用户名: 密码: 验证码:
固体氧化物燃料电池新型阳极材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的固体氧化物燃料电池(SOFC)采用镍氧化钇稳定的氧化锆Ni/YSZ作阳极材料,电池操作温度较高(约1000℃),给电池组装及材料选择带来了很多困难。并且这种阳极材料对燃料的选择较强,对含硫燃料的容忍性较差,还会在阳极上形成严重的碳沉积现象。钙钛矿型氧化物LaCrO_3基掺杂材料具有较高的电子—离子混合电导率、优良的催化性能及较好的对硫容忍性。因此,LaCrO_3基掺杂材料是潜在的适用于以碳氢化合物为燃料的SOFC阳极材料。作者用差热-热重(TG-DTA)、X射线衍射分析(XRD)、扫描电子显微镜(SEM)、能谱分析(EDS)、程序升温还原(TPR)、粒度分析、交流阻抗、直流四探针等技术对材料的合成过程及性能进行了系统的研究。
     采用固相法合成La_(1-x)Sr_xCr_(1-y)Mn_yO_(3-δ)(LSCM)阳极材料,在高于1250℃的温度下烧结15h后,均得到了具有单一钙钛矿结构的LSCM材料。在250-850℃范围内,LSCM材料在空气中的电导率符合小极化子绝热导电机理,在850℃时,最大的电导率为25S/cm。在H_2和CH_4气氛中,LSCM样品的电导率下降约两个数量级,其中,La_(0.7)Sr_(0.3)Cr_(.5)Mn_(0.5)O_(3-δ)(LSCM7355)样品在850℃时的电导率约为0.2S/cm。此外,还用甘氨酸-硝酸(GNP)法合成了LSCM材料,其前躯体在1200℃烧结5h后,得到了具有单一钙钛矿结构的LSCM材料。使用GNP法所得LSCM材料的导电性能与固相法所得材料相近,但GNP法合成材料温度较低,材料的催化性能较好。
     当在LaCrO_3基材料中掺入部分Co元素,材料的电导性能就会提高。设计并采用GNP法合成La_(1-x)Sr_xCr_(1-y-z)Mn_yCo_zO_(3-δ)(LSCMCo)阳极材料,其前驱体在高于1300℃烧结后,才能得到单一钙钛矿结构的材料。在H_2和CH_4气氛中,LSCMCo73541样品在850℃时的电导率分别为0.4S/cm和4.5S/cm。
     采用GNP法合成La_(0.7)Sr_(0.3)Cr_(0.5)Mn_(0.5)O_(3-δ)-Ce_(0.8)Ca_(0.2)O_(1.8)(LSCM-CDC)复合阳极材料。在1200℃下烧结5h后,分别得到了个钙钛矿-萤石复合结构的LSCM-CDC材料,在250-850℃范围内,LSCM-CDC样品配比为3:7时在空气下的电导率最高,在H_2气氛中850℃时的电导率约为1.0S/cm。
     阳极材料(LSCM,LSCMCo)与LSGM电解质具有较好的化学相容性,上述电极材料与LSGM电解质的热匹配效果较好。
Traditional Solid Oxide Fuel Cell (SOFC) use Ni-yttria stabilzed ziroonia (Ni/YSZ) as its anode material, which leads the operation temperature is high (about 1000℃), and it is difficult for the choice of the electrode material and the cell stack contain materials. This anode has strong dependence of fuel gas, bad tolerance for fuels containing sulfur, and there maybe serious carbon deposit on the anode. LaCrO_3-based materials have high ionic-electronic conductivity, good catalytic and tolerance to sulfur properties. So, the LaCrO_3-based materials are a promising anode in SOFC system which using hydrocarbon as fuel. The above materials was prepared and tested by thermodynamic analysis (TG), differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microcopy (SEM), energy dispersive spectroscopy (EDS), temperature process reduction (TPR), the characterization on the diameters of particles, AC impedance and direct current four-electrode techniques.
     The La_(1-x)Sr_xCr_(1-y)Mn-yO_(3-d)(LSCM) anode materials with single phase were identified after sintering above 1250℃for 15h using solid state reaction method. The electrical conductivities of all the LSCM samples increase linearly with temperature over the range of 250℃~850℃in air, and the maximum values is 25S/cm. The conductivities of LSCM7355 sample decrease about two orders of magnitude when the atmosphere changes from air to pure hydrogen and methane, and they are both about 0.2 S/cm in the above reducing atmospheres. The LSCM materials with single phase were obtained after sintering at 1200℃5h using Glycine-Nitrate (GNP) method, and the conductivity of the LSCM materials obtained by GNP method is similar to that of the LSCM materials prepared using solid state reaction method. But it need lower temperature to synthesize materials using GNP method, and the catalytic performance is preferably.
     For Co element can improve the electrical conductivity of anode materials, so mixed part of Co into LaCrO_3-based materials can increase. the conductivity of anode materials. The La_(1-x)Sr_xCr_(1-y-z)Mn_yCo_xO_(3-d) (LSCMCo) anode materials were designed and synthesized by GNP method, and the LSCMCo materials with single phase were obtained after sintering at least 1300℃for 5h. Comparing to LSCM materials, the conductivities of the LSCMCo samples did not improve in air, but the conductivities of LSCMCo73541 sample are 0.4S/cm and 4.5S/cm at 850℃in pure hydrogen and methane, respectively. So LSCMCo is more suitable used as anode material of SOFC.
     The La_(0.7)Sr_(0.3)Cr_(0.5)Mn_(0.5)O_(3-d)-Ce_(0.8)Ca_(0.2)O_(1.8)(LSCM-CDC) anode materials with pervskite-fluorite structure were obtained after sintering at 1200℃for 5h by GNP method. The optimum composition of the composite anode of LSCM and CDC was 7 to 3 at molar ratio. At 850℃, the electrical conductivity is 6.49S/cm in air and 1 S/cm in the reduction atmosphere, respectively.
     The chemical compatibilities between anode (LSCM, LSCMCo) materials and LSGM electrolyte are very good. The above electrode materials but LSCM-CDC have good thermal capabilities with LSGM electrolyte material.
引文
[1]毛宗强.燃料电池.北京:化学工业出版社,2005.
    
    [2]韩敏芳.彭苏萍,固体氧化物燃料电池材料及制备.北京:科学出版社,2004.
    
    [3]衣宝廉.燃料电池原理、技术与应用.北京:化学工业出版社,2003.
    
    [4]高培德.燃料电池的新进展.科技导报,2000,6:57-59,64.
    
    [5]李瑛,王林山.燃料电池.北京:冶金工业出版社,2002.
    
    [6]Minh N Q, Takahashi T. Science and technology of ceramic fuel cells. ElsevierScience B V, ISBN: 0-444-895668-X, U.S.A. 1995.
    
    [7]Gorte R J, Vohs J M. Novel SOFC anodes for the direct electrochemical oxidationof hydrocarbons[J]. Journal of catalysis, 2003, 216: 477-486.
    
    [8]Fuel Cell Handbook (sixth edition). EG&G Technical Services, Inc. ScienceApplications International Corporation, U.S.A, 2002.
    
    [9]迟克彬,李方伟,李影辉,等.固体氧化物燃料电池研究进展[J].天然气化工, 2002,27(4):37-44.
    
    [10]梁广川,陈玉如,吴厚政,等.燃料电池固体氧化物电解质研究进展[J].硅 酸盐通报,1999,5:39-45.
    
    [11]美国研制出新型固体氧化物燃料电池.现代材料动态,2006,8:25.
    
    [12]杨晓婵摘译.日本三菱材料等公司用新型电池开发3kW级模板.现代材料动 态,2004,8:6-7,10.
    
    [13]刘凤君.高效环保的燃料电池发电系统及其应用.北京:机械工业出版社, 2005.
    
    [14]我国硅酸盐固体氧化物燃料电池取得突破.电池商讯,2006,12:5.
    
    [15]朱新坚.中国燃料电池技术现状与展望[J].电池,2004,34(3):202-203.
    
    [16]黄振中,中国燃料电池技术.科技创业月刊[J],2002(12):57-58.
    
    [17]Shaowu Zhang, Philip Tsang , Zhe Cheng, Meilin Liu, Electrical properties and sulfur tolerance of La_(0.75)Sr_(0.25)Cr_(1-x)Mn_xO_3 under anodic conditions [J], Journal of Solid State Chemistry, 2005, 178: 1844-1850.
    
    [18]Liu Rong-hui, Ma Wen-hui, Wang Hua, et al.Synthesis of LaGaO_3-based electrolyte material and its compatibility with novel electrode materials[J],??Journal of rare earths,2005,23(suppl.),214-218.
    
    [19] 夏风,前晓良,刘世明等.Ni-ZrO_2金属陶瓷电极材料的研究[J].中国陶瓷, 2001,37(4):26-28.
    
    [20] 黄贤良,赵海雷,吴卫江,等.固体氧化物燃料电池阳极材料的研究进展[J]. 硅酸盐学报,2004,22(1):1407-1413.
    
    [21] Taniguchi S, Kadowaki M, Ykiyama Y, et al. Improvement of thermal cycle characteristics of a planar-type solid oxide fuel cell by using ceramic fiber as sealing material[J]. J Power Sources, 2000, 90(2):163-169.
    
    [22] Majumadar S, Clair T, Stress and fraction behaveior of monolithic fuel cell tapes [J]. J Am Ceram Soc, 1986,69(2):628-633.
    
    [23] 夏风,前晓良,刘世明,等.Ni-ZrO_2金属陶瓷电极材料的研究[J].中国陶瓷, 2001,37(4):26-28.
    
    [24] Larsen P H, Poulsen F W, Berg R W. Influence of SiO_2 addition to2MgO-Al_2O_3-3.3P_2O_5 Glass[J]. Jounal of Non-Crystalline solids, 1999,244(1):16-24.
    
    [25] Koide H, Someya Y, Maruyama T. Electrochemical Behaviour of Ni/YSZ CermetAnodes Prepared by Combustion Synthesis[J]. Solid State Ionics, 2000,132:253
    
    [26] Cunnimgham R H, Ormerod C M. Proceedings of the Fourth European SolidOxide Fuel Cell Forum[R]. Lucerne,Switzerland, 2000, 507.
    
    [27] Mcrray E P, Tsai T, Barneyy S A . A direct-methane fuel cello with a ceria-basedanode fuel cell[J]. Nature,1999, 400:649-951.
    
    [28] Ccen X J, Khor K A, Chsn S H, Suppression of carbon deposition atCeO_2-modified Ni/YSZ anodes in weakly humidified CH_4 at 850℃[J].Electrochemical and Solid-State Letters, 2005, 8(2):A79-A82.
    
    [29] Park S, Vohs J M, Gorte RJ.Direct oxidation of hydrocarbons in a solid-oxidefuel cell [J]. Nature , 2000, 404: 265-266.
    
    [30] Olga Costa-Nunes, Raymond J. Gorte, John M. Vohs, Comparison of theperformance of Cu-CeO_2-YSZ and Ni-YSZ composite SOFC anodes withH_2,CO,and syngas[J], Journal of Power Sourcesl41,2005:241-249.
    
    [31] Kim H , Park S, Vohs L M, Gorte R J. J. Elecyrochem. Soc.,2001, 148:A693.
    
    [32] Xia C R ,Liu M L, A simple and cost-effective approach to fabricateon of dense ceramic membraneces on porous substrates[J], Jam,Ceram,Soc, 2001,84(8): 1903-1904.
    
    [33] Olga C N, Raymond J G, John M V, Comparison of the performance ofCu-CeO_2-YSZ and Ni-YSZ composite SOFC anodes with H_2,CO, and syngas[J].Journal of Power Sources, 2005, 141:241-249.
    
    [34] Mogensen M, Lindegaard T, Hansen U R, et al. Physical propertyes of mixedconductor solid oxide fuel cell snodes doped CeO_2[J]. J Electrochem Soc, 1994,141:2122-2128.
    
    [35] Remyrez-Cabreree, Atklnsona, Chadwickd. The influence of point defects on theresistance of ceria to carbon deposition in hydrocarbon catalysis[J]. Solid StateIonics.2000,136-137:825-831.
    
    [36] Eguchi K, Setoguchi T, Lnoue T, et al. Electrical-properties of ceria-based oxidesand their application to solid oxide fuel-cells[J]. Solid State Ionics, 1992,52(1-3):165-167.
    
    [37] Xia C R, Liu M L. Low-temperature SOFCs based on Gd_(0.1)Ce_(0.9)O_(1.95)fabricated bydry pressing[J].Solid State Ionics, 2001,144(3-4):249-250.
    
    [38] Hibino T ,Hashimoto A,Yano M, et al. High performance anodes for SOFCsoperating in methane-air mixture at reduced temperature[J]. Electrochem Soc,2002, 146(2): A133-135.
    
    [39] Uchida H, Suzuki S , Watanabe M. Electrochem Solid S. T.2003,6:A174
    
    [40] 黄喜强,苏文辉等.一种增加SOFC阳极三相反应区的方法[J].高等学校化学 学报.2004,21(6):947-948.
    
    [41] 尹红艳,李少玉,朱威,等.钙掺杂的氧化铈用于中温SOFCs阳极材料研究 [J].中国稀土学报,2005,23(3):317-320.
    
    [42] Marina O A, Bagger C, Primdahl S, et al. A solid oxide fuel cell with a gadoliniadopedceria anode :preparation and performance[J]. Solid State Ionics. 1999,123: 199-208.
    
    [43] 孙明涛,孙俊,季世军.固体氧化物燃料电池阳极研究[J].硅酸盐通报.2005,1: 55-59.
    [44] Pudmich G. Boukamp B A, Gonzalez-Cuencm, et al. Chromite/titanate based pervskites for application as anodes in solid oxide fuel cells[J]. Solid State Ionics,2000,135: 433-438.
    [45] W Z, Zhu S C, Deevi. A review on the status of anode materials for solid oxide fuel cells[J]. Materials Science and Engineering, 2003, A362:228-239.
    [46] Zhang X G, Ohara S, Okswa H, et al.Interactions of a La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3-δ) electrolyte with Fe_2O_3,Co_2O_3 and NiO anode materials[J]. Solid State Ionics, 2001,139:145-152.
    [47] Natstko S, Teruhisa H, Katsuhiko Y, et al. Interface Stability among SOFC Materials with Perovskite Structures[J]. Journal of The Electrochemical Societ, 2006, 153(3): A621-A625 (2006).
    
    [48] Meng-Fang Hsu,Lin-Jung Wuet al.Solid Oxide Fuel Cell Fabricated Using All-Perovskite Materials[J]. Electrochemical and Solid-State Letters, 9(4)A 193-A195.
    [49] Slater P R, Irvine J T S. Synthesis and electrical characterization of the tetragonal tungsten bronze type phases, ( Ba/Sr/Ca/La ) _(0.6)M_xNb_(1-x)O_(3-δ)(M: Mg,Ni,Mn,Cr,Fe,In,Sn): evaluation as potential anode materials for solid oxide fuel cells[J].Solid State Ionics, 1999, 124: 61-72.
    [50] Takeda Y, Sakaki Y, Ichikawa T, et al. Stability of La_(1-x)A_xMnO_(3-z) (A=Ca, Sr) as cathode materials for solid oxide fuel cells. Solid State Ionics, 1994, 72(2): 257-264.
    
    [51] Brugnoni C, Ducati U, Scagliotti. M. SOFC cathode/electrolyte interface. Part I: Reactivity between La_(0.85)Sr_(0.15)MnO_3 and ZrO_2-Y_2O_3. Solid State Ionics, 1995, 76(3-4) 177-182.
    [52] Maffei N, Kuriakose A K. Performance of planar single cell lanthanum gallate based solid oxide fuel cells. Journal of Power Sources, 1998, 75: 162-166.
    [53] Xu Q, Huang D P, Chen W, et al. Structure, electrical conducting and thermal expansion properties of Ln_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3.5) (Ln=La, Pr, Nd, Sm) perovskite -type complex oxides[J]. Journal of alloys and compounds, 2006, 177: 1753-1754.
    [54] Tietz F, Raj I A, Zahid M, et al. Electrical conductivity and thermal expansion of
    ??La_(0.8)Sr_(0.2)(Mn, Fe,Co)O_(3-δ) perovskites[J]. Solid State Ionics, 2006, 177: 1753-1756.
    
    [55]Kammer K, Skou E M. LSFM perovskites as cathode for the electrochemical reduction of NO[J]. Solid State Ionics, 2005, 176: 915-920.
    
    [56]马文会,谢刚,王华.La_(1-x)Ca_xMn_(1-y)Co_yO_(3-δ)阴极材料的电性能[J].电源技术, 2002,26(1):24-25.
    
    [57]Minh N Q. J. Am. Ceram. Soc.1993, 76(3):563-588.
    
    [58]Kostogloudis G, Ftikos C. Properties of A-site deficient La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_3 -based. perovskite oxides[J]. Solid State Ionics, 1999, 126(1-2): 143-151.
    
    [59]贺天民,丛立功,纪媛,等.用柠檬酸-硝酸盐合成La_(0.8)Sr_(0.2)Ga_(0.85)Mg_(0.15)O_(3-δ) 及其性能[J].硅酸盐学报,2003,31(9):907-912.
    
    [60]张德新,岳慧敏.固体氧化物燃料电池与电解质材料[J].武汉理工大学学报, 2003,27(3):407-411.
    
    [61]Ishihara T, Matssuda H, Takita Y. Doped LaGaO_3 perovskite type oxide as a new ionic conductor[J]. J Am Chem Soc, 1994,116(9): 3801-3803.
    
    [62]Huang K, Goodenough J B. A solid oxide fuel cell based on Sr-and Mg-doped LaGaO_3 electrolyte: the role of a rare earth oxide buffer[J]. J Alloy Comp, 2000, 303-304: 454-464.
    
    [63]尧巍华,唐子龙,张中太,等.La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_2.85固体电解质的合成及性 能[J].稀有金属材料与工程,2004,33(3):297-299.
    
    [64]张乃庆,吴宁宁,孙克宁,等.中温SOFC用LaGaO_3基固体电解质制备[J]. 电源技术,2004,28(7):416-418.
    
    [65]杨凌波,陈刚,胡克鳌.固体氧化物燃料电池连接材料研究与进展[J].材料 导报,2003,17(F09):174-176,173.
    
    [66]刘伟明,孙良成.固体氧化物燃料电池铬酸镧连接材料研究现状[J].金属热 处理,2002,27(11):8-10.
    
    [67]Burton,J.J.;Garten,R.L.新型催化材料.林西平译.北京:石油工业出版, 1984:12.
    
    [68]马文会,固体氧化物燃料电池复合掺杂阴极材料的研究.[D].昆明:昆明理 工大学 2001.
    
    [69] E. Maguirea, B. Gharbageb, F.M.B. Marquesb , J.A. Labrinchab.Cathodematerials for intermediate temperature SOFCs[J]. Solid State Ionics 127 (2000)329-335.
    
    [70] L. Mikkelsen , I.G. Krogh Andersen, E.M. Skou. Oxygen transport inLa_(1-x_Sr_xFe_(1-y)Mn_yO_(3-δ) perovskites[J]. Solid State Ionics 703- 707 (2002) 152- 153.
    
    [71] Rao G G, Rao P K. A new oxidimetric reagent: postassium ichromate in a strongphosphoric acid medium-Ⅵ: potentio-metric titration of vanadium(Ⅲ) aloneand in mixture with anadium(Ⅳ)[C]. Talanta, 1966, 13: 1335-1340.
    
    [72] L. Mikkelsen , I.G. Krogh Andersen, E.M. Skou. Oxygen transport inLal-xSrxFe1-yMnyO3-δ perovskites[J]. Solid State Ionics 703- 707 (2002) 152-153.
    
    [73] Tai L W, Nasrallah M M, Anderson H U, et al. Structure and electrical propertiesof La_(1-x)Sr_xCo_(1-y)Fe_yO_3.[J]. Solid State Ionics,1995,76(3-4):273-283.
    
    [74] Arrhenius S T, Muthuraman M, Patil K C. Study on combustion synthesizedLaMnO_3-LaCoO_3 solid solutions[J]. Materials Research Bulletin, 2000, 35:289-296.
    
    [75] Fergus J W. Lanthanum chromite-based materials for solid oxide fuel cellinterconnects[J]. Solid State Ionics, 2004,171: 1-15.
    
    [76] Aruna S T, Muthuraman M, Patil K C. Study on combustion synthesized LaMnO_3 -LaCoO_3 solid solutions[J]. Materials Research Bulletin, 2000, 35: 289-296.
    
    [77] 李菊.CeO_2基阳极材料的制备及性能研究[D].云南大学,2006.
    
    [78] Ishihara T, Honda M, Shibayama T, et al. Intermediate temperature solid stateoxide fuel cells using a new LaGaO_3 based oxide ion conductor[J], Journal of theElectrochemical Society, 1998, 145(9): 3177-3183.
    
    [76] Mori M. Effect of B-site doing on thermal cycle shrinkage forLa_(0.8)Sr_(0.2)Mn_(1-x)Co_xO_(3±δ) perovskites (M=Mg, Al, Ti, Mn, Fe, Co, Ni; 0≤x≤0.1) [J].Solid State Ionics, 2004, 174: 1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700