用户名: 密码: 验证码:
苔藓植物对重金属污染的响应机理和生物指示的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类活动对环境干扰程度的日益加剧,利用生物对环境污染进行指示和检测成为当前对环境生物学研究的热点之一。苔藓植物作为一类良好的指示植物,被世界各国广泛应用为环境污染和变化的指示生物。但有关苔藓植物对环境污染的响应及机理研究仅有少数研究和报道。本论文在成功利用组培技术大量扩繁小立碗藓(Physcomitrella patens)、细叶小羽藓(Haplocladium microphyllum)和葡枝青藓(Brachythecium procumbens)配子体的基础上,采用先进的同步辐射X荧光分析技术(SRXRF)和生理生化测定分析,开展了组培条件下试管内苔藓植物的重金属胁迫实验,深入研究了重金属胁迫下3种藓类植物的重金属及营养元素的积累规律及其生理生化响应,探讨藓类植物对环境污染的响应机理及其生物指示作用。主要的研究结果如下:
     (1)在大量的比较实验基础上,系统完成了细叶小羽藓和葡枝青藓的组培研究工作并建立了两种藓类配子体植株高效的人工快繁系统。研究发现,对于两种藓类植物配子体在试管内快繁而言,基本培养基的组成、培养基中外源蔗糖浓度、激素条件以及培养瓶内外状况都会对试管内生长的配子体产生重要影响。本研究最终确定的两种藓类配子体试管内快繁的最佳条件是:改良的Knop’s基本培养基添加10g/L的蔗糖;pH值调整在5.8至6.0;培养瓶内空气相对湿度保持在75%至85%之间;培养瓶要具有适度的透气性;培养温度为20±2℃;光照时间为14hr;光照强度为1500lux至2000lux。
     上述相关研究成果获得了2项国家发明专利的授权,同时获得了重金属胁迫实验所需的两种藓类配子体材料。
     (2)通过组培条件下的重金属胁迫实验,运用SRXRF技术,测定分析了不同浓度Pb~(2+),Cu~(2+),Cr~(6+),Fe~(2+)等重金属离子单一或复合胁迫下,3种藓类的重金属元素的积累规律。单一重金属污染时,随着重金属离子污染浓度的增高,配子体中相应重金属元素的累积量呈现显著增高趋势。藓类植物种类不同,其配子体对重金属的累积能力和吸收敏感性也有差异。供试三种藓类比较,匐枝青藓植株体对Pb元素累积能力和吸收敏感性都非常强,其植株体中的Pb元素含量适合于作为评估环境Pb污染程度的量化指标。同样的比较分析表明,细叶小羽藓对Cr元素和Cu元素的累积能力和吸收敏感性都很强,其配子体内Cr元素和Cu元素的含量适合于作为这指示环境中两种重金属污染的量化指标。重金属复合胁迫对藓类配子体中重金属的累积能力有显著影响。以Fe~(2+)20mg/L与Pb~(2+)50mg/L、Cr~(6+)50mg/L、Cu~(2+)50mg/L形成的三种不同重金属复合污染处理时发现,较低浓度的Fe~(2+)对三种藓类吸收Pb~(2+)、Cr~(6+)、Cu~(2+)均具有强烈的拮抗作用,在很大程度上缓解了此三类重金属对藓类的毒害作用。采用u-SRXRF微探针扫描分析技术研究了配子体茎叶中重金属元素微区分布,在组织和细胞水平上揭示了藓类植物茎叶吸收累积重金属的机制。同时,进一步证实,供试三种藓类均具有强烈的重金属累积能力和敏感的生物响应特性,可作为监测环境重金属污染的生物指示植物。
     (3)深入分析了重金属胁迫对藓类植物营养元素吸收的影响。结果表明,一定浓度的重金属离子对配子体生长所需的多种营养元素的吸收产生拮抗作用并抑制配子体对营养元素的吸收利用。在重金属单一污染条件下,随着污染浓度的增高,供试三种藓类植物配子体中营养元素的累积量呈现出两种变化趋势。第一种是营养元素累积量先升高后降低,即低污染浓度的重金属促进了藓类配子体中营养元素的累积,而过高污染浓度则会降低元素的累积量。第二种是营养元素累积量随污染浓度增高呈直接下降趋势。重金属种类不同,藓种不同,配子体中各种营养元素吸收和累积的受抑制强度不同。供试的Pb~(2+),Cu~(2+),Cr~(6+),Fe~(2+)四种重金属离子污染下,细叶小羽藓配子体中P、K、Ca、S、Mn、Zn六种营养元素的最大降幅均低于小立碗藓,表明细叶小羽藓对上述4种重金属污染的耐受性都很强,最适合于作为环境重金属污染长期监测的指示植物。Pb~(2+)污染下,在最低污染浓度和最短污染时间的处理组,匐枝青藓配子体中P、K、Ca、S、Mn、Zn六种营养元素的含量就表现出显著的变化。说明匐枝青藓植株对铅污染产生的营养元素累积响应非常快速,适合作为铅污染的指示植物。在Pb~(2+)污染浓度100mg/L至Pb~(2+)污染浓度600mg/L之间,匐枝青藓配子体中P、K、Ca、S四种元素含量与Pb~(2+)污染浓度之间均呈现显著线性回归关系。说明在供试Pb~(2+)污染浓度范围内,Pb~(2+)污染浓度与匐枝青藓配子体中四种营养元素含量之间存在剂量-效应关系,建议利用匐枝青藓中的这四种营养元素含量作为监测环境重金属污染的辅助生理指标。不同种类重金属复合胁迫对于配子体不同种类营养元素吸收和累积表现出三种不同的胁迫效应,一种是缓解累积抑制效应,一种是增强累积抑制效应,一种是显著促进累积效应。
     (4)采用生理生化分析方法,测定分析了不同重金属胁迫下3种藓类植物的生理响应和变化。结果表明,三种供试藓类总叶绿素含量对重金属污染的生物响应均非常快速,说明三种藓类植物对重金属污染反映敏感,适合于作为指示重金属污染的指示生物。Pb~(2+)污染导致三种藓类叶绿素b的降低幅度最大,说明叶绿素b含量的降低是Pb~(2+)污染导致植物光合作用受抑制的重要原因之一。不同种类单一重金属污染胁迫下,三种藓类植物POD酶活性响应表现出两种变化规律,一种是随着重金属污染浓度的增高,POD酶活性逐渐增强;一种是重金属低污染浓度范围内,POD酶活性逐渐增强,当污染浓度较高时,POD酶活性显著较低。供试三种藓类的POD酶活性与重金属污染浓度之间以及MDA含量与重金属污染浓度均存在显著的剂量-效应关系,可以拟合形成曲线回归关系显著的函数方程,因此建议将苔藓的POD酶活性和MDA含量作为监测环境重金属污染的辅助生理指标进行推广应用。
     综上所述,本研究在分析3种藓类植物对重金属污染响应的基础上,进一步证明苔藓植物是作为环境重金属污染的敏感的良好的指示植物,为进一步利用苔藓植物监测和指示环境污染和变化提供了科学依据。
With the interference of human activities on the environment growing badly,biomonitoring of the polluted environments became one of hot points for study ofenvironmental biology. The bryophytes as good biological indicators to investigatepollution and changes of the environments have been widely used in differentcountries in the world. However, only few researches and reports dealing with theresponse and mechanism of the bryophytes to environmental pollution were carriedout. In order to better understanding the response and mechanism of bryophytes toenvironment pollution, the experiments of stress of different heavy metals on the threemosses, Haplocladium microphylum, Brachthecium procumbens and Physcomitriumpatens, which were successfully tissue cultivated and regenerated from native plants,were carried out on vitro condition at present study. Using advanced technique ofsynchrotron radiation x-fluorescence (SRXRF) and methods of physiological andbiochemical analyses, the accumulation of heavy metal and nutrient elements as wellas physiological and biochemical responses in the plants of three mosses under heavymetal stress were analyzed and studied. The main results are as follows:
     (1) Based on numerous comparative experiments, the tissue cultivation andregeneration of the mosses Haplocladium microphyllum and Brachytheciumprocumbens were successfully completed and two kinds of systems of efficientartificial propagation of the gametophytes for the two mosses were established. Theresults showed the best conditions for cultivation of these two mosses are as follows:modified Knop's basic medium add10g/L sucrose; pH value adjusted at5.8to6.0;culture bottle relative air humidity kept at75%to85the%; culture bottles to have amoderate permeability; culture temperature was20±2℃; illumination time was14hr; the illumination the strength for1500lux to2000lux. As the results, twoinvention patents were applied and obtained, and plants material for the experiments of heavy metal stress was gathered.
     (2) In the stress experiments under vitro condition, the different concentrationsof heavy metals ions including Pb, Cu, Cr, Fe in the plants of three mosses under thestress of single or combined condition of different heavy metals were analyzed bySRSRF. Under the stress of single heavy metal element, with increase of the pollutionconcentration, the cumulative amount of the same heavy metal ions had higher trendof significantly increasing in the plants. But, accumulation capacity and absorptionsensitivity of the heavy metals were different among three mosses. In comparison ofthe tested three mosses, Brachythecium procumbens had the highest content of Pb of1699.05147.14μg/g and152,9813.22μg/g in the plants under the highest Pb~(2+)400mg/L pollution and lowest Pb~(2+)50mg/L pollution, respectively. It indicated thatcumulative capacity and absorption sensitivity of Pb for Brachythecium procumbensare very strong and quantitative indicator of the Pb content in the plant is suitable forthe assessment of environmental Pb pollution levels. Same analysis showed thatHaplocladium microphyllum also had strong cumulative capacity and absorptionsensitivity of the Cr and Cu, so the content of the Cr and Cu elements in the plants issuitable indicators for Cr and Cu pollution. The combined stress of different elementssignificantly impact of the accumulation of heavy metals in the moss plants. Underthe three combined treatments of Fe~(2+)20mg/L with Pb~(2+)50mg/L, Cr~(6+)50mg/L,Cu~(2+)50mg/L, while Fe cumulative amount significantly increased, cumulativeamounts of Pb, Cr, Cu in the plants are significantly lower than those under the stressof single treatment with same element. This showed that the lower tconcentration ofFe~(2+)had a strong sense of antagonism on Pb~(2+), Cr~(6+), Cu~(2+)and can largely alleviatepoisoning effect of three heavy metals on the mosses. In addition, the scanningtechnology of U-SRXRF micro-probe analysis was used to show micro-distribution ofheavy metals on the stem and leaves of the mosses. The study reveals absorptionmechanism of accumulation of heavy metals in the tissue and cell levels in the mosses.At the same time, it is further confirmed that the tested three mosses have a strongaccumulation of heavy metals and sensitive biological response and can be used asindicator plants for biological monitoring of environmental heavy metal pollution.
     (3) The absorption capacity and changes of different nutrient elements including,P、K、Ca、S、Mn、Zn under different heavy metal stress were also analyzed. The resultsshowed that a certain concentration of heavy metal ions could have antagonistic effect on the absorption of the nutrient elements and inhibit absorption and utilization ofnutrient elements in the plants. With the increasing concentration of single heavymetal pollution, nutritive elements cumulative amount of the tested three mossesshowed two trends. The first one is that lower concentration of heavy metal promotedthe absorption of nutritional elements while excessive pollution concentrationsreduced the cumulative amount of the element. The second is the amount of nutrientaccumulation was directly downward with the increased pollution concentrations. Theabsorption and accumulation of nutrients were effected by different elements as wellas different mosses. Under stress treatment of Pb~(2+), Cu~(2+), Cr~(2+), Fe~(2+)the lowestdecrease of P, K, Ca, S, Mn, and Zn nutrient elements in Haplocladium microphyllumwere high than in Physcomitrella patens. It implied that Haplocladium microphyllumhas strong tolerance to the four heavy metals pollution and is the most suitable forlong-term monitoring of the environmental heavy metal pollution. The results that thesignificant changes of P, K, Ca, S, Mn, and Zn nutrient elements in Brachytheciumprocumbens under the lowest concentration and shortest time treatment of Pb~(2+)alsoindicated that Brachythecium procumbens responses to Pb pollution rapidly and canbe used as indicative plant to Pb pollution. Linear regression analysis of the resultsshowed that, between Pb~(2+)pollution concentration of100mg/L to Pb~(2+)pollutionconcentration of600mg/L, the content of P, K, Ca, S in the plants of Brachytheciumprocumbens and Pb~(2+)pollution concentration presented a significant line regression. Itis recommended that the use of nutritional element content in the plants ofBrachythecium procumbens as additional indicators for monitoring of environmentalPb pollution.The impact of different kinds of combined heavy metals stress ondifferent mosses on nutrient absorption and accumulation capacity is obviouslydifferent. The impact could be divided into three types: a remission cumulativeinhibitory effect; enhanced cumulative inhibitory effect, and a significant promotionof cumulative effect.
     (4) The physiological response and changes of three species of mosses includingphotosynthetic pigment synthesis, peroxidase (POD) activity changes,malondialdehyde (MDA) content under heavy metal stress were measured andcompared. The fact that the biological responses of total chlorophyll content to heavymetal contamination in the mosses were very rapid indicated that the mosses aresensitive and suitable for monitoring heavy metal pollution. Pb~(2+)pollution cause thethree mosses chlorophyll b decrease. The largest decline of chlorophyll b of Physcomitrella patens, Haplocladium microphyllum and Brachythecium procumbenswere58.55%,48.33%and46.17%, respectively. It implied that one of importantreasons of inhibiting plant photosynthesis is lower content of chlorophyll b caused byPb~(2+)pollution. Under the different types of single heavy metal pollution stress, PODactivity response of three mosses showed two kinds of variation, a POD enzymeactivity gradually increased with increasing concentration of heavy metal pollution;and POD enzyme activity gradually enhanced in a concentration range of heavymetals polluting and then significantly lower under higher pollution concentrations.Significant dose-response relationship between POD activity and MDA content andconcentration of heavy metal pollution in the test three mosses fitted to the formationof significant functional equation of the curve regression relationship. Therefore, it isrecommended that the moss POD enzyme activity and MDA content can be used asauxiliary physiological indicators for monitoring environmental heavy metalpollution.
     In summary, the present study on the response analysis of three mosses to heavymetal pollution provided further evidence that bryophytes are sensitive and goodindicator plants to environmental pollution of heavy metals. The research resultsprovided scientific basis for further study and application of monitoringenvironmental pollution and changes by bryophytes.
引文
Aceto M, Abollino O, Cvonca R, et al. The use of mosses as environmental metal pollutionindicators[J]. Chemosphere,2003.50:333-352.
    Ah-Peng, C; Rausch de Traubenberg. C. Aquatic bryophytes as pollutant accumulators andecophysiological bioindicators of stress: bibliographic synthesis[J]. Cryptogamie Bryologie,2004,25(3):205-248.
    ALLSOPP A. Controlled differentiation in cultures of two liverworts[J]. Nature,1957,179:681-682.
    Astolfi S,Zuchi S,Passera C.Effects of cadmium on the metabolic activity of Avena sativa plantsgrown in soil or hydroponic culture[J].Biologia Plantarum.2004,48(3):413—418.
    Bargagli R, Monaci F, Borghini F, et al. Mosses and lichens as biomonitors of trace metals.Acomparison study on Hypnum cupressiforme and Parmelia caperata in a former miningdistrict in Italy[J]. Environmental Pollution,2002.116(2):279-287.
    Bargagli R. The elemental composition of vegetation and the possible incidence of soilcontamination of samples[J]. Science of the Total Environment,1995.176:121-128.
    Bates J W, Aston N W, Duckett J G (eds). Bryology for The Twenty-first Century(M). London:British Bryological Society.1999,371-380.
    Berg T, Steinnes E. Recent trends in atmospheric deposition of trace elements in Norway asevident from the1995moss survey[J]. Science of the Total Environment.1997,208:197-206.
    Brarkmen J J.1969. The influence of air pollution on bryophytes and lichens. In Air Pollution,Proc.1st Europe congress. Infuence of Air Pollution on Plants and Animals[M].Wageningen.197-209.
    Brown D.H., Brumelis G. A biomonitorring method using the celluar distribution of metals inmoss[J]. Science of the Total Environment.1996,187(1996):153-161.
    Brown DH. Use of mineral elements and their use in pollution monitoring. In: Dyer AF, DuckettJG, eds. The Experimental Biology of Bryophytes[M].1984.London: Academic Press:229-248.
    Buescber P, Koedam N, Speybock D.1990,Cation-exchange properties and adaptation to soilacidity in bryophytes[J].New Phytologist,2005,115(2):177-186.
    Cameron A J, Niekless G. Use of mosses as collectors of airborne heavy metals near a smeltingcomplex[J]. Water, Air and soil Pollution,1977,7(1):117-125.
    Camp WV, van Montagu M. H2O2and NO: Redox signals and disease resistance. Trends in PlantScience,1998.3(9):330-334.
    Cao T, An L, Wang M et al. Spatial and temporal changes of heavy metal concentrations in mossesand its indication to the environments in the past40years in the city of Shanghai, China[J].Atmospheric Environment.2008,42:5390-5402.
    Cao T, Wang M, An L, et al. Air quality for metals and Sulfur in Shanghai, China, determined withmoss bags[J]. Environmental Pollution,2009.157:1270-1278.
    Chemykhn A.Alteration of the concentrations of certain elements in plants by heavy metals in thesoil[J].Soviet Soil Science,1991,23(6):45-53.
    Chiarenzelli JR, Aspler LB, Ozarko DL, et al. Heavy metals in mosses and lichens, southerndistrict of Keewatin, Northwest Territories, Canada[J]. Chemosphere,1997.35:1329-1341.
    Chowdhury SR, Choudhuri MA. Hydrogen peroxide metabolisn as an index of water stresstolerance in jute[J]. Physiologia Plantarum,1985.65(4):476-480.
    Clough WS. The deposition of particles on moss and grass surface[J]. Atmospheric Environment,1975.9(12):1113-1119.
    Couto JA, Fernández JA, Aboal JR, et al. Annual variability in heavy-metal bioconcentration inmoss:sampling protocol optimization[J]. Atmospheric Environment,2003.37(25):3517-3528.
    Dahiya D J.,Singh J P.,Vinod Kumar.Nitrogen uptake in wheat as influenced by the presence ofnickel[J].Arid Soil Research and Rehabilitation.1994.8(1):51-58.
    Dat J F,Lopez-Delgado H, Foyer C H, et al. Parallel changes in H2O2and catalase duringthermotolerance induced by salicylic acid or heat acclimation in mustard seedlings[J]. PlantPhysiology,1998.116(4):1351-1357.
    Rapha l Delépée, Hervé Pouliquen, Hervé Le Bris..Bryophyte Fontinalis antipyretica Hedw.bioaccumulates oxytetracycline, flumequine and oxolinic acid in the freshwaterenvironment[J]. Science of the Total Environment2004,322(1-3):243-253.
    Di Guilio R T. Indices of oxidative stress as biomarkers for environmental contamination. AquaticToxicology and Risk Assessment[M]:1991.Fourteenth Volume:15-31.
    Eero K, Harri L. Atmospheric heavy metal deposition in Finland from1985to1990[J]. AppliedGeochemistry,1996.11:155-161.
    Eero Kubin, Harri Lippo. Atmospheric heavy metal deposition in Finland from1985to1990[J].Applied Geochemistry,1996,11:155~161.
    Fernández JA, Ederra A&Núez E, et al. Biomonitoring of metal deposition in northern Spain bymoss analysis[J]. Science of the Total Environment.2000,300(1):115-128.
    Fernández JA, Ederra A, Núez E, et al. Biomonitoring of metal deposition in northern Spain bymoss analysis[J]. Science of the Total Environment,2002,300(1):115-127.
    Figueira R, Ribeiro T. Transplants of aquatic mosses as biomonitors of metals released by a mineeffluent[J]. Environmental Pollution,2005.136(2):293-301.
    Figueira R, Sérgio C, Sousa AJ. Distribution of trace metals in moss biomonitors and assessmentof contamination sources in Portugal[J]. Environmental Pollution,2002.118:153-163.
    Folkeson L. Interspecies calibration of heavy metal concentrations in nine mosses and lichens:applicability to deposition measurement[J]. Water, Air,and Soil Pollution,1979.11:253-260.
    Frank W;Ratnadewi D;Reski R. Physcomitrella patens is highly tolerant against drought, salt andosmotic stress. Planta,2005.220(3):384-394.
    Gallego SM, Benavidesm P, Tomarom L. Effect of heavymetal ion excess on sunflower leaves.Evidence for in volvement ofoxidative stress. Plant Science.1996.121:151-159.
    Galsomi’es L, Letrouit M A, Deseham P C, et al. Atmospheric Metal deposition in France: Initialresults on moss calibration from the1996biomonitoring[J].Science of the Total Environment,1999,232:39-47.
    Galsomiès L, Letrouit MA, Deschamps C, et al. Atmospheric metal deposition in France initialresults on moss calibration from the1996biomonitoring[J]. Science of the Total Environment,1999.232:39-47.
    Gerdol R, Bragazza L, Marchesini R, et al. Monitoring of heavy metal deposition in Northern Italyby moss analysis[J]. Environmental Pollution,2000.108:201-208.
    Gjengedal E, Steinnes E. Uptake of metal ions in moss from artificial precipitation[J].Environmental Monitoring and Assessment,1990,14:77~87.
    GUNTIS BRūMELIS, DENNIS H. BROWN, OL ERTS NIKODEMUS, DIDZIS TJARVE. Themontoring and risk assessment of Zn deposition around a metal smelter in lavia [J].Environmental Monitoring and Assessment,1999.58:201–212.
    Gussarsson M,Jensen P.Efects of copper and cadmium on uptake and leakage of K+inbirch(Betula pendula)roots[J].Tree Physiology,1992,11(3):305~313.
    HOHE A, RESKI R. From axenic spore germination to molecular farming: one century ofbryophyte in vitro culture[J]. Plant Cell Report,2005,23:513-521.
    HOHE A,DECKER E L,GORR G,et al. Tigh control of growth and cell differentiation in photoautotrophically growing moss bioreactor cultures [J]. Plant Cell Report.2002,20:1135-1140.
    Iida A. X-ray spectrometric applications of a synchrotron x-ray microbeam [J]. X-raySpectrometry,1997.26:359-363.
    Itouga M, Kato Y, Yamaguchi I.,Ono Y. and Sakakibara H. Phytoremediation using bryophytes,1.: characterization of copper accumulation and remediation of lead from fry ash usingScopelophila cataractae (Mitt.) Broth[J]. Hlkobla.2005,14(3):263-271.
    Kalyanaraman S B., Sivagurunathan P. Effect of zinc on some important macro-andmicroelements in blackgram leaves[J].Communications in Soil Science and PlantAnalysis,1994.25(13-14):2247~2259.
    Kapur A, Chopra R N. Effects of some metal ions on pronominal growth and bud formation in themoss Timmiella anomala grown in aseptic cultures[J]. J. Hattori. Bot. Lab.,1989.66:283-298.
    Koricheva J, Roy S, Vranjic J A, Haukioja E, Hughes P R, H nninen O. Antioxidant responsesto simulated acid rain and heavy metal deposition in birch seedlings[J]. EnvironmentalPollution,1997,95:249~258.
    Kukkola E, Rautio P, Huttunen S. Stress indications in copper-and nickel-exposed Scots pineseedlings[J]. Environmental and Experimental Botany.2000,43:197-210.
    Kupper H, Kupper F, Spiller M. In situ detection of heavy metal substituted chlorophylls in waterplants[J]. Photosynthesis Research,1998,58(2):123~133.
    LAL M. In vitro production of apogaous sporogonia in Physcomitrium coogense Broth[J].Phytomorph,1961,11:263-269.
    LAL M. The culture of bryophytes in cluding apogamy, apospory, parthenogenesis andprotoplasts[G]. DYER A F, DUCKETT J G. The Experimental Biology of Bryophytes.London: Academic Press,1984.
    LeBlanc FSC, De Sloover J. Relation between industrialization the distribution and growth ofepiphytic lichens and mosses in Montreal[J]. Canadian journal of botany,1970,48:1485~1496.
    Li DK,W u PCH.Physcomitrella(MUSCI) new to China[J]. Acta Phytotaxonmic Sinica, l995,33(1):l03-l04.
    Maevskaya S. M., Kardash A. R., Demkiv O. T.. Absorption of Cadmium and Lead Ions byGametophyte of the Moss Plagiomnium undulatum [J]. Russian Journal of Plant Physiology,2001,48(6):820–824.
    M kinen A,Lodenius M. Urban levels of cadium and mercury in helsinki determined frommoss-bag and feather mosses[J]. Ymp rist ja Terveys,1984.5:306-317.
    M kinen A. Biomonitoring of Atmospheric Deposition in the Kola Peninsula (Russia) and FinlandLapland, Based on the Chemical Analysis of Mosses[M]. Yliopistopaino,1994. Helsinki:Ministry of Environment:1-83.
    M kinen A. Sphagnum moss-bags in air pollution monitoring in the city of Helsink i[J]. SymposiaBiology Hungarica,1987.35:755-776.
    M kinen A. Use of Hylocomium Splendens for regional and local heavy metal monitoring arounda coal-fired power plant in southern Finland[J]. Symposia Biology Hungarica,1987.35:777-794.
    Manning WJ, Feder WA. Biomonitoring Air Pollutants with Plants[M]. London: Applied SciencePublishers,1980.
    Markert B, Weckert V. Fluctuations of element concentrations during the growing season ofPolytrichum formosum Hedw[J]. Water, Air, and Soil Pollution,1989.43:177-189.
    Martin M. H. Biological Monitoring of Heavy Metal Pollution: Land and Air[M]. Applied SciencePub. London,1982.
    Maurizio A, Ornella A, Raffaele C. The use of mosses as environmental metal pollution indicators[J]. Chemosphere,2003.50:333-342.
    Meenks JLD, Tuba Z, Csintalan Z. Eco-physiological responses of Tortula ruralis upontransplantation around a power plant in west Hungary[J]. J. Hattori. Bot. Lab.,1991.69:21-35.
    Minami A, Nagao M, Ikegami K, Koshiba T, Arakawa K, Fujikawa S, Takezawa D. Coldacclimation in bryophytes: low-temperature-induced freezing tolerance in Physcomitrellapatens is associated with increases in expression levels of stress-related genes but not withincrease in level of endogenous abscisic acid[J].Planta,2005,220(3):414-423.
    OHTA Y, HIROSE Y. Induction and characteristics of cultured cells from some liverworts ofJungermanniales[J]. J Hattori Bot Lab.1982,53:239-244.
    OHTA Y, KATOH K, MIYAKE K. Establishment and growth characteristic of a cell suspensionculture of Marchantia polymorpha L. with high chlorophy content[J]. Planta,1977,36:229-232.
    kland T, kland RH, Steinnes E. Element concentrations in the boreal forest moss Hylocomiumsplendens variation related to gradients in vegetation and local environmental factors[J].Plant and Soil,1999.209:71-83.
    Olajire AA. A survey of heavy metal deposition in Nigeria using the moss monitoring method[J].Environment International,1998.24(8):951-958.
    tovos, E, Pazmandi T, Thba Z. First national survey of atmospheric metal deposition in Hungaryby the analysis of mosses[J]. Science of the Total Environment.2003,309:151-160.
    Ouzotmidou G,Moustakas M,Eleflheriou E P.Physiological and ultrastmctural effects ofcadmium on wheat(Triticum aestivum L.)leaves[J]. Archives of EnvironmentalContamination and Toxicology,1997,32(2):154~160.
    Poikolainen J, Kubin E, Piispanen J, et al. Atmospheric heavy metal deposition in Finlandduring1985-2000using mosses as bioindicators[J]. Science of the Total Environment,2004,318:171~185.
    Poovaiah BW, Reddy AS. Calcium messenger system in plants. Critical Reviews in PlantSciences,1987.6(1):47-103.
    Pott U, Turpin DH. Changes in atmospheric trace element deposition in the Fraser Valley, B C.,Canada from1960to1993measured by moss monitoring with Isothecium stoloniferum[J].Canadian Journal of Biochemistry,1996,74:1345-1353.
    Ravel B, Newville M.. ATHENA, ARTEMIS, HEPHAESTUA:data analysis for X-ray absorptionspectroscopy using IFEFFIT [J]. Joural of Synchrotron Radiation,2005.12(4):537-541.
    Richard JB, Robert HS. Cadmium is an inducer of oxidative stress in yeast[J]. MutationResearch/Fundamenttal and Molecular Mechanisms of Mutagenesis.1996.356(2):171-178.
    Richardson DHS. The Biology of Mosses[M].Oxford: Blackwell Scientific Pulications,1981.
    Rieley JO, Richards PW, Bebbington ADL. The ecological role of bryophytes in a north Waleswoodland[J]. Journal of Ecology,1979.67(2):497-527.
    Rühling, Rasrnussen L, Pilegaard K, et al. Survey of atmospheric heavy metal deposition in theNordic countries in1985[J]. Copenhagen Nord.,1987.21:1-44.
    Rühling, Tyler G. An ecological approach to lead the problem [J]. Botaniska Notiser,1968.121:321-342.
    Rühling, Tyler G. Changes in the atmospheric deposition of minor and rare elements between1975and2000in south Sweden, as measured by moss analysis[J]. Environmental Pollution,2004,131:417~423.
    Rühling, Tyler G. Ecology of heavy metals-a regional and historical study[J]. BotaniskaNotiser,1969,122:248-259.
    Rühling. A European survey of atmospheric heavy metal deposition in2000-2001[J].Environmental Pollution,2001,120:23-25.
    Sabovljevic M,Bijelovic A,Dragicevic I.In vitro culture of mosses:Aloina aloides (K.F. Schultz)Kindb., Brachythecium velutinum (Hedw.)B.S.&G.,Ceratodonpurpureus(Hedw.)Brid.,Eurhynchium proelongum(Hedw.)B.S.&G.and Grimmiapulvinata(Hedw.)Sm.[J].Turkish Journal of Botany,2003,27:441-446.
    Salemaa M, Derome J, Helmisaari H, et al. Element accumulation in boreal bryophytes, lichensand vascular plants exposed to heavy metal and sulfur deposition in Finland[J]. Science ofthe Total Environment,2004.324(1):141-161.
    Sarrano Y. The mosses of disturbed areas in the municipality of Bayamo, Puerto Rico[J]. TheBryologist.1996,99(1):81-84.
    Saxena A. Seasonal pattern of metal bioaccumulation and their toxicity on Sphagnumsquarrosum[J]. Journal of Environmental Biology.2006,27(1):71-75.
    Saxena ANUJ, Saxena D.K.,Srivastava H.S..The influence of glutathione on physiological effectsof lead and its accumulation in moss sphagnum squarrosum[J].Water, Air, and Soil Pollution.2003.143:351–361.
    Schaefer DG, Zryd JP. The moss Physcomitrella patens, now and then[J]. Plant Physiology,2001.127(4):1430-1438.
    Schaefer DG,Zryd JP.Efficient gene targeting in the moss Physcomitrella patens[J].Journal ofPlant,l997,11:l195-1206.
    Schilling JS, Lebman ME. Bioindication of atmospheric heavy metal deposition in theSouthern-eastern US using the moss Thuidium delicatulum[J]. Atmospheric Environment.2002,36:1611-1618.
    Schroeder, Winfried, Pesch Roland. Time series of metals in mosses and their correlation withselected sampling site-specific and ecoregional characteristics in Germany[J]. EnvironmentalScience and Pollution Research International,1997,12(3):159-167.
    Sch tzend bel A, Nikolova P, Rudolf C, Polle A. Cadmium and H2O2-induced oxidative stress inpopulus×canescens roots[J]. Plant Physiological Biochemistry,2002,40:577-584.
    Shaw JE, jules S, Beer SC. Effects of metals on growth morphology and reproduction ofCetatodon purpureus[J]. Bryologist,1991.94(3):270-279.
    Sheomn IS. Effrect of cadmium and nicked on photosynthesis and the enzymes of thephotosynthetic carbon reduction cycle in pigeonpea[J]. Photosynthesis Research1990,23:345-351.
    Shotblt L, Büker P, Ashmore MR. Reconstructing temporal trends in heavy metal deposition:Assessing the value of herbarium moss samples[J]. Environmental Pollution.2007,147:120-130.
    Sresty TVS, Madhava Rao KV. Ultrastructural alterations in response to zinc and nickel stress inthe root cells of pigeonpea. Environmental and Experimental Botany,1999,41(1):3-13.
    Steinnes E, berg G, Hjelmseth H. Atmospheric deposition of lead in Norway: spatial andtempotal variation in isotopic composition[J]. Science of the Total Environment.2005,336:105-117.
    Steinnes E. A critical evaluation of the use of naturally growing moss to monitor the deposition ofatmospheric metals[J]. Science of the Total Environment.,1995,160:243-249.
    Stobart A K., Griffiths W T., Ameen-Bukhari I., Sherwood R P. The effect of Cd on thebiosynthesis of chlorophyll inleaves of barley[J]. Physiologia Plantarum,1985,63(3):293-298.
    Stoeva N, Berova M, Zlatev Z. Physiological response of maize to arsenic contamination[J].Biologia Plantarum,2003,47(3):449-452.
    Sugiyama M. Role of cellular antioxidants in metal-induced damage[J]. Cell Biololgy Toxicology,1994,10(1):1-22.
    Szczepaniak K, Biziuk M. Aspects of the biomonitoring studies using mosses and lichens asindicators of metal pollution [J]. Environmental Research,2003,93:221-230.Tabors G, Brumelis G, Lapina L, et al. Changes in element concentrations in moss segments after
    cross-transplanting between a polluted and non-polluted site[J]. Journal of AtmosphericChemistry,2004,49:191-197.
    Tarhanen S. Ultrastructural responses of the LichenBryoria fuscescens to simulated acid rain andheavy metal deposition[J]. Annals Botany,1998,82:735-746.
    Teisseire H, Guy V. Copper-induced changes in antioxidant enzymes activities in fronds ofduckweed(Lemna minor)[J]. Plant Science.2000.153:65-72.
    Tuteja N, Singh MB, Misra MK, Bhalla PL, Tuteja R. Molecular mechanisms of DNA damageand repair: Progress in plants[J]. Critical Reviews in Biochemmistry and Molecular Biology,2001,36(4):337-397.
    Tyler G. Bryophytes and heavy metals: a literature review[J]. Botanical Journal of the LinneanSociety,1990,104(1-3):231-253.
    Van Assche F., Clijsters H. Effects of metal on enzyme activity in plants[J]. Plant, Cell andEnvironment,1990,13(3):195-206.
    Vazquez M D, Lopez J, Carballeira A. Uptake of Heavy Metals to the Extracellular andIntracellular Compartments in Three Species of Aquatic Bryophyte[J]. Ecotoxicology andEnvironmental Safety,1999,44:12-24.
    Ward M. Callus tissues from the mosses Polytrichum and Atrichum[J]. Science,1960,132(3437):1401-1402.
    Wolterbeek B. Biomonitoring of trace element air pollution: princ iples, possibilities andperspectives [J]. Environmental Pollution.2002.120:11-21.
    Xie Z Q,Sun L G,Long N Y,et al. Analysis of the distribution of chemical elements in Adeliepenguin bone using synchrotron radiation X-ray fluorescence[J].Polar Biology,2003,26(3):l7l-l77.
    Zechmeister H, Riss A, Hanusillnar A. Biomonitoring of atmospheric heavy metal deposition bymosses in the vicinity of industrial sites[J]. Journal of Atmospheric Chemistry.2004,49:461-477.
    Zechmeister H.G., Hohenwallner D., Riss A., Hanus-Illnar A.. Variations in heavy metalconcentrations in the moss species Abietinella abietina (Hedw.) Fleisch. according tosampling time, within site variability and increase in biomass[J]. Science of the TotalEnvironment.,2003.301(1):55-66.
    安丽,曹同,俞鹰浩.不同苔藓植物对重金属富集能力的比较[J].上海师范大学学报.2006,35(6):64-70.
    曹清晨,娄玉霞,张元勋,等.同步辐射XRF和XANES研究重金属污染环境中小羽藓体内硫元素的生物指示作用[J].环境科学,2009,30(12):3663-3668.
    曹清晨,张元勋,娄玉霞,等. SRXRF研究苔藓植物对Pb/Fe/Cr污染的生物监视和累积特征[J].核技术,2008,31(10):721-725.
    曹清晨,娄玉霞,张元勋,包良满,曹同,赵屹东,陈栋梁,张桂林,李燕.同步辐射XRF和XANES研究重金属污染环境中小羽藓体内硫元素的生物指示作用[J].环境科学,2009,30(12):3663-3668.
    曹清晨,张元勋,娄玉霞,等. SPXRF研究苔藓植物对Pb/Fe/Cr污染的生物监视和累积特征[J].核技术,2008,31(10):1-5.
    曹同,路勇,吴玉环,等.苔藓植物对鞍山市环境污染生物指示的研究[J].应用生态学报.1998,9(6):635-639.
    曹同,陈静文,娄玉霞.苔藓植物组织培养繁殖技术及其应用前景[J].上海师范大学学报(自然科学版),2005,34(4):52-56.
    曾元元,娄玉霞,曹同.匍枝青藓(Brachythecium procumbens)对铅胁迫的生理响应[J].上海师范大学学报(自然科学版),2010,5:544-550.
    陈国祥,施国新,何兵,解凯彬,陆长梅,常福辰,魏锦城. Hg,Cd对莼菜越冬芽光合膜光化学活性及多肽组分的影响[J],环境科学学报,1999,19(5):521-525.
    陈立松,刘星辉.果树重金属毒害及抗性机理[J].福建农业大学学报.2001,30(4):462-469.
    陈荣光,李明,金波等.利用蚕豆根尖的微核技术监测青山湖污染的研究[J].中国环境科学,1985.5(4):2-7.
    陈蓉蓉,刘宁,杨松,等浓度对黔灵山喀斯特生境中苔藓植物生长的影响[J].贵州师范大学学报自然科学版,1998,16(1):4-7.
    程英,裴宗平,邓霞,梁凤焦.生物监测在水环境中的应用及存在问题探讨[J].环境科学与管理,2008,33(2):112-114.
    丛艳国,魏立华.土壤环境重金属污染物来源的现状分析[J].现代化农业,2002,1:18-20.
    崔明昆.附生苔藓植物对城市大气环境的生态监测[J].云南师范大学学报,2001,21(3):54-57.
    代林全.重金属对植物毒害机理的研究进展[J].亚热带农业研究.2006,2(2):49-53.
    董文,李卫,郭光沁,郑国錩.苔藓植物小立碗藓功能基因组学研究新的模式系统[J].遗传,2004,4:560-566.
    杜庆民等.用苔袋监测大气颗粒物及其它污染物方法研究[J].生态学杂志.1989,8(1):56-60.
    方炎明,魏勇,张晓平等.苔藓生物监测大气重金属污染研究进展[J].南京林业大学学报,2000,24(5):64-68.
    房英春,刘广纯,田春,等.浅析河流水体污染的生物监测及指标生物[J].水土保持研究,2005,12(2):151-153.
    付庆灵,吕意,黎佳佳,胡红青.生菜对灰潮土重金属Cd Pb污染的反应与矿质元素吸收[J].农业环境科学学报,2006,25(5):1153-1156.
    高彩华,毕培曦.香港与上海之间大气质量比较[J].上海环境科学.1990,9:30-31.
    高谦,曹同.苔藓植物对西南部份地区大气污染(包括酸雨)的指示意义的初步研究[J].应用生态学报.1992,3(1):81-90.
    高永超,薛红,沙伟,等.大量元素对牛角藓愈伤组织悬浮细胞的生理效应[J].植物生理学通讯,2003,39(6):595-598.
    高永超,薛红,沙伟.蔗糖对牛角藓愈伤组织悬浮细胞的生理学影响[J].广西植物,2003,23(5):464-469,
    高永超,沙伟,张晗.不同植物生长物质对牛角藓愈伤组织诱导的影响[J].植物生理学通讯,2003,39(1):29-32.
    谷巍,施国新,韩承辉,杜开和,曲筱丽.汞、镉污染对轮叶狐尾藻的毒害[J].中国环境科学.2001,21(4):371-375.
    顾艳红. Cu,Cr污染胁迫对多蒴灰藓的毒性效应研究[D].浙江师范大学,2008.
    郝怀庆,施国新,杜开和. Hg2+对水鳖(Hydrocharis dubia)叶片生理生化及超微结构的毒害效应[J].湖泊科学.2001,13(2):163-168.
    何龙飞,刘友良,沈振国,等.铝对小麦幼苗营养元素吸收和分布的影响[J].电子显微学报,2000,19(5):685-694.
    胡人亮,苔藓植物学[M].北京:高等教育出版社,1987.
    胡人亮,王幼芳.中国苔藓志-灰藓目[M].2005,7:129-130.
    黄朝表,郭水良,李海斌.浙江金华市郊苔藓植物体内重金属离子含量测定与分析[J].上海交通大学学报(农业科学版).2004,22(3):231-236.
    黄玉平,张庆国,吴朝.生物监测及其在水环境污染防治中的应用进展[J].安徽农学通报,2009,15(8):38-40.
    黄玉山,罗广华.镉诱导植物的自由基过氧化损伤[J].植物学报.1997,39(6):522-526.
    江行玉,赵可夫.植物重金属伤害及其抗性机理[J].应用与环境生物学报.2001,7(1):92-99.
    金岚.环境生态学[M].北京:高等教育出版社,1992,1-264.
    巨新,沈显生,康士秀,等.南极乔治王岛上一些植物的同步辐射X射线荧光分析[J].高能物理与核物理,2001.25(增刊):44-48.
    赖明洲.第16章,苔藓植物对大气污染的指示.吴鹏程主编,苔藓植物生物学[M],北京:科
    学出版社,1998,318-328.
    李登科,高彩华.苔藓植物与上海市的大气污染[J].植物学杂志.1981,4:6-10.
    李君,周守标,黄文江,王广林.马蹄金叶片中铜、铅含量及其对生理指标的影响[J].应用生态学报,2004,15(12):2355-2358.
    李荣春.Cd、Pb及其复合污染对烤烟叶片生理生化及其亚显微结构的影响[J].植物生态学报.2000,4(2):238-242.
    李文安.地钱在离体条件下的无性繁殖及脱分化与再分化的研究[J].植物学报,1990,32(11):852-857.
    李小梅,赵俊林,孙立广.南极地区苔藓植物的地球化学元素营养富集特征[J].应用生态学报,2001,12(4):514-516.
    李亚敏,肖红利.2种藓类植物对Cd-Cu复合胁迫的生理响应[J].江苏农业科学,2011,4:441-443.
    厉以强.生物监测的意义、现状及展望[J].环境导报,1996,(2):26-27.
    梁芳,郭晋平.植物重金属毒害作用机理研究进展[J].山西农业科学.2007,35(11):59-61.
    刘保东,丛迎芝.波叶仙鹤辞的袍子培养及发育生物学研究[J].植物研究,2003,23(2):159-164.
    刘登义,王友保.Cu、As对作物种子萌发和幼苗生长影响的研究[J],应用生态学报,2002.13(2):179-182.
    刘家尧,孙淑斌.苔藓植物对大气污染的指示监测作用[J].曲阜师范大学学报.1997,1:92-96.
    刘艳,曹同,陈静文.有前景的模式植物小立碗藓的研究新进展[J].广西植物,2007,1:90-95.
    刘应迪,朱杰英,陈军,等.3种藓类植物水分含量与光合作用、呼吸作用和水势的关系[J],武汉植物学研究,2001,19(2):135-142.
    章志兰,樊丽云,林齐维.利用苔衣及英梧对大气二氧化硫和酸雨的评价与研究[J].中国环境监测,1986,3:1-5.
    娄玉霞,张元勋,俞鹰浩,等.基于同步辐射光源的X射线荧光分析技术研究匐枝青藓对铅污染的生物响应[J],环境科学学报,2011.31(1):193-198.
    娄玉霞,于晶,曾元元,曹同.匐枝青藓对重金属铅污染的光合特性响应[J].贵州师范大学学报(自然科学版),2010,28(4):12-16.
    马德.JB,科兹洛夫斯基.TT编,刘富林译.植物对空气污染的反应[M].北京:科学出版社,1984,1-334.
    马建军,张淑霞,吴贺平.镍污染对小麦幼苗矿质营养元素吸收与累积的影响研究[J].中国生态农业学报,2004,12(3):89-91.
    梅娟,张银龙,方炎明.苔袋法监测大气重金属和SO2污染[J].苏州科技学院学报(工程技术版),2003,16(2):18-23.
    闵运江.六安市区常见树附生苔藓植物及其对大气污染的指示作用研究[J].城市环境与需市生态.1997,4:31-33.
    潘一廷,施定基,杨明丽,等.小立碗藓愈伤组织诱导和培养[J].植物生理学通讯,2005,41(3):293-296.
    瞿丽雅,林齐维.苔藓植物含硫量与大气SO2间对应关系的应用研究[J].贵州师范大学学报.1994,1:45-48.
    邵晶,张朝晖,柴之芳,等.苔藓对大气沉降重金属元素富集作用的研究[J].核化学与放射化学.2002,24(1):6-10.
    沈显生,孙立广,尹雪斌,等.菲尔德斯半岛3种金发藓植株的同步辐射x射线荧光分析[J].极地研究,2002,l4(2):l05-ll2.
    沈显生,孙立广,张莉,等.南极菲尔德斯半岛六种藻类和地衣植物的x荧光分析[J].极地研究,2001,l3(3):l87-l94.
    孙守琴,何明,曹同,等.Pb、Ni胁迫对大羽藓抗氧化酶系统的影响[J].应用生态学报.2009,20(4):937-942.
    孙守琴,王定勇.苔藓植物对大气污染指示作用的研究进展[J].四川环境,2004,23(5):31-35.
    檀建新,尹君,王文忠,贾荣革,史吉平.镉对小麦、玉米幼苗生长和生理生化反应的影响[J].河北农业大学学报(增刊).1994,17:83-87.
    唐咏,王萍萍,张宁.植物重金属毒害作用机理研究现状[J].沈阳农业大学学报.2006,37(4):551-555.
    唐咏.铅污染对辣椒幼苗生长及SOD和POD活性的影响[J].沈阳农业大学学报.2001,32(1):26-28.
    王蒂.植物组织培养[M].北京:中国农业出版社,2004.
    王国祥.生物监测若干问题的探讨[J].环境监测管理与技术,1994,6(3):7-10.
    王宏镔,王焕校,文传浩.镉处理下不同小麦品种几种解毒机制探讨[J].环境科学学报,2002,22(4):523-528.
    王焕校.污染生态学[M].北京:高等教育出版社.1999.
    王济,王世杰.土壤中重金属环境污染元素的来源及作物效应[J].贵州师范大学学报(自然科学版),2005.23(2):113-120.
    王敏.用藓袋法监测上海市的重金属和空气中的SO2含量[D].上海师范大学,2008.
    王维岗,亚库甫江·吐尔逊.环境的重金属污染物来源和毒理作用[J].新疆农业科技,2004.2:39-40.
    王永兴,陈开宁.应用蚕豆根类细胞微核技术监测太湖水质的研究[J].中国环境科学,1997.17(3):252-255.
    王泽港,骆剑峰.单一重金属污染对水稻叶片光合作用特性的影响[J].上海环境科学.2004,23(6):240-243.
    王正秋.铅、镉和锌污染对芦苇幼苗氧化胁迫和抗氧化能力的影响[J].过程工程学报.2002,2(6):558-562.
    魏海英,方炎明,尹增芳,等.大羽藓(Thuidium cymbifolium)对Pb、Cd污染的指示与累积作用研究[J].植物研究,2004.24(1):41-44.
    魏海英,方炎明,尹增芳. Pb、Cd单一及复合污染对弯叶大灰藓某些生理特性的影响[J].广西植物.2003,23(1):69-72.
    魏海英,方炎明,尹增芳.铅和镉污染对大羽藓生理特性的影响[J].应用生态学报.2005,16(5):982-984.
    魏海英,尹增芳,方炎明,等. Pb、Cd污染胁迫对大羽藓超微结构的影响[J].西北植物学报.2003,23(12):2066-2071.
    魏海英,方炎明,尹增芳.铅和镉污染对大羽藓生理特性的影响[J].应用生态学报.2005,16(5):982-984.
    吴虹玥,包维楷,王安.苔藓植物的化学元素含量及其特点[J].生态学杂志,2005,24(1):58-64.
    吴虹玥,包维楷,王安,等.微波消解、ICP-AES法测定苔藓植物中化学元素[J].中国环境科学,2004,24(5):565-567.
    吴鹏程,罗健馨.苔藓植物,大气污染的指示计[J].植物杂志.1981,4:27.
    吴鹏程.苔藓植物生物学[M].北京:科学出版社,1998:318-322.
    吴鹏程.中国苔藓志-油藓目灰藓目[M].2002,6:218-219.
    吴玉环,高谦,程国栋,等.苔藓植物对全球变化的响应及其生物指示意义[J].应用生态学报,2002.13(7):895-900.
    项汀,陈舒泛,吴继农.利用地衣和苔藓对南京黑墨营地区大气质量的初步评价和研究[J].南京师大学报(自然科学版),1989,12(2):69-72.
    谢素,寇士伟,吴鹏辉,等. Cd-Cu-Pb复合污染对芥菜吸收Cd、Cu和Pb及矿质元素的影响[J].环境科学研究,2012,25(4):453-459.
    谢维,曹同,韩桂春等.苔鲜植物对抚顺地区大气污染的指示作用的研究[J].生态学杂志,1999,18(3): l-5.
    徐加宽,杨连新,王志强,徐俊,王洁琼,黄建晔,王余龙.土壤铜胁迫对水稻磷素吸收利用及产量的影响[J].江苏农业科学,2008,2:213-217.
    徐楠,施国新,曾晓敏,丁小余,徐勤松,陈源. Hg2+胁迫对浮萍体细胞DNA一级结构和抗氧化酶系的损伤[J].植物生态学报,2003,3:299-303.
    徐勤松,施国新. Cd、Cr(Ⅵ)单一及复合污染对菹草叶绿素含量和抗氧化酶系统的影响[J].广西植物.2001,2l(1):87-90.
    徐燕云,吴晓梅,沈秋仙,曹同,郭水良.铅胁迫对大灰藓几种生理指标的影响[J].武汉植物学研究.2010,28(25):606-611.
    许桂莲,王焕校,吴玉树,王光灿,朱光辉. Zn、Cd及其复合对小麦幼苗吸收Ca、Fe、Mn的影响[J].应用生态学报,2001,1-6:275-279.
    杨丹慧.重金属离子对高等植物光合膜结构与功能的影响[J].植物学通报.1991,8(3):26-29.
    杨顶田,施国新,丁小余,解凯彬,尤文鹏. Cr6+污染对菱叶中矿质元素含量的影响[J].武汉植物学研究,2000,4:309-313.
    杨红玉,王焕校.绿藻的Cd结合蛋白及其耐性机制初探[J].植物生理学报.1985,11(4):357-365.
    杨庆,金华斌.铝胁迫对花生吸收氮、磷、钙的影响[J].中国油料作物学报,2000,22(2):68-73.
    张朝晖, Stan O.利用国产TM-陶瓷纤维马弗炉进行样品预处理附生苔藓对大气中重金属元素的生物富集中子活化法研究[J].现代科学仪器,2000,2:58-59.
    张玉秀,柴团耀, Gerard Burkard.植物耐重金属机理研究进展[J].植物学报,1999,4l(5:453-457.
    张元勋,曹同, A Lida,等.同步辐射X荧光分析用于苔藓植物监视大气污染的初步研究[J].核技术.2007,30(9):730-734.
    张元勋,李晓林,包良满,等.基于同步辐射技术研究上海大气细颗粒物分布特征[J].核技术,2009.32(6):419-422.
    张仲鸣,苏都,莫日根,李正理.银杏小孢子中的微核形成及其在进化过程中的含义[J].植物学报,1997.39(2):97-101..
    张自坤,刘作新,张颖,舒乔生.铜胁迫对嫁接和自根黄瓜幼苗光合作用及营养元素吸收的影响[J].中国生态农土学报,2009,17(1):135-139.
    赵奂,赵晓刚,何奕昆,刘祥林.植物分子生物学研究极具前景的模式系统-小立碗藓[J].植物学通报,2004,2:129-138.
    郑喜珅,鲁安怀,高翔等.土壤中重金属污染现状与防治方法[J].土壤与环境,2002.11(1):79-84.
    周红卫,施国新,徐勤松. Cd2+污染水质对水花生根系抗氧化酶活性和超微结构的影响[J].植物生理学通讯.2003,39(3):211-214.
    周易勇,刘同仇,邓波儿.六价铬污染对红菜苔产量、品质养分吸收及叶片酶活性的影响[J].农业环境保护,1990,9(3):25-26.
    祝栋林,李时银,孙成.污染指示生物苔藓和蚂蚁中的重金属污染比较分析[J].农业环境科学学报,2003.22(2):154-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700