用户名: 密码: 验证码:
自蔓延高温合成固体氧化物燃料电池阴极材料La_(1-x)Sr_xMnO_3
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(Solid oxide fuel cell,SOFC)是一种新型绿色能源技术,具有其它燃料电池不具备的全固体、无漏液、寿命长等优点,因而受到世界各国的重视。SOFC是由阴极、电解质、阳极和连接材料等基本元件构成的,每一种元件的性能都关系着SOFC的总效率和性能。La1-xSrxMnO3(LSM)具有高电导率、低反应性以及同电解质材料YSZ兼容性好的特点,是目前固体氧化物燃料电池使用最广泛的阴极材料。传统技术制备的LSM成本过高,阻碍了固体氧化物燃料电池快速发展的步伐,因此探索一种即能够保证产品性能又能有效降低成本的新型制备技术势在必行。
     本课题探索采用自蔓延高温合成法( Self-propagation high temperature synthesis,SHS)合成固体氧化物燃料电池阴极材料La0.7Sr0.3MnO3,达到降低材料制备成本的目的。文中设计了4大体系9个自蔓延反应制备La0.7Sr0.3MnO3,研究了各体系自蔓延反应的点火温度、反应温度及自蔓延速度,考查了试样反应前后的失重与收缩情况,并采用扫描电镜、X射线衍射仪等分析了反应产物的形貌和物相特征。XRD分析表明:4大体系9个反应进行的自蔓延高温合成过程均成功制备出了固体氧化物燃料电池阴极材料La0.7Sr0.3MnO3。同时,研究发现反应体系1由于实验成本低、操作简便以及合成产物性能较好,为制备LSM的最佳自蔓延体系。
     以体系1为基础,本文研究了成形压力、稀释剂等参数对反应过程及合成产物物理性能的影响;测试了自蔓延高温合成LSM粉末的烧结性能,包括试样强度、相对密度、孔隙率、膨胀系数以及导电性等;通过热力学计算,从理论上分析了不同工艺条件下反应进行的方向和产物的相组成,探讨SHS法制备La1-xSrxMnO4过程的反应历程,分析出体系中可能产生的杂质及其产生的原因,提出了消除杂质相的方法。
     最后,本文研究了使用热处理工艺去除自蔓延高温合成产物的杂质相,考查了不同热处理温度以及热处理时间对LSM物相、形貌及性能的影响。
Solid Oxide Fuel Cell (SOFC), as a new way of power generation, exhibits a great potential in solution of energy crisis and environmental pollution, and gets a wide attention in recent year. SOFC is composed by cathode, electrolyte, anode and interconnect. From the viewpoint of the high electrical conductivity, low reactivity and good compatibility with YSZ, La1-xSrxMnO3(LSM)is considered to be the most popular cathode materials for SOFC. However, the high cost of LSM prepared by traditional technology such as solid state sintering and sol-gel method hinders the application and industrialization of SOFC. Therefore, it is important to explore a new synthesis method for reducing the high cost of preparing LSM.
     In this paper, La1-xSrxMnO3 was prepared by self-propagating high-temperature synthesis (SHS) which was an effective way in reducing the cost of preparation. Four systems of SHS reaction that included nine reaction formulas were found to synthesize LSM. Self-propagation speeds of flame, ignition temperature, reaction temperature, weight loss and contraction rate of each SHS reaction were investigated. The pattern and component of product were analyzed by SEM and XRD, which indicated that the rhombohedral La0.7Sr0.3MnO3 was prepared by each SHS reaction. Because of the low cost, simple operation and preferable performance of product, the No.1 system was the best reaction system for preparing LSM by SHS.
     Based on No.1 system, the effect of some parameters, such as forming pressure and dilution addition, on reaction process and physical performance of the product was studied. And the sintering performance of the LSM, including intensity, relative density, porosity, expansion coefficient and conductivity was investigated as well.
     The reaction mechanism of the SHS system was explored through thermodynamic calculation method. The directions and products of the reaction in different technological conditions were decided. Meanwhile, the cause of impurity of the reaction system was analyzed and some advices were brought forward to eliminate the byproducts.
     Finally, the study indicated that the impurity brought by SHS could be removed effective, through the heat treatment method. The organizational structure and performance of LSM, on which the different temperature and time of heat treatment effected, were also studied.
引文
[1] 刘建国, 孙公权. 燃料电池概述. 物理, 2004, 33(2): 79-84
    [2] 李杨,魏敦崧,潘卫国.燃料电池发展现状与应用前景.能源技术,2001,22(4): 158-161
    [3] 靳智平.燃料电池发电技术在我国电力系统的应用.电力学报, 2004, 19(1): 4-11
    [4] Dan Rastler. Opportunities and challenges for fuel cell in the evolving energy enterprise. Fuel Cells Bulletin, 2000, 3(19): 7-11
    [5] Shuo-Jen Lee, Fang-Bor Weng. Recent R&D and future prospects of fuel cell technology in Taiwa. Fuel Cells Bulletin, 2002,5(41): 8-11
    [6] Jay B.Benziger, M.Barclay Satterfield, Warren H.J. Hogarth. The power performance curve for engineering analysis of fuel cells. Journal of Power Sources, 2006, 155: 272-285
    [7] Chunshan Song. Fuel processing for low-temperature and high-temperature fuel cells Challenges, and opportunities for sustainable development in the 21st century. Catalysis Today, 2002, 77: 17-49
    [8] Joseph M. King,Michael J.O’Day. Applying fuel cell experience to sustainable power products. Journal of Power Sources, 2000, 86: 16-22
    [9] Ferdinand Panik. Link Fuel Cell Technology with Environmental Strategy: The Plug power Story. Journal of Power Sources, 1996, 6: 270-277
    [10] Ferdinand Panik. Fuel cell for vehicle applications in cars-bringing the future closer. Journal of Power Sources, 1998, 71: 36-38
    [11] 张志明. 燃料电池的演化及发展探析. 技术与创新管理, 2005, 26(3): 81-84
    [12] 倪萌, 梁国熙. 碱性燃料电池研究进展.电池, 2004, 34(5): 364-365
    [13] 彭苏萍,韩敏芳,杨翠柏,王玉倩.固体氧化物燃料电池. 物理, 2004,33(2):90-94
    [14] S.C. Singhal. Solid oxide fuel cells for stationary, mobile, and military applications. Solid State Ionics, 2002, 152-153: 405-410
    [15] Bockris JO'M , ReddyAKN. Modern Electrochemistry.PlenumPress, 1970, 1530-1400
    [16] 戴学刚.固体氧化物燃料电池的发展前景. 中国有色金属学报, 1998, 8(增刊2): 1-4
    [17] 迟克彬.固体氧化物燃料电池研究进展.天然气化工, 2002, 27(4): 37-44
    [18] Osamu Yamamoto. Solid oxide fuel cells: fundamental aspects and prospects. Electrochimica Acta, 2000, 45: 2423-2435
    [19] 韩敏芳,彭苏萍.固体氧化物燃料电池材料及制备. 第一版.北京:科学出版社, 2004,11-14
    [20] Masayuki Dokiya. SOFC system and technology. Solid State Ionics, 2002, 152-153: 383-392
    [21] 李永峰,董新法.固体氧化物燃料电池的现状和未来. 电源技术,2002,26(6): 462-465
    [22] 马紫峰.固体氧化物燃料电池的初步研究.无机材料学报,1999,14(3):499-503
    [23] Mogens Mogensen,Steen Skaarup. Kinetic and geometric aspects of solid oxide fuel cell electrodes. Solid state Ionics, 1996, 86-88: 1151-1160
    [24] 江金国.固体氧化物燃料电池材料的研究进展. 现代技术陶瓷, 2003, (95): 14-18
    [25] 刘旭俐.固体氧化物燃料电池材料的研究进展. 硅酸盐通报,2001,(1):24-29
    [26] 江金国.固体氧化物燃料电池材料的研究进展. 现代技术陶瓷, 2003,95:14-18
    [27] 阎景旺.固体氧化物燃料电池材料的开发. 电池, 2002, 32(3): 188-190
    [28] F. Tietz,H.-P. Buchkremer,Components manufacturing for solid oxide fuel cells. Solid state Ionics, 2002, 152-153: 373-381
    [29] 马紫峰.固体氧化物燃料电池的初步研究.无机材料学报,1999,14(3):499-503
    [30] Stephen J. Skinner.Recent advances in Perovskite-type materials for solid oxide fuel cell cathodes. International Journal of Inorganic Material,2001,(3):113-121
    [31] 江金国,陈文,徐 庆. 中低温固体氧化物燃料电池陶瓷阴极材料. 陶瓷学报,2002, 23(3): 198-200
    [32] 肖 循. 两种不同阴极材料的固体氧化物燃料电池. 电源技术, 2002, 26(3): 128-130
    [33] Y.Sakaki, Y.Takeda.Ln1?xSrxMnO3 (Ln=Pr, Nd, Sm and Gd) as the cathode material for solid oxide fuel cells .Solid State Ionics, 1999, 118(3-4): 187-194
    [34] T. Inagaki,K. Miura. Raman studies of LaGaO3 and doped LaGaO3. Solid State Ionics, 1999, 118: 265-269
    [35] Ho-Chieh Yu, Kuan-Zhong Fung. La1-xSrxCuO2.5-δ as new cathode materials for intermediate temperature solid oxide fuel cells. Materials Research Bulletin,2003, 38: 231-239
    [36] Ting-Lian Wen,Hengyong Tu, Zhihong Xu. A study of (Pr,Nd,Sm)SrMnO cathode materials for solid oxide fuel cell .Solid state Ionics, 1999, 121: 25-30
    [37] Hyung-Ryul Rim,Soon-Ki Jeung,Euney Jung. Characteristics of Pr1-xMnxMnO3(Mn=Ca,Sr) as cathode material in solid oxide fuel cell .Material Chemistry and Physics, 1998, 52: 54-59
    [38] 孙良成,李胜利,刘伟明. 铬酸镧材料的研究现状及应用领域. 稀土, 2002,23(6): 53-56
    [39] Anthony Petric,Peng Huang,Frank Tietz. Evaluation of La–Sr–Co–Fe–O perovskites for solid oxide fuel cells and gas separation membranes. Solid state Ionics, 2000, 35: 719-725
    [40] Erica Perry Murray,Tsepin Tsai. Oxygen transfer processes in (La,Sr)MnO3/Y2 O3-stabilized ZrO2 cathodes: an impedance spectroscopy study. Solid State Ionics, 1998, 110: 235-243
    [41] Hong-Ki Lee. Electrochemical characteristics of La1?xSrxMnO3 for solid oxide fuel cell. Materials Chemistry and Physics, 2002, 77: 639-646
    [42] 符晓铭.固体氧化物燃料电池阴极材料La1-xSrxMnO3研究.清华大学学报,1998, 38(5): 80-83
    [43] 李国军, 任瑞铭, 刘小光. La0.8Sr0.2MnO3多孔阴极材料制备及性能研究.硅酸盐学报, 2004, 32(2): 209-212
    [44] 高文元, 孙俊才. 稀土复合掺杂锰酸镧材料的制备. 中国陶瓷工业, 2003, 10 (6): 9-12
    [45] 于东生, 周震涛. La1-xSrxMnO3的制备及其电催化性能. 稀有金属材料与工程, 2005, 34(3): 463-466
    [46] 韩敏芳,李伯涛, 彭苏萍.固相反应合成 La1-xSrxMnO3 的机理.北京科技大学学报, 2002, 24(6): 621-622
    [47] 邵忠宝, 牛盾, 张丽君.溶胶-凝胶法合成 La0.7Sr0.3MnO3,东北大学学报,1999, 20(2): 220-221
    [48] S.P. Jiang.Issues on development of (La,Sr)MnO3 cathode for solid oxide fuel cells,Journal of Power Sources. 2003, 124: 390-402
    [49] 钱小良. 固体氧化物阴极材料的制作.华中理工大学学报,1995,23(12):51-55
    [50] 纪媛, 刘江.甘氨酸-硝酸盐法制备中温 SOFC 电解质及电极材料.高等学校化学学报, 2002, 23(7):1227-1230
    [51] A. Hammouche,E. Siebert,A. Hammou,et a. Electroatalytic properties and nonstiochimetry of the high temperature air elec-trode La1-xSrxMnO3. Electrochem. Soc. 1991, 138 (5): 1212-1218
    [52] 翟秀静,符岩,刘忠文. 微波合成固体氧化物燃料电池阴极材料La1-xSrxMnO3的研究, 材料与冶金学报, 2002, 1(4): 294-296
    [53] 于东生, 周震涛. La1-xSrxMnO3的制备及其电催化性能. 稀有金属材料与工程,2005, 34(3): 463-466
    [54] S. Arul Antony,K. Swaminathan. Activity of SrO in La1-xSrxMnO3-y(x=0.065, 0.10, 0.15 or 0.20) by a solid state EMF method .Journal of Alloys and Compounds, 2001, 322: 113-119
    [55] K.L.Choy,S.Charojrochkul,B.C.H. Steele.Fabrication of cathode for solid oxide fuel cells using flame assisted vapour deposition technique. Solid state Ionics,1997, 96: 49-54
    [56] Hiroyuki Ishikawa, Makiko Enoki, Tatsumi Ishihara. Self-propagating high-temperature synthesis of La(Sr)Ga(Mg)O3?δ for electrolyte of solid oxide fuel cells .Journal of Alloys and Compounds, 2006, article in press
    [57] 汪华林. 自蔓延高温合成的材料和工艺. 功能陶瓷, 1996, 27(3): 206-212
    [58] H.P.Li. A numerical study of the heterogeneous porosity effect on self- propagating high-temperature synthesis (SHS). Materials Research Bulletin,2004, 39: 1881-1894
    [59] 任世理,任遥.自蔓延高温合成法在陶瓷领域应用的发展. 陶瓷,2005,(11): 29-32
    [60] 谭小桩, 贾光耀. 自蔓延高温合成技术的发展与应用. 南方金属,2005,146: 5-9
    [61] 陆大勤, 张龙, 赵忠民. 自蔓延高温合成技术的研究动态. 军械工程学院学报, 2005, 17(2): 59-63
    [62] Maxim V.Kuznetsov,Ivan.P.Parkin.Convenient,rapid synthesis of rare earth orthochromites LnCrO3 by self-propagating high-temperature synthesis. Polyhedr -on, 1998, 17: 4443-4450
    [63] 殷声. 燃烧合成. 第一版. 北京:冶金工业出版社, 1999,50-56
    [64] 张金咏, 傅正义, 王为民. 自蔓延高温合成(SHS)过程的热动力学研究. 复合材料学报, 2005, 22(2): 71-77
    [65] I.Brain, O. Knacke. Thermochemical properties of inorganic substances. Berlin:Springer, 1973
    [66] I.Brain, O. Knacke. Thermochemical properties of inorganic substances (supplement). Berlin: Springer, 1977
    [67] Ragne Hildrum, Morten Brustad. Thermodynamic Properties of Doped Lanthanum Manganites. Materials Research Bulletin, 1994, 29(8): 851-860
    [68] Florence Boulc’h, Elisabeth Djurado. Structural changes of rare-earth-doped, nanostructured zirconia solid solution .Solid State Ionics, 2003, 157: 335-340
    [69] G.A. Tompsett,N.M. Sammes. Characterisation of the SOFC material, LaCrO3,using vibrational spectroscopy. Journal of Power Sources, 2004, 130: 1-7
    [70] Atsushi Mineshige, Toshiya Taji. Oxygen chemical potential variation in ceria-based solid oxide fuel cells determined by Raman spectroscopy. Solid State Ionics, 2000, 135: 481-485
    [71] A.A.Shiryaev, M.D.Nersesyan.Thermodynamic Feasibility of SHS of SOFC Materials. Journal of Materials Synthesis and Processing, 1999, 7(2): 83-90
    [72] Cecile Bernay,Armelle Ringuede. Yttria-doped zirconia thin films deposited by atomic layer deposition ALD: a structural, morphological and electrical characterisation. Journal of Physics and Chemistry of Solids, 2003, 64: 1761- 1770
    [73] Masashi Mori, Yoshiko Hiei. Evaluation of Ni and Ti-doped Y2O3 stabilized ZrO2 cermet as an anode in high-temperature solid oxide fuel cells .Solid State Ionics, 2003, 160: 1-14
    [74] Atsushi Mineshige, Tadashi Yasui. Oxygen chemical potential and mixed conduction in doped ceria under influence of oxygen partial pressure gradient. Solid State Ionics, 2002, 152-153: 493-498
    [75] 徐志弘,温廷琏,吕之奕.高温燃料电池阴极材料La(Sr)MnO3的电导性能研究.无机材料学报, 1994, 9(4): 489-492
    [76] 王世忠,江义,张雅虹. La1-xSrxMnO3/YSZ高温电极交流阻抗研究. 电化学, 1998, 4(3): 252-259
    [77] 夏正才,唐超群. La1-xSrxMnO3阴极材料的导电机理研究. 物理学报, 1999, 48(08):1518-1522
    [78] 颜学敏,王皓,钟润牙. La1-xSrxMnO3复合氧化物粉末的自蔓延高温合成. 陶瓷科学与艺术, 2004,(2): 23-27
    [79] 刘莉,牛乐园,张力江,夏正才,袁松柳. 热处理温度对La4/3Sr5/3Mn2O7的结构及电输运性质的影响. 低温物理学报, 2004, 26(4): 295-599
    [80] 张富祥,贺端威,张湘义,李姣君,许应凡,王文魁.四方结构钙钛矿型化合物La1-xSrxMnO3 的电磁特性.中国科学,1998, 28(10):936-940

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700