用户名: 密码: 验证码:
UV-C照射下纳米TiO_2光催化对蓝藻生长影响的研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体中暴发的蓝藻“水华”,不仅使供水管道发生阻塞,而且还会使水体产生异味和向水体释放出毒素,对水环境造成了严重危害。为了有效保护水环境,防止蓝藻“水华”危害,对蓝藻“水华”实施有效治理是十分必要。当前,在众多蓝藻“水华”防治技术中,因成本较高、防治后易于再次生长和产生二次污染等而收效甚微,研究能够克服以上技术的不足,能有效防治蓝藻“水华”的新技术是十分必要。
     灭菌紫外线(UV-C)能杀死各种细菌和病毒,当被用于杀灭蓝藻细胞时,因蓝藻细胞的保护作用,很难对蓝藻细胞产生损伤。因此,对于抑制疯长的蓝藻,灭菌紫外线面临巨大的挑战。纳米TiO_2,具有对自然环境无毒、化学性能稳定、使用成本低廉和光催化活性高的优点。因而,利用UV-C光催化纳米TiO_2作用于蓝藻细胞,可以取得比UV-C单独作用时更有效的细胞损伤。
     本课题选用蓝藻“水华”中常见的鱼腥藻7120和铜绿微囊藻为实验蓝藻,以UV-C为催化光源和纳米TiO_2为催化剂,发生UV-C光催化纳米TiO_2反应,实现对蓝藻“水华”的模拟防治。研究结果为:首先,建立了UV-C光催化纳米TiO_2抑制蓝藻生长实验工艺,测定了工艺的反应参数,研究了对蓝藻生长影响的效果,通过鱼腥藻7120生理学参数测定,发现在蓝藻藻液中辐照光强约为0.10 mW/cm~2、纳米TiO_2浓度为100 mg/L、反应温度为30℃和溶解氧浓度为9.0 mgO_2/L的条件下,反应60 min后,实验工艺能够有效阻止蓝藻生长。其次,对纳米TiO_2进行了改性,通过不同金属离子掺杂物对鱼腥藻7120叶绿素a浓度的变化,发现掺杂Ag~+纳米TiO_2使鱼腥藻7120中叶绿素a浓度的下降更快。再次,研究了UV-C光催化Ag-TiO_2对实验蓝藻生长的影响,通过对蓝藻的细胞数目、叶绿素a浓度、藻蓝蛋白浓度、光合放氧速率、细胞形态结构、脂质过氧化、抗氧化性酶活性和双链DNA断裂进行测定,在分别与UV-C单独处理和UV-C光催化纳米TiO_2处理比较后,发现UV-C光催化掺杂Ag~+纳米TiO_2更容易使蓝藻细胞受到活性氧化物作用,在蓝藻细胞膜产生过氧化反应,最终出现了蓝藻细胞壁发生破裂、蓝藻细胞器发生破损和蓝藻细胞生存能力完全丧失的结果;同时,在UV-C光催化掺杂5%Ag~+纳米TiO_2反应中,因活性氧化物的作用,使蓝藻细胞膜遭受了更严重地损坏。最后,利用UV-C光催化掺杂Ag~+纳米TiO_2获得的实验结果,设计适合于水体流域蓝藻“水华”治理的装置,并对设计装置的预期应用进行了分析。
     可以看出,本课题利用掺杂Ag~+纳米TiO_2治理富营养化水体中过度生长的蓝藻,为一种有效的蓝藻“水华”治理技术。
Cyanobacterial blooms are of concern in relation to waterbodies because of their abilityto result in filter-clogging, disagreeable tastes and odors, toxins generation, whichtremendously damage to aquatic environment. To protect effectively the aquaticenvironment from the damage of the cyanobacterial overgrowth, it is necessary to counteractcyanobacterial blooms in waterbodies. However, various methods have been used todiscourage cyanobacterial overgrowth in waterbodies at present, and almost all of those wereproved to be cost-consuming, inefficient or injurant-producing. Thus, new methods areneeded to prevent cyanobacteria from fast and excessive growth in the water sourceseffectively.
     The ability of ultraviolet light with a wavelength of 253.7 nm (UV-C) can kill variousbacteria and virus. However, the cells of cyanobacteria are more resistant to damage thanthose of bacteria and virus. Thus, it poses a greater challenge to the control of cyanobacterialovergrowth.
     Advantages of nanocrystalline TiO_2 in natural surroundings include its non-toxic nature,chemical stability, low cost, and high photoactivity. What exciting is that the UV-Cphotocatalysis by nanocrystalline TiO_2 may be more effective method to damage the cells ofcyanobacteria than that of UV-C irradiation alone.
     In this study, the capacity of the nanocrystalline TiO_2 in combination with UV-C lightto restrain cyanobacterial growth in laboratory scale was investigated with Anabaena sp.PCC 7120 and Microcystis aeruginosa as test species. The results lead to the followingconclusions: firstly, the experimental process of UV-C photocatalysis with nanocrystallineTiO_2 was investigated for several possible factors influenced the photocatalytic activities,and the effects of cyanobacterial growth by UV-C photocatalysis with nanocrystalline TiO_2were studied. The physiological parameter of Anabaena sp. PCC 7120 has been measured,and the results indicate that UV-C photocatalysis at radiation light intensity about 0.10mW/cm~2, nanocrystalline TiO_2 concentration 100 mg/l, the temperature 30℃, the dissolvedoxygen concentration 9.0 mgO_2.1~(-1) for 60 min, could effectively inhibit the cells growth ofAnabaena sp. PCC 7120. Secondly, the improvement of photocatalytic activity by dopingthe certain metal ions in nanocrystalline TiO_2 under the optimal reaction condition wasinvestigated with Anabaena sp. PCC 7120, and the result indicate that the doped nanocrystalline TiO_2 with silver ions (Ag-doped TiO_2) could effectively reduce theChlorophyll a concentration of Anabaena sp. PCC 7120. Thirdly, the capacity of theAg-doped TiO_2 photocatalyst in combination with UV-C light to restrain cyanobacterialgrowth was investigated with Anabaena sp. PCC 7120 and Microcystis aeruginosa. The cellamount, chlorophyll a concentration, phycocyanin concentration, oxygen evolution rate,cellular morphologic structure, lipid peroxidation, antioxidant enzyme activities and dsDNAbreakage of test cyanobacteria were measured. Compared with the UV-C irradiation aloneand the UV-C photocatalysis by nanocrystalline TiO_2, the results showed that the testcyanobacteria with UV-C photocatalysis by Ag-doped TiO_2 yielded more effects of reactiveoxygen species, promoted peroxidation of cyanobacterial cell membrane and ultimatelycaused the damage of the cell wall, the losses of the cell organelle and viability. The 5atom% Ag-doped TiO_2 photocatalysis could damage more seriously the membranes ofcyanobacterial cells than the 1 atom% Ag-doped TiO_2, TiO_2 photocatalysis and UV-Cirradiation alone, which could be ascribed to the oxidation of the cell membranes caused byROS. Finally, according to the experimental data with UV-C photocatalysis by Ag-dopedTiO_2, the photocatalytic reactor was designed for preventing cyanobacteria from growth inthe water sources, and was discussed for applying in future.
     In this study, it has been found that nanocrystalline TiO_2 doped with Ag ion has thepotential to be used as an effective means for controlling cyanobaeterial overgrowth ineutrophic waterbodies。
引文
[1] Jacques Capblancq and Henri Decamps. L'eutrophisation des eaux continentals: questions a propos d'un processus complexeTowards a sustainable control of eutrophication of continental waters. Nature Sciences Societes, 2002,10:6-17.
    [2] Ingrid Chorus and Jamie Bartram. Toxic cyanobacteria in water. London and New York, E & FNSpon, 1999. 416.
    [3] Paerl H W, Fulton R S, Moisander P H et al. Harmful freshwater algal blooms with an emphasis on cyanobacteria. Science World, 2001, 1:76-113.
    [4] Zhang Tingxi, Wang Xiaorong, Jin Xiangcan. Variations of alkaline phosphatase activity and P fractions in sediments of a shallow Chinese eutrophic lake (Lake Taihu).Environmental Pollution, 2007, 150: 288-294.
    [5] Whitton B A, Potts M. The Ecology of Cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, 2000. 669.
    [6] Zhang Y L, Qin B Q, ChenW M et al. Analysison distribution and variation of beam attenuation coefficient of Taihu Lake's water. Analysis in water science, 2003, 14:447-453.
    [7] Qin B Q, Hu W P, Gao G et al. Driving mechanism of sediment Resuspension and Conceptual pattern of internal release in Taihu Lake. Chinese Science Bulletin, 2003,48:1822-1831.
    [8] Fan C X, Zhang L, Qin B Q et al. Estimation of dynamic release of Phosphorus from suspended particles under wave in Lake Taihu. Science in China Series D-Earth Sciences, 2003,33:760-768.
    [9] Steiberg C E W and Hartmann H M. Planktonic bloom forming cyanobacteria and the eutrophication of lake and rivers. Freshwater Biology, 1988,20: 279-287.
    [10] Schindler D W. Evolution of phosphorus limitation in lakes. Science, 1977, 195: 260-262.
    [11] Smith V H. Low nitrogen to phosphorusratios favour dominance by blue-green algae in lake phytoplankton. Science, 1983,221: 669-671.
    [12] Xie L, Xie P, Li S et al. The low TN: TP ratio, acause or a result of Microcystis blooms. Water Research, 2003, 37:2073-2080.
    [13] Gobler C J, Davis T W, Coyne K Jet al. Interactive influences of nutrient loading, zooplankton grazing, and microcystin synthetase gene expression on cyanobacterial bloom dynamics in a eutrophic New York lake. Harmful Algae, 2007, 6: 119-133.
    [14] Cronberg G. The occurrence of toxic blue-green algae in Ringsjon Lake, Southern Sweden, despite nutrient reduction and fish biomanipulation. Hydrobiologia, 1999, 404: 123-129.
    [15] Brittain S, Mohamed Z A, Wang J et al. Isolation and haracterization of Microcystins from a river Nile Strain of Oscillatoria tenuis Agardh ex Gomont. Toxicon, 2000, 38: 1759-1771.
    [16] Mathiensen A, Beat-tie K A, Yunes J S et al. [D-leu] Microcystin-LR, from the cyanobacterium RST 9501 and from a microcystis bloom in the Patos Lagoon Estuary, Brazil. Phytochemistry, 2000, 55: 383-387.
    [17] Codd G A, Morrison L F, Metcalf J S. Cyanobacterial toxins: risk management for health protection. Toxicology and Applied Pharmacology, 2005, 203(3): 264-272.
    [18] Charles Lugomela, Hadsh B Pratap, Yunus D Mgaya. Cyanobacteria blooms-A possible cause of mass mortality of Lesser Flamingos in Lake Manyara and Lake Big Momela, Tanzania. Harmful Algae, 2006, 5(5): 534-541.
    [19] Falconer L R. Toxic cyanobacterial bloom problems in Australian waters: risks and impacts on human health. Phycologia, 2001, 40(3): 228-233.
    [20] Harada K. Recent advances of toxic cyanobacteria research. Journal of Health Science, 1999,45(3): 150-165.
    [21] Camean A, Moreno I, Verdejo T et al. Pyrolytic behaviour of microcystins and microcystin-spiked algal blooms. Journal of Analytical and Applied Pyrolysis, 2005, 74: 19-25.
    [22] Zimba P V, KhooL, Gaunt P S, Brittain S et al. Confirmation of catfish, ictalurus puncatus (rafinesque), mortality from microcystis toxins. Journal of fish Diseases, 2001, 24(1): 41-47.
    [23] Martina A Doblin, Kathryn J Coyne, Johanna M Rinta-Kanto et al. Dynamics and short-term survival of toxic cyanobacteria species in ballast water from NOBOB vessels transiting the Great Lakes-implications for HAB invasions. Harmful Algae, 2007, 6(4): 519-530.
    [24] Eva Schober, Michael Werndl, Kati Laakso et al. Interlaboratory comparison of Taq Nuclease Assays for the quantification of the toxic cyanobacteria Microcystis sp. Journal of Microbiological Methods, 2007, 69(1): 122-128.
    [25] Adamson R P and Sommerfeld M R. Laboratory comparison of the effectiveness of several algicides on isolated swimming poll algae. Applied and Environmental Microbiology, 1980, 39: 348-353.
    [26] Baudoux A C, Brussaard C P D. Characterization of different viruses infecting the marine harmful algal bloom species phaeocystis globosa. Virology, 2005, 341: 80-90.
    [27] Satoshi Nakai, Yutaka Inoue, Masaaki Hosomi et al. Growth inhibition of blue-green algae by allelopathic effects of macrophytes. Water Science and Technology, 1999, 39: 47-53.
    [28] Lee T J, Nakano K. Matsumara ultrasonic irradiation for blue-green algae bloom control. Environmental Technology, 2001, 22: 383-390.
    [29] 郑少波,杜鹤桂.光子和磁场对矿泉水协同处理技术研究.水处理技术,1997,23(6):337-340.
    [30] Fujishima A, Honda K. Photolysis decomposition of water at the surface of an irradiated semiconductor. Nature, 1972, 37: 238.
    [31] Mills A, Le Hunte S. An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A- Chemistry, 1997, 108: 1-35.
    [32] Hetrmann J M. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today, 1999, 53: 115-129.
    [33] An T C, Zhu X H, Xiong Y. Synergic degradation of reactive brilliant red X-3B using three dimension electrode-photocatalytic reactor. Journal of Environmental Science and Health, 2001, 36(10): 2069-2082.
    [34] Gratzel C K. Decomposition of organophosphorus compounds on photoactivated TiO_2 Surfaces. Journal of Molecular Catalysis A-Chemical, 1990, 60: 375-387.
    [35] Hoffmanm R, Martin S T, Choi W et al. Environmental applications of semiconductor photocatalysis. Chemical Review, 1995, 95(1): 69-96.
    [36] Alberici R M, Jardim W F. Photocatalytic degradation of phenol and chlorinated phenols using Ag-TiO_2 in a slurry reactor. Water Research, 1994, 28: 1845-1852.
    [37] Moza P N, Fytianos K, Samanidou V et al. Photodecomposition of chlorophenols in aqueous medium in the presence of hydrogen peroxide. Bulletin of Environmental Contamination and Toxicology, 1988,5: 678-682.
    [38] Cennenati L, Pichat P, Guillard C et al. Probing the TiO_2 photocatalytic mechanisms in water purification by use of quinoline, photo-fenton generated OH radicals and superoxide dismutase. Journal of Physical Organic Chemistry, 1997, 101(14):2650-2658.
    [39] Harbour J R and Hair M L. Radical intermediates in the photosynthetic generation of hydrogen peroxide with aqueous zinc oxide dispersions. Journal of Physical Organic Chemistry, 1979, 6: 652-656.
    [40] Bickley R, Gonzalea Carreno T, Lees J. A structural investigation of titanium dioxide photocatalysts. Journal of Solid State Chemistry, 1991, 92: 178.
    [41] Tsai Shi Jane, Cheng Soonfin. Effect of TiO_2 crystalline structure in photolytic degradation of contaminants. Catalysis Today, 1997, 33: 327.
    [42] Pelizzetti E. Role of oxidative and reductive pathways in the photocatalytic degradation organic compounds. Colloids and surfaces A-Physicochemical and Engineering Aspects, 1999,151: 321-327.
    [43] Jaeger. Spin trapping and eledtron spin resonance detection of radical intermediates in the photodecomposition of water at TiO_2 particulate sytems. Journal of Physical Organic Chemistry, 1979, 83: 3146-3151.
    [44] Masakazu A J. Photocatalysis hydrogenation of CH3OCH with H_2O on small particle TiO_2: size quantization effects and reaction intermediates. Journal of Physical Organic Chemistry, 1987, 91: 43 05-4310.
    [45] Gerischer H. Photocatalysis in aqueous solution with small TiO_2 particles and the dependence of the quantum yield on particle size and light intensity. Electrochimica Acta, 1995,40(10): 1277-1281.
    [46] Sopyan I, Watanabe M, Murasawa S et al. Efficient TiO_2 powder and film photocatalysts with rutile crystal structure. Chemistry Letters, 1996, 288: 69-70.
    [47] Szczybowski J. Some properties of TiCVlayers prepared mid-frequency and reactive magnetron sputtering. Journal of Non-Crystalline Solids, 1997, 218: 262-266.
    [48] Selli E. Role of humic acids in the TiO2-photocatalyzed degradation of tetrachloroethene in water. Water Research, 1999, 33: 1827-1836.
    [49] Li Xiaojing, Cubbage J W. Photocatalytic degradation of 4-chlorophenol-2, the 4-chiorophenol pathway. Journal of Organic Chemistry, 1999, 64: 8525-8536.
    [50] Rophael M W. The reduction of aqueous carbonate to mechanol: photocatalysed by TiO_2 phthalocyanine. Vacuum, 1990, 3: 143-146.
    [51] Choi Wonyong. The role of metal ion dopants in quantum-sized TiO_2: correlation between photoreactivity and charge carrier recombination dynamics. Journal of Physical Organic Chemistry, 1994, 51: 13669-13679.
    [52] Iqbal Siddiquey Ahmed, Takeshi Furusawa, Masahide Sato et al. Control of the photocatalytic activity of TiO_2 nanoparticles by silica coating with polydiethoxysiloxane. Dyes and Pigments, 2008, 76(3): 754-759.
    [53] Karaktisou K E. Definition of the intrinsic rate of photocatalytic cleavage of water over Pt-RuO/TiO_2 catalysts. Catalysis, 1995, 2: 360-367.
    [54] Bedja I, Kamat p. Capped semiconductor colloids: synthesis and photo-electrochemical behavior of TiO_2-capped SnO_2 nanocrystallites. Journal of Physical Organic Chemistry, 1995, 99: 9182-9188.
    [55] Enrique S(?)chez Mora, Estela G(?)mez Barojas, Esmeralda Rojas Rojas et al. Morphological, optical and photocatalytic properties of TiO_2-Fe_2O_3 multilayers. Solar Energy Materials and Solar Cells, 2007, 91: 1412-1415.
    [56] Wong W K, Malati M A. Doped TiO_2 for TiO_2 solar energy applications. Solar Energy, 1986, 36: 163-168.
    [57] Fu Xian-zhi. Enthanced photocatalytic performance of titania-based binary metal oxides: TiO_2/SiO_2 and TiO_2/ZrO_2. Environmental Science and Technology, 1996, 30: 647-653.
    [58] Li Fang-Bai. Enhanced rates of photocatalytic behavior using WO_3/TiO_2 coupled Semiconductor nanopowder. Environmental Science, 1999, 20: 75-78.
    [59] John C. Decontamination of water using adsorption of photocatalysis. Water Research, 1997, 31: 411-418.
    [60] Kumara G R R A, Sultanbawa F M. Cintinuous flow photochemical reactor far solar decontamination of water using immobilized TiO_2. Solar Energy Material & Solar Cells, 1999, 58: 167-171.
    [61] Tang Jiaowen, Wu Qingyu, Hao Hongwei et al. Growth inhibition of the cyanobacterium Spirulina (Arthrospira) platensis by 1.7 MHz ultrasonic irradiation. Journal Applied Phycology, 2003, 15: 37-43.
    [62] Satoshi Nakai, Yutaka Inoue, Masaaki Hosomi et al. Growth inhibition of blue-green algae by allelopathic effects of macrophytes. Water Science and Technology, 1999, 39(8): 47-53.
    [63] Md Zamir Bin Alam, Masahiro Otaki, Hiroaki Furumai et al. Direct and indirect inactivation of microcystis aeruginosa by UV-radiation. Water Research. 2001, 35(4): 1008-1014.
    [64] Richard H Pierce, Michael S Henry, Christopher J Higham et al. Removal of harmful algal cells (Karenia brevis) and toxins from seawater culture by clay flocculation, Harmful Algae, 2004, 3: 141-148.
    [65] 陆长梅,张超英,吴国荣等.纳米级抑制微囊藻生长的实验研究.城市环境与城市生态,2002,15(4):13-15.
    [66] 尹海川,林强,涂学炎等.纳米二氧化钛复合半导体光催化抑制蓝藻生长.昆明理工大学学报(理工版),2005,30(1):52-56.
    [67] Linkous Clovis A, Carter Glenda J, Locuson David B et al. Photocatalytic inhibition of algae growth using TiO_2, WO_3, and cocatalyst modifications. Environmental Science and Technology, 2000, 34(22): 4754-4758.
    [68] Hong Jinglan, Otaki Masahiro. Association of photosythesis and photocatalytic inhibition of algal growth by TiO_2. Journal of Bioscience and Bioengineering, 2006, 101(2): 185-189.
    [69] Julie R Peller, Richard L Whitman, Scott Griffith et al. TiO_2 as a photocatalyst for control of the aquatic invasive alga, Cladophora, under natural and artificial light. Journal of photochemistry and photobiology A- Chemistry, 2007, 186: 212-217.
    [70] Allen M M, Stanier R Y. Selective isolation of blue-green algae from water and soil. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 1968, 51: 203-209.
    [71] Jensen A. Chlorophyll a and carotenoids. In: Helebust J A, Carigie T S, eds. Handbook of physiological and biochemical method. New York: Cambridge University Press, 1978. 59-70.
    [72] K(U|¨)ster A, Schaible R and Schubert H. Light acclimation of photosynthesis in three charophyte species. Aquatic Botany, 2004, 79:111-124.
    [73] Bradford M M. A rapid and senstive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72: 248-254.
    [74] Bennett A and Bogorad L. Complementary chromatic adaptation in a filamentous blue-green alga. Journal of Cell Biology, 1973, 58: 419-435.
    [75] Baumstark-Khan C, Hentschel.U, Nikandrova Y et al. Fluorometric analysis of DNA unwinding (FADU) as a method for detecting repair-induced DNA strand breaks in UV irradiated mammalian cells, Photochemistry and Photobiology, 2000, 72(4): 477-484.
    [76] Winkler M, Hemschemeier A, Gotor C et al. [Fe]-hydrogenases in green algae: photo-fermentation and hydrogen evolution under sulfur deprivation. International Journal of Hydrogen Energy, 2002, 27: 1431-1439.
    [77] Marklund S and Marklund C. Involvement of the superoxide anion redical in the autoxidation of pyrogallol and a convenient assay of superoxide dismutase. European Journal of Biochemistry, 1974, 47: 469.
    [78] Caklnak I and Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Journal of Plant Physiology, 1992, 98: 1222-1227.
    [79] Pr(?)stamo G, Arabas J, Fonberg-Broczek M et al. Reaction of B.cereus bacteria and peroxidase enzyme under pressures>400 MPa. Journal of Agricultural and Food Chemistry, 2001, 49: 2830-2834.
    [80] Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 1981, 22: 867-880.
    [81] Maccarrone M. Temperature, pH and UV irradiation effect on ascorbate oxidase. Phytochemistry, 1993, 32: 795-798.
    [82] Uchiyama M and Mihara M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Analytical Biochemistry, 1978, 86: 271-278.
    [83] Atribak I., Such-Bas(?)ez I., Bueno-L(?)pez A et al. Catalytic activity of La-modified TiO_2 for soot oxidation by O_2. Catalysis Communications, 2007, 8: 478-482.
    [84] Kowalski W J, Bahnfleth W P, Severin B F et al. Mathematical modeling of ultraviolet germicidal irradiation for air disinfection. Quantitative Microbiology, 2000, 2: 249-270.
    [85] Iqbal Ahmad, Fasihullah Q, Faiyaz H M Vaid. Effect of light intensity and wavelengths on photodegradation reactions of riboflavin in aqueous solution. Journal of Photochemistry and Photobiology B-Biology, 2006, 82: 21-27.
    [86] Atikiins P W. Physical chemistry. Oxford: Oxford Univ Press, 1994. 545.
    [87] Zhang Zhi, Wang Chen-Chi, Rama Zakaria et al. Role of particle size in nanocrystalline TiO_2-based photocatalysts. Journal of Physical Chemistry B, 1998, 102: 10871-10878.
    [88] Daneshvar N, Rabbani M, Modirshahla N et al. Kinetic modeling of photocatalytic degradation of acid red 27 in UV/TiO_2 process. Journal of Photochemistry and Photobiology A-Chemistry, 2004, 168: 39-45.
    [89] Sinisa Ivankovic, Marijan Gotic, Mislav Jurin et al. Photokilling squamous carcinoma cells SCCVII with ultrafine particles of selected metal oxides. Journal of Sol-Gel Science and Technology, 2003, 27: 225-233.
    [90] Peyton G R, Glaze W H. Destruction of pollutants in water with ozone in combination with ultraviolet radiation photolysis of aqueous ozone. Environmental Science and Technology, 1988, 22(7): 761-767.
    [91] Chen ChunCheng, Lei Pengxiang, Ji Hongwei et al. Photocatalysis by titanium dioxide and polyoxometalate/TiO2 cocatalysts: intermediates and mechanistic study.Environmental Science and Technology, 2004, 38: 329-337.
    [92] Kovalchuk I, Filkowski J, Smith K et al. Reactive oxygen species stimulate homologous recombination in plants. Plant Cell and Environment, 2003, 26: 153l-1539.
    [93] Dat J, Vandenabeele S, Vranova E et al. Dual action of the active oxygen species during plant stress responses. Cell and Molecular Life Science, 2000, 57: 779-795.
    [94] Fu Y C, Jin X P, Wei S M et al. Ultraviolet radiation and apoptosis: protective role of tea polyphenols. Journal of Toxicology and Environmental Health-Part A, 2000, 61:177-188.
    [95] Shaban A M, E1-Taweel G E, Al G H. UV ability to inactivate microorganisms combined with factors affection radiation. Water Science and Technology, 1997, 35(11): 107-112.
    [96] Dhananjeyan M R, Kandavelu V and Renganathan R. An investigation of the effects of Cu~(2+) and heat treatment on TiO_2 photooxidation of certain pyrimidines. Journal of Molecular Catalysis A-Chemical, 2000, 158(2): 577-582.
    [97] Sen Suchitra, Mahanty S, Roy S et al. Investigation on sol-gel synthesized Ag-doped TiO_2 cermet thin films. Thin Solid Films, 2005, 474(1-2): 245-249.
    [98] Tang H, Prasad K, Sanjines R et al. Electrical and optical of TiO_2 anatase thin films. Journal of Applied Physics, 1994, 75(4): 2042-2046.
    [99] Xin B F, Jing L Q, Ren Z R et al. Effects of simultaneously doped and deposited Ag on the photocatalytic activity arid surface states of TiO_2. Journal of Physical Chemistry B, 2005, 109: 2805-2809.
    [100] Marsac N T and Houmard J. Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. FEMS Microbiology Reviews, 1993, 104: 119-190.
    [101] Asada K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50: 601-639.
    [102] Maness P C, Smolinski S, Blake D M et al. Bactericidal activity of photocatalytic TiO_2 reaction: toward an understanding of its killing mechanism. Applied and Environmental Microbiology, 1999, 65(9): 4094-4098.
    [103] 周明,董金荣,赵开弘.一种防治“水华”和“赤潮”的紫外线控制装置.中国,实用新型专利,02284195.4,2003.1-8.
    [104] Linda A Lawton, Peter K J Robertson, Benjamin J P A Cornish et al. Processes influencing surface interaction and photocatalytic destruction of microcystins on titanium dioxide photocatalysts. Journal of Catalysis, 2003, 213: 109-113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700