case for fabrication of translucent alumina ceramics. Journal of the EuropeanCeramic Society,2011,31:1611-1617.
    [120] Wu R Y, Wei W C J. Torque evolution and effects on alumina feedstocks prepared byvarious kneading sequences. Journal of the European Ceramic Society,2000,20:67-75.
    [121] Wolfrum S M, Ponjee J J. Surface modification of powders with carboxylic-acids. JMaterials Science Letter,1989,8:667-669.
    [122] Stuer M, Zhao Z, Bowen P. Freeze granulation: Powder processing for transparent aluminaapplications. Journal of the European Ceramic Society,2012,32:2899-2908.
    [123] Raghupathy B P C, Binner J G P. Spray granulation of nanometric zirconia particles.Journal of the American Ceramic Society,2011,94:139-145.
    [124] Lewis J A. Colloidal processing of ceramics. Journal of the American Ceramic Society,2000,83:2341-2359

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700