用户名: 密码: 验证码:
机械合金化—退火法制备铝钌金属间化合物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨架钌是一类高度活泼的加氢催化剂,它能够在较低温度和较低压力下,催化多种不饱和键的加氢反应,在医药、精细化学品等许多高经济附加值产品工业领域具有十分广阔的应用前景。但是由于金属钌价格昂贵、熔点高,制备骨架钌催化剂前驱体比较困难,需要使用特殊的技术制备铝钌合金,使得相应的制备过程复杂、成本高。
     为了开发低成本的骨架钌催化剂前驱体的制备方法,本文尝试用机械合金化-退火法制备了含Ru 50wt.%的铝钌合金。优化了机械合金化的工艺参数、研究了球磨时间和退火温度对铝钌合金的影响。实验结果如下:
     (1)为了节省节约贵金属Ru的用量,降低实验成本,首先利用机械合金化制备了Al-Ni合金,考察了几个重要的工艺参数。结果表明,在本实验条件下,最佳球料比为20:1,工艺控制剂乙醇的最佳添加量为2ml,在此参数下机械合金化不但节省了球磨时间,加快了合金化进程,而且大大提高了出粉率。
     (2)利用优化后的工艺参数制备出了含Ru50wt.%的铝钌合金,并研究了球磨时间对晶粒尺寸、微应变以及热稳定性的影响。结果表明,在机械合金化过程中,随着球磨时间的增加,晶粒尺寸不断减小,最终晶粒尺寸逐渐趋于稳定;微观应变随球磨时间的增加呈现先增大后减小的趋势,MA30h后微应变达到最大值4.584%;热稳定性实验表明,生成的Ru(Al)过饱和固溶体不稳定,在较低温度就可发生相转变。
     (3)机械合金化后所得粉末,在550和700℃退火,并且分析了退火温度和保温时间对最终产物组成的影响,结果表明,550℃退火,生成的金属间化合物主要为Al_2Ru和Al_5Ru_2,还有少量的Al_(13)Ru_4生成,保温时间对相转变没有太大影响;700℃退火,生成的金属间化合物主要为Al_2Ru和Al_(13)Ru_4,以及少量的Al_5Ru_2,延长保温时间使Al_5Ru_2发生相转变生成Al_2Ru和Al_(13)Ru_4;保温时间对晶粒长大的影响不明显。
     本文利用机械合金化方法成功制备了含Ru 50wt.%的铝钌合金,大大降低了制备铝钌合金的成本,有望成为制备骨架钌催化剂前驱体的一个有效方法。
The catalyst of skeletal Ru is a hydrogenation catalyst with high activity, which can catalyze the hydrogenation reaction on many unsaturated bands, and it has been considered to be with a very wild application prospect in many high economic add-ons such as the medication and fine chemistry, because of its high activity and selectivity. However, Ru is a noble metal and has a high melting temperature. It is very difficulty to prepare the metal alloy of Al-Ru by custom technique, and it also suffers a complicated process and high cost by special preparation method.
     In order to develop a low cost technique to produce the metal alloy of skeletal Ru, the mechanical alloying (MA) and following anneal have been used to try to prepare the Al-Ru alloy containing 50wt.% Ru. The optimizing MA parameter as well as the effect of milling time and anneal temperature on the alloy has been investigated. The results have been shown as follows:
     (1) When considering the cost of noble metal Ru, during the optimization of MA parameter, the Al-Ni alloy powder has been used to study the influences of the ratios of milling ball to the powder and the process controlling addition (PCA) on the MA course. The result shows that the best ratio of the milling ball to powder is 20:1, and the best volume of ethanol addition as the PCA is 2 ml. In these conditions, the milling time has been saved and the product efficiency has also been improved.
     (2) The Al-Ru alloy powder with 50wt.% Ru has been made after the optimized parameter, and the effects of milling time on the crystal size, microstrain and heat stability have been observed. The results have illustrated the crystal size firstly decreases with the increase of milling time and gradually tend to arrive at a minimal size. The microstrain increases to a maximal value with 4.584% after milling for 30h, and then decreases as the milling time. From the heat stability experiment, it can be seen that the Ru(Al) supersaturated solute formed by MA can transfer at low temperature.
     (3) The powder after MA has been annealed at 550℃and 700℃, the effect of temperature and time on the phase component has been investigated. The result suggests that the alloy anneal at 550℃are mainly composed of Al_2Ru, Al_5Ru_2 and a little of Al_(13)Ru_4. The heat preservation time has slight effect on the phase transformation. While when the powder was annealed at 700℃, the formed intermetallics in the alloy are primary Al_2Ru, Al_(13)Ru_4 and Al_5Ru_2. The Al_5Ru_2 intermetallic changes into Al_2Ru and Al_(13)Ru_4 as the prolonging of heating preservation. However, the holding time at this temperature has no obvious influence on the growth of crystal grains.
     In this paper, the Al-Ru alloy containing 50 wt.% Ru has been made by MA and following anneal. This technique has reduced the cost of Al-Ru preparation, and it is hoped to be a effective metal alloy preparation of the skeletal Ru catalyst.
引文
[1]吕连海,胡爽,袁忠义等.一种高活性加氢催化剂骨架钌的制备和应用方法.中国,200510200434.7.2005.
    [2]袁忠义.骨架钌基加氢催化剂的制备及应用:(硕士学位论文)大连:大连理工大学,2005.
    [3]Ertl K,Knozinger H,Weitkamp J.Preparation of Solid Catalysts.Weinheim:Wiley-VCH,1999.
    [4]Urabe K,Yoshioka T,Ozaki A.Ammonia synthesis activity of a Raney ruthenium catalyst.Journal of Catalysis.1978,54:52-56.
    [5]Ogata Y,Aika K,Onishi T.Isotopic equilibration reaction of dinitrigen over Raney ruthenium with and witheout potassium.Chemistry Letters.1984,5:825-828.
    [6]Ogata Y,Aika K,Onishi T.XPS studies of surface nitrogen dissociated from dinitrogen on Raney ruthenium.Chemistry Letters.1985,2:207-210.
    [7]Ogata Y,Aika K,Onishi T.Isotopic equilibration reaction of dinitrogen over Raney ruthenium:importance of the structural factor.Journal of Catalysis.1988,112:469-477.
    [8]Yano T,Ogata Y,Aika K,et al.Selective formation of methanol over water-treated Raney ruthenium.Chemistry Letters.1986,3:303-306.
    [9]Aika K,Ogata Y,Takeishi K,et al.Characterization of Raney Ru:effect of heat treatment.Journal of Catalysis.1988,(114):200-205.
    [10]Hikita T,Kadowaki Y,Aika K.Promoter action of alkali nitrate in raney ruthenium catalysts for activation of dinitrogen.Journal of Physical Chemistry.1991,95:9396-9402.
    [11]rakeishi K,Aika K.Comparison of carbon dioxide and carbon monoxide with respect to hydrogenation on Raney ruthenium catalysts.Applied Catalysis a-General.1995,133(1):31-45.
    [12]Takeishi K,Yamashita Y,Aika K.Comparison of carbon dioxide and carbon monoxide with respects to hydrogenation on Raney ruthenium catalysts under 1.1 and 2.1 MPa.Applied Catalysis a-General.1998,168(2):345-351.
    [13]Morikawa K,Hirayama S,Ishimura Y,et al.Process for hydrogenating an aromatic ring containing compound using a ruthenium Raney catalyst.EP,0724908 B1.1996.
    [14]Morikawa K,Hirayama S,Ishimura Y,et al.Preparation of hydrogenated compounds using noble metal Raney catalysts.EP,0934920 B1.1999.
    [15]Morikawa K,Hirayama S,Ishimura Y,et al.Noble metal raney catalysts and preparation of hydrogenated compounds therewith.US,6018048.2000.
    [16]Morikawa K,Hirayama S,Ishimura Y,et al.Metal Raney catalysts and preparation of hydrogenated compounds therewith.US,6245920 B1.2001.
    [17]Morikawa K,nirayama S,Ishimura Y,et al.Noble metal fancy catalysts and preparation of hydrogenated compounds therewith.US,6215030 B1.2001.
    [18]陈波华,吴晓曦.B2-RuAl金属间化合物国内外研究进展.长沙航空职业技术学院学报.2007,07(01):45-48.
    [19]Mucklich F,Ilic N.RuAl and its alloys.Part I.Structure,physical properties,microstructure and processing.Intermetallics.2005,13(1):5-21.
    [20]Cornish L A,Boniface T D.Investigation of the aluminium-ruthenium phase diagram above 25 at.%ruthenium.Journal of Alloys and Compounds.1996,234(2):275-279.
    [21]Wolff I.Synthesis of RuAl by reactive powder processing.Metallurgical and Materials Transactions A.1996,27(11):3688-3699.
    [22]Hellstern E,Fecht H J,Fu Z,et al.Structural and thermodynamic properties of heavily mechanically deformed Ru and AlRu.Journal of Applied Physics.1989,65(1):305-310.
    [23]许应凡,E.Ivanov,隅山兼治等.B2结构纳米晶Ru_(40)Al_(60)和Ru的制备.科学通报.1996,(16):1454-1456.
    [24]Liu K W,Mucklich F.High-temperature stability of nano-grained B2-structured RuAl-based intermetallics by mechanical alloying.Intermetallics.2005,13(3-4):373-376.
    [25]de Medeiros S N,Machado F L A,Zampiere R B,et al.Preparation of AlRu intermetallic compounds by mechanical alloying.Journal of Non-Crystalline Solids.2006,352(32-35):3718-3720.
    [26]罗振.机械合金化制备高熔点、低熔点金属固溶体和化合物的研究:(硕士学位论文)杭州:浙江大学,2007.
    [27]Suryanarayana C.Mechanical alloying and milling.Progress in Materials Science.2001,46(1-2):1-184.
    [28]刘晓,曹晶晶,云志等.金属间化合物及其制备方法——2.机械合金化、熔炼和熔铸、气相沉积技术.江苏工业学院学报.2003,15(03):5-8.
    [29]赵媛.Fe_(75)Si_(25)机械合金化过程及其产物稳定性的研究:(硕士学位论文)武汉:武汉理工大学,2005.
    [30]沈同德,全明秀,王景唐.机械合金化合成的新材料(一)——非晶、准晶及纳米晶亚稳态材料.材料科学与工程学报.1993,11(02):21-26.
    [31]沈同德,全明秀,王景唐.机械合金化合成的新材料(二)——弥散强化合金、磁性材料、超导合金、金属间化合物及机械化学效应.材料科学与工程学报.1993,11(03):17-22.
    [32]陈新亮,吴萍,姜恩永.新型的固态加工技术——机械合金化(MA).材料导报.2004,18(09):60-62.
    [33]陈振华,陈鼎.机械合金化与固液反应球磨.北京:化学工业出版社,2006.
    [34]何慧,张晓花,杨渭.金属间化合物的机械合金化制备.山东冶金.2004,26(05):45-47.
    [35]王景唐,沈同德.机械合金化研究与进展.物理.1993,22(08):456-460.
    [36]高丽丽,刘力.机械合金化的发展.化工科技.2007,15(01):68-70.
    [37]Mi S,Balanetskyy S,Grushko B.A study of the Al-rich part of the Al-Ru alloy system.Intermetallics.2003,11(7):643-649.
    [38]Liu K W,Mucklich F.Thermal stability of nano-RuAl produced by mechanical alloying.Acta Materialia.2001,49(3):395-403.
    [39]柏振海,黎文献,唐嵘等.机械合金化制备镍基固溶体细微粉末.粉末冶金材料科学与工程.2001,06(01):54-57.
    [40]陈君平,施雨湘,张凡等.高能球磨中的机械合金化机理.机械.2004,31(03):52-54.
    [41]胡春和,唐电.机械合金化非平衡产物.中国粉体技术.2001,7(06):40-44.
    [42]李凡,吴炳尧.机械合金化——新型的固态合金化方法.机械工程材料.1999,23(04):22-25.
    [43]林文松.机械合金化过程中的金属相变.粉末冶金技术.2001,04(03):274-277.
    [44]Krasnowski M,Antolak A,Kulik T.Nanocrystalline Ni3AI alloy produced by mechanical alloying of nickel aluminides and hot-pressing consolidation.Journal of Alloys and Compounds.2007,434-435:344-347.
    [45]柏振海,黎文献,唐嵘等.用机械合金化制备镍基固溶体细微粉末的工艺研究.矿冶工程.2001,21(02):69-71.
    [46]Enayati M H,Karimzadeh F,Anvari S Z.Synthesis of nanocrystalline NiAl by mechanical alloying.Journal of Materials Processing Technology.2008,200(1-3):312-315.
    [47]冯忠信,周敬恩,席生岐等.退火对机械合金化的Al、Mg、Si、Cu粉末物相和力学性能的影响.金属热处理.2001,(03):21-22.
    [48]李宁,耿刚强,张海宝等.机械合金化-退火法制备铁硅金属间化合物.热加工工艺.2005,(08):21-23.
    [49]吴建鹏,曹丽云,贺海燕等.机械合金化制备Ti-Al-Si金属间化合物.稀有金属材料与工程.2006,35(S2):206-208.
    [50]冉广,周敬恩,席生岐等.机械合金化制备纳米晶与非晶Al-Pb系粉末.稀有金属材料与工程.2005,34(10):1617-1621.
    [51]Portnoy V K,Blinov AM,Tomilin I A,et al.Formation of nickel aluminides by mechanical alloying and thermodynamics of interaction.Journal of Alloys and Compounds.2002,336(1-2):196-201.
    [52]肖鹏,赵玮兵,梁淑华等.机械合金化法制备不同Cr含量的W-Cr纳米合金粉末.中国有色金属学报.2007,17(11):1779-1784.
    [53]耿刚强,李宁,林杰等.机械合金化制备纳米晶铁合金.长安大学学报(自然科学版).2005,25(03):84-88.
    [54]Schwarz R B,Petrich R R,Saw C K.The synthesis of amorphous Ni---Ti alloy powders by mechanical alloying.Journal of Non-Crystalline Solids.1985,76(2-3):281-302.
    [55]Hellstern E,Schultz L.Glass formation in mechanically alloyed transition metaltitanium alloys.Materials Science and Engineering.1987,93:213-216.
    [56]Gaffet E,Louison C,Harmelin M,et al.Metastable phase transformations induced by ball-milling in the Cu---W system.Materials Science and Engineering A.1991,134:1380-1384.
    [57]Kaloshkin S D,Tcherdyntsev V V,Tomilin I A,et al.Phase transformations in Fe-Ni system at mechanical alloying and consequent annealing of elemental powder mixtures.Physica B:Condensed Matter.2001,299(3-4):236-241.
    [58]Kaloshkin S D,Tomilin I A.The crystallization kinetics of amorphous alloys.Thermochimica Acta.1996,280-281:303-317.
    [59]贾建刚,马勤,周琦等.3Fe/Al混合粉末的高能球磨及环境介质的相互作用.材料热处理学报.2007,28(06):11-13.
    [60]汤文明,郑治祥,吴玉程等.机械合金化过程中Fe_(75)Al_(25)二元系统的结构演变.材料热处理学报.2004,25(03):18-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700