用户名: 密码: 验证码:
双辊铸轧薄带钢液位控制、铸轧力模型及工艺优化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,双辊铸轧薄带钢技术作为钢铁工业发展方向的一项新技术,得到了世界钢铁界的广泛重视,但仍需要不断完善以尽快实现工业化生产。在我国虽然双辊铸轧薄带钢技术已经研究很多年,但与国外先进技术水平存在很大的差距。在双辊铸轧薄带钢过程中,液态钢水在很短时间内完成从凝固到成形的过程,工艺参数的可控范围非常窄,工艺参数的微小变化会导致铸带出现严重缺陷,甚至出现轧卡或漏钢事故。所以在双辊铸轧薄带钢过程中若不对相关的工艺参数进行检测和控制,很难保持工艺的稳定,更加不会铸出质量良好的薄带。因此高精度的检测与控制技术是双辊铸轧薄带钢技术能否真正走向产业化的关键。本文对双辊铸轧薄带钢过程中监测系统、熔池液位控制方法、铸轧力模型开发以及工艺参数优化方法进行了研究。研究结果对于双辊铸轧机的过程控制系统的建立具有重要的理论意义和实用价值。
     本文首先分析和研究了双辊铸轧薄带钢工艺参数的检测方法,然后利用西门子工控设备,并结合相关的检测仪表和设备,建立了双辊薄带铸轧机工艺参数监测系统。并对实验数据进行了系统分析,从而为研究双辊铸轧薄带钢的规律性提供可靠的数据。本文的创新点和主要研究内容如下:
     1.在分析了熔池钢水液位系统干扰因素和控制难点的基础上,建立了熔池液位被控对象模型。研究采用主副回路PID控制器、在副回路提出采用微分先行PID控制器控制塞棒液压伺服系统,减少了塞棒的频繁移动。主回路上给出一种适用于熔池液位控制的模糊自适应控制器的设计方法。仿真结果表明,采用上述控制策略时系统响应速度快、鲁棒性强。
     2.根据铸轧实验、通过热平衡计算和模拟相结合的反向方法分段建立了凝固过程中凝壳与铸辊之间热传导系数与铸轧速度、熔池位置之间的关系模型,并根据三维热流耦合有限元分析理论对双辊铸轧薄带钢凝固过程中流场和温度场进行了数值模拟。给出了浇注温度、铸轧速度、熔池液位高度等参数对熔池内流场和温度场的影响规律,为铸轧工艺参数的确定奠定一定的理论基础,并在此基础上提出了一种凝固终点位置控制策略。
     3.在对熔池内金属凝固和变形的机理分析的基础上,以凝固终点为分界点将铸轧区域分为两个求解区域。在液相区、糊状区引入流体力学中Navier-Stokes方程和流函数,分析其流变特性并推导出单位压力分布解析式,在固相区仍沿用热轧模型。在凝固终点位置计算模型中,采用基于贝叶斯方法的前向训练算法建立凝固终点位置计算模型,避免了网络过训练,提高网络的泛化能力。实验表明将上述模型应用于铸轧力计算,具有很高的计算精度。
     4.针对双辊铸轧薄带钢过程中凝固终点位置这一关键参数,在上述建立的凝固终点位置计算模型和化学成份、工艺约束已知的条件下,采用粒子群优化算法对双辊铸轧薄带钢过程中相应的工艺参数进行优化,通过调整相应参数到优化值以达到稳定凝固终点位置的目的,从而为提高双辊铸轧板形和板厚的控制精度,改善铸带表面质量提供条件,同时优化结果得到实验室铸轧实验的验证。
In recent years, twin-roll casting process of steel strip, as a new technology representing the development direction of steel industry, attracts the world-wide attention of the steel researchers. Improvement is still in great need to realize the industrial application. This technology has been investigated for many years in China. However, large gaps are existed between foreign and domestic researches. In the twin-roll casting process, solidification of molten metal is completed rapidly and the process window is in a narrow range. Small variation of the process parameters lead to severe defects of the casting strip, even the stop of work roll and leak of molten steel. Therefore, the measurement and control of process parameters are required to stabilize the casting process, to produce casting strip with good quality and to realize the industrial application. In the present paper, the monitoring system, melt steel level control, rolling force model and processing parameters optimization of twin-roll steel strip casting process are investigated, which provide theoretically and practically basis for establishment of process control system.
     The measuring methods of process parameters were first analyzed and investigated. The monitoring system of twin-roll strip casting was established by the employment of Siemens IPC and related instruments. The experimental data was analyzed systematically, which provide accurate database for study of twin-roll steel strip casting. Some chief original work and conclusions are as follows.
     1. The model of controlled device was established based on the analysis of interfering factors and difficulties of melt steel level system. Major and minor loop PID control was investigated and differential first PID control has been employed at minor loop to reduce frequent movement of stopper. In the major loop the fuzzy self-adaptive PID control strategy was proposed. Simulation results indicate the rapid response and robustness of the system.
     2. According to the experiment results, the relationship between casting speed, location and heat transfer coefficient in different region were established using the inverse method combining the heat balance calculation and simulation. Based on three dimensional finite element coupled analysis theory, a numerical simulation for flow and temperature fields during the solidification of twin-roll steel strip process was conducted. The effects of the pouring temperature, casting speed, liquid surface height in molten pool on the flow field and temperature field have been obtained to provide theoretical basis for the determination of the processing parameters. And a strategy of position of kisspoint was proposed.
     3. Based on analysis of solidification and deformaion mechanism in the molten pool, twin-roll casting can be divided into two zones by kiss point position. Navier-Stokes equation in fluid mechanics and stream function were introduced to analyze the rheological properities of liquid zone, mushy zone and deduce the analytic equation of average unit compression stress distribution, In the solid zone, the traditional hot rolling model was still used. In calculation of kiss point position, Bayesian regularization was applied to the training of feed forward neural networks to avoid "over-fitting" and improve the generalization ability. The models mentioned above were applied to the calculation of rolling force, which has exhibited high precision.
     4. In order to improve the flat, gage control precision and surface quality of casting strip, optimization of processing parameters based on kiss point position calculation model, was conducted using the particle swarm optimization method under the condition that the chemical composition and process constraints were set. The result shows that the optimized results were in good agreements with experimental one.
引文
[1]Hendrichs C. Strip casting technology—a revolution in the steel industry?[J], MPT International, 1995,18(3):42-49.
    [2]Shibuya K, Ozawa M. Strip casting techniques for steel[J], ISIJ International,1991,31(7):661-668.
    [3]Klaus S. Benefits, challenges and limits in new routes for hot strip production[J], ISIJ International, 1998,38(8):852-861.
    [4]Robson A L, Wilkinson J, Thompson G L. Developments in twin roll direct strip casting [A],2nd European Continuous Casting Conference Proceedings,1994, 1(6):443-450.
    [5]Zhang S X, Myo H M, Lim K B. Processing of thin metal strip by casting-cum-rolling[J], Journal of Materials Processing Technology,2007,.192(4):101-107.
    [6]Reichelt W, Urlau U, Burstroem E, et al. Direct strip casting concept-a low-cost, high-productivity solution for flat products of all steel grades[A], Steelmaking Conference Proceedings,1996,24-27: 715-722.
    [7]Manohar P A, Ferry M, Hunter A. Direct strip casting of steel-historical perspective and future direction[J] Materials Forum,2000,24:19-36.
    [8]Kopp R, Albrecht F U, Hentschel L, et al. Technological challenges of the twin-roll strip casting process[A], Proceedings of the International Conference on Thermomechanical Processing of Steels and Other Materials, THERMEC'97,1997,2201-2208.
    [9]邸洪双.双辊铸轧薄带钢的理论与实验研究[D],沈阳:东北大学,1998.
    [10]Rolf W S, Dieter S, Christoph M, et al. Direct strip casting on the Myosotis Industrial pilot plant[J], MPT International,1997,3:78-82.
    [11]Strezov L, Herbertson J. Experimental studies of interfacial heat transfer and initial solidification pertinent to strip casting[J], ISIJ International,1998,38(9):959-966.
    [12]Shin Y K, Kang T, Reynolds T, et al. Development of twin roll strip caster for sheet steels [J], Ironmaking and Steelmaking,1995,22(1):35-44.
    [13]Masao Y, Hiroshi Y. Thin strip casting of Ni base alloys by twin roll process[J], ISIJ International, 1995,35(6):778-783.
    [14]Brian G. THOMAS, Issues in thermal-mechanical modeling of casting process[J], ISIJ International, 1995,35(6):737-743.
    [15]Miyake S, Yamane H, Yukumoto M, et al. Strip quality of highly alloyed metals by twin roll casting[J], ISIJ International,1991,31(7):689-695.
    [16]Buechner A R, Schmita J W. Thin-strip casting of steel with a twin-roll caster-discussion of product defects of approximately equals 1mm-Fe6%Si-strips[J], Steel Research,1992,63(1):7-11.
    [20]Mizoguchi T, Miyazawa K. Formation of solidification structure in twin roll casting process of 18Cr-8Ni stainless steel[J], ISIJ International,1995,35(6):771-777.
    [21]Nikolai Z. Effect of coiling operation on strip quality of 4.5%Si steel in twin-roll casting process[J], ISIJ International,1999,39(5):463-470.
    [22]Mizoguchi T, Miyazawa K, Ueshima Y, Relation between surface quality of cast strips and meniscus profile of molten pool in the twin roll casting process[J], ISIJ International,1996,36(4):417-423.
    [23]Santos C A, SpimJr J A, Garcia A. Modeling of solidification in twin-roll strip casting[J], Journal of Materials Processing Technology,2000.102 (3):33-39.
    [24]Goryczka T, Martensitic transformation in Ni-Ti-Co strip produced by twin roll casting [A], Materials Science and Engineering:2008,25:481-482,25.
    [25]Spinelli J E, Tosetti J P, Santos C A, et al. Microstructure and solidification thermal parameters in thin strip continuous casting of a stainless steel[J], Journal of Materials Processing Technology,2004,50 (3):255-262.
    [26]Yasunaka H, Taniguchi K, Kokita M, et al. Surface quality of stainless steel type 304 cast by twin-roll strip caster[J], ISIJ International,1995,35(6):784-789.
    [27]Kuniaki O, Setsuo U, Takeya T, et al. Superplasticity of a duplex stainless steel produced by a direct strip casting technique[J], Transactions ISIJ,1988,28(8):16-22.
    [28]Takuda N, Kikuchi S, Hatta N, et al. Mechanical properties of type 304 stainless steel sheet produced by twin-roll strip casting process[J], Steel research,1993,64(2):132-135.
    [29]Takashi Y, Takayaki N, Morihiro H, et al. Characteristics of stainless steel strip cast by twin rolls[J], Transactions ISIJ,1988,28(8):23-27.
    [30]Yang K,Yamamoto K,Takatani H, et al. Developments of twin-drum strip caster for stainless steel[A],2nd European Continuous Casting Conference Proceedings,1994,1(6):423-427.
    [31]李福琴,郑国强,张毅等,液态金属直接轧制薄板概述[J],特殊钢,1985,8(5):58-63.
    [32]Tonelli R, Sartini L, Capotosti R. et al. Recent developments of twin-roll strip casting process at AST Terni Steel Works[A],2nd European Continuous Casting Conference Proceedings,1994,1(6):428-434.
    [33]Robson A L, Thompson G L. Direct casting of thin strip[J], Materials World,1995, (3):222-224.
    [34]高少平,唐晓燕,杜锋,薄带钢连铸技术发展的现状及展望[J],上海金属,1997,19(2):9-14.
    [35]Tolve P, Tonelli R, Capotosti R, et al. Strip casting at ACCIAI Speciali Terni[A], International Conference on Thermomechanical Processing of Steels & Other Materials,1997,2240-2249.
    [36]Robson A L, Thompson G L, Longdon P, et al. Twin roll casting studies at British Steel[A], Proceedings of the International Conference on Thermomechanical Processing of Steels and Other Materials, THERMEC'97,1997,2263-2277.
    [37]Mohri M, Onishi K, Yamada K, et al. Strip casting trials at Hachinohe[A], Proceedings of the International Conference on Thermomechanical Processing of Steels and Other Materials, THERMEC'97,1997,2292-2298.
    [38]Nystrom R, Reichelt W, Dubke M. Strip casting experiences at MEFOS[J], Scandinavian Journal of Metallurgy,2000,29(3):93-100.
    [39]Blejde W, Fukase H, Mahapatra R. Recent development in Project"M"—the joint development of low carbon steel strip casting by BHP and IHI[J], Materials World,1995,3:176-181.
    [40]Lee Y G, Park C M, Chung H T, et al. Development of strip casting process at POSCO[J], Materials World,1995,3:168-175.
    [41]Kopp R, Hagemann F. Strip casting at IBF-state of the art[J], CAMP-ISIJ,2001, (14):406-407
    [42]邸洪双,薄带连铸技术发展现状与展望[J],河南冶金,2005,13(1):3-47.
    [43]Yamada M, Isogami K, Hosoda H, et al. World's first commercial twin drum strip casting process at Hikari Works of Nippon Steel Corporation[J], Steel World,2002,7:49-54.
    [44]邸洪双.铸轧M2薄带的生产工艺和组织性能的研究[D],硕士学位论文,沈阳:东北工学院,1985.
    [45]金仁杰.双辊液态铸轧凝固传热数学模型的分析[D],硕士学位论文,沈阳:东北工学院,1986.
    [46]王成山.连续铸轧高速钢(M2)薄板的实验研究[D],硕士学位论文,沈阳:东北工学院,1988.
    [47]韩华伟.异径双辊薄带连铸熔池中流动及传热特性的研究[D],硕士学位论文,沈阳:东北大学,1997.
    [48]金珠梅.双辊铸轧工艺中流动传热问题的仿真模拟研究[D],博士学位论文,沈阳:东北大学,1999.
    [49]张晓明,邸洪双,苗雨川等.双辊铸轧高速钢薄带实验研究[C],2001中国钢铁年会论文集,2001,81-84.
    [50]苗雨川,邸洪双,张晓明等.双辊铸轧不锈钢薄带的三维有限元数值模拟[J],金属学报,2000,36(10):1109-1112.
    [51]张晓明,苗雨川,刘相华等.薄带铸轧过程中微观偏析的模拟[J],东北大学学报,2001,22(2):162-164.
    [52]张晓明,邸洪双,刘相华等.双辊铸轧高速钢薄带的组织及退火过程中碳化物球化机理[J],东北大学学报,2002,23(11):1097-1100.
    [53]倪思康,双辊式薄带连铸工艺研究[J],上海金属,1994,16(2):13-19.
    [54]吴卫平,许嘉龙,庞克昌等,双辊式薄带连铸传热过程数学模型和计算机模拟[J],上海钢研,1992,16(5):32-44.
    [55]王勇勤,王世耕,周守则等,SBL-1型双辊式薄带连铸试验机的研制[J],重型机械报,1993,8(3):46-49.
    [56]杨明波,潘复生,丁培道,铸造速度对双辊薄带凝固组织影响的模拟预测[J],铸造技术2005,26(5):384-387.
    [57]朱丽业.薄带连铸熔池钢水液位检测与控制系统的研究[D],上海:上海交通大学,2005.
    [58]方志宏,徐明,朱丽业等,薄带连铸中CCD液位传感器的快速安装及精确定位技术[J],机械研究与应用2005,18(5):103-105.
    [59]Wechsler R. The status of twin-roll casting technology[J],Scandinavian Journal of Metallurgy,32 (2003):58-63.
    [60]李朝锋,邸洪双,张晓明等.侧封对双辊铸轧薄带钢工艺稳定性及铸带质量的影响[J],钢铁研究学报,2002,14(2):68-71.
    [61]胡林,赵连钢,段振虎等.双辊铸轧薄带工艺中的相关技术[J],轧钢,2004,21(1):34-37.
    [62]高斌,杨堔盛.基于PC-单片机的主从式快速铸轧在线监测系统[J],制造业自动化,2003,25(4):35-37.
    [63]张简.双辊铸机参数监测及控制系统研究[D],重庆:重庆大学,2003.
    [64]周俊峰,谭建平.超薄快速铸轧分布式控制系统[J],制造业自动化,2005,27(2):60-63.
    [65]齐春雨,邸洪双,张晓明等,双辊铸轧薄带钢工艺参数监测系统的建立与结果分析[J],检测与仪表,2005(2):48~50.
    [66]朱丽业,吴惕华,方园等,薄带连铸熔池液位的模糊控制[J],计算机仿真2004,21(11):187-190.
    [67]朱丽业,方志宏,吴惕华等,采用CCD传感器测量连铸熔池液位[J],自动化仪表.2004,25(12):31-34.
    [68]周俊峰,谭建平.一种扫描式铸轧板带凸度检测方法[J],机电一体化,2006,27(5):60-63.
    [69]王文明,钟掘.基于自适应滤波的铸轧板形检测信号分析[J].中国有色金属学报,2001,11(6):1013-1016.
    [70]孙斌煜.板带铸轧理论与技术[M],北京:冶金工业出版社,2002.
    [71]朱志华,肖文锋,李晓谦.双辊连续铸轧过程中轧制界面接触压力切块法建模与数值模拟[J],中国机械工程,2002,13(13):1091-1094.
    [72]Hong K S, Kim J G, Tomizuka M. Control of strip casting process:decentralization and optimal roll force control[J], Control Engineering Practice 2001 (9):933-945.
    [73]孙斌煜,张洪,孙航临.流变函数在铸轧变形理论分析中的应用[J],中国有色金属学报,1993,9(1):115-117.
    [74]Berhard S, Rake H, Process control of a laboratory plant for direct casting of thin steel strips[A], Proceedings of the IEEE Conference on Control Applications.1994,24-26:1783-1788.
    [75]Asano K, Kaji T, Aoki H, et al. Robust molten steel level control for continuous casting[A], Proceedings of the 35th IEEE Conference on Decision and Control 1996,2(2):1245-1250.
    [76]Kong F, Keyser R.D. Identification and control of mould level in continuous casting[A], Proceedings 2nd IEEE Conference on Control Application, Vancouver. B.C,1993,53-58.
    [77]Graebe S F, Goodwin G C, West M.R. et al. An application of advanced control to steel casting[A]. IEEE Conference on Control Application,1994,1533-1538.
    [78]Lee D, Kim Y H, Lee D S. Adaptive fuzzy controller for excess-loop length control in a strip-casting process[A],IEEE Conference on Control Applications-Proceedings,1998,2 (1-4):807-811.
    [79]Hong K S, Kim S H, Lee K I. An integrated control of strip casting process by decentralization and optimal supervision[A], Proceedings of the American control conference,1998,723-727.
    [80]Joo M G, Kim Y H, Kang T, Stable adaptive fuzzy control of the molten steel level in the strip casting process[A], IEE Proceedings-Control Theory and Applications,2002 149(5):357-364
    [81]Omura K, Otsuka Y, Konishi M. Diagnostic experct system for mould level control equipment in continuous caster[A], Proceedings the 6th International Iron and Steel Congress,1990:62-68
    [82]Park Y,Hyungsuck C.A fuzzy logic controller for the molten steel level control of strip casting processes[J], Control Engineering Practice 2005 (13):821-834.
    [83]Hesketch T, Kondo T, Mita T, et al. Development of mould level control in continuous casting by H∞ control theory [A],Proceeding 1994 Steelmaking Conference,1994:319-327.
    [84]Nikolai Z, Mihail V, Effect of technological factors on strip profile in twin-roll casting process[J], ISIJ International,1998,38(10):1107-1113.
    [85]Kasama A.et al. Twin drum casting process for stainless steel strip[A],Near Net Shape Casting, Conf. Proc,1990,643-652.
    [86]Kang C Q Kim Y D. Model experiments for the determination of the heat-transfer coefficient and transition thermal analysis in the direct rolling process [J], Journal of Materials Processing Technology 199884(1-3):210-224.
    [87]苗雨川,邸洪双,张晓明等.双辊铸轧不锈钢薄带的三维有限元数值模拟[J],金属学报,2000,36(10):1109-1112.
    [88]Kima W S, Kimb D S, Kuznetsovc A V. Simulation of coupled turbulent flow and heat transfer in the wedge-shaped pool of a twin-roll strip casting process[J], International Journal of HEAT and MASS TRANSFER 2000 43(20):3811-3822.
    [89]Zhang X M, Jiang Z Y, Yang L M, et al. Modeling of coupling flow and temperature fields in molten pool during twin-roll strip casting process[J], Journal of Materials Processing Technology 2007 188(1):339-343.
    [90]Launder B E, Spalding D B. The numerical computation of turbulent flows[J], Computer Methods in Applied Mechanics and Engineering,1974,3(2):269-289.
    [91]小菊史男,等.高硅素鋼急冷薄带の凝固と特性[J],铁と钢,1985,71(10):A229-A232.
    [92]Fujita Y, Sato H, Kitagawa T, et al. Solidification and roll-bonding of shells in twin-roll casting process[J], ISIJ International,1989,29(6):495-523.
    [94]Saitoh T, Hojo H, Yanguchi H, et al. Two-dimensional model for twin-roll continuous casting[J], Metallurgical Transactions B,1989,20(6):381-390.
    [95]Seyedein S H, Hasan M. Numerical simulation of turbulent flow and heat transfer in the wedge-shaped liquid metal pool of a twin-roll caster[J], Numerical Heat Transfer, Part A:Applications, 1997,31(4):393-410.
    [96]Hwang J D, Lin H J, Hwang W S, et al. Numerical simulation of metal flow and heat transfer twin roll strip casting [J], ISIJ International,1995,35(2):170-177.
    [97]Manish G, Yogeshwar S. Mathematical modeling of fluid flow, heat transfer, and solidification in two-roll melt drag thin strip casting of steel[J], ISIJ International,2000,40(2):144-152.
    [98]秦永健,孙国雄,虞维平等.双辊式薄带连铸二元合金流动与凝固的数值模拟[J],东南大学学报,1995,25(4A):112-117.
    [99]崔小朝,史荣,曾建潮.变形体凝固传热焓式有限元数学模型与过程仿真[J],系统仿真学报,1997,9(4):29-34.
    [100]Tavares R P, Guthrie R L. Computational fluid dynamics applied to twin-roll casting[J],Canadian Metallurgical Quarterly,1998,37(3-4):241-250.
    [101]王建辉,徐林,闫勇亮等.改进粒子群算法及其对热连轧机负荷分配优化的研究[J],控制与决策2005,20(12):1379~1383.
    [102]Saito Y. Modelling of microstructural evolution in thermo-mechanical processing of structural steels [J],Materials science and Engineering 1997, A223, (1-2):134-145.
    [103]Mahfouf M, Jamei M, Linkens D A. Optimal design of alloy steels using multiobjective genetic algorithms[J]. Materials and Manufacturing Processes,2005,20(3):553-567.
    [104]Dobrzanski L A, Kowalski M, Madejski J. Methodology of the mechanical properties prediction for the metallurgical products from the engineering steels using the artificial intelligence methods [J]. Journal of Materials Processing Technology,2005,164-165 (1-3):1500-1509.
    [105]梁小平,丁培道,潘复生等.双辊薄带连铸的极限工艺参数计算[J],钢铁(增),1999,34(10):619-620.
    [106]蔡梅琳,伍钦,曾朝露等.计算机在线自动检测系统中提高热电偶信号检测精度和抗干扰的策略[J].电子技术应用,999,(6):18-20.
    [107]李挺.机电一体化系统的抗干扰措施[J],机电工程,2000,17(6):5~6.
    [108]曲梅,测量数据的自动处理[J],自动化与仪表,1999,14(5):6-58.
    [109]鞠儒生,王辉/一种数据采集与控制装置[J],电气传动自动化2001,23(8):44~45
    [110]喻廷信.轧制测试技术[M],北京:冶金工业出版社2002
    [111]刘长年.液压伺服系统优化设计理论[M],北京:冶金工业出版社,1989.
    [112]臧怀泉,黄镇海,尹汝泼等.液压伺服系统建模的新方法[J],计算机仿真2002,19(5):53~55
    [113]郭戈.连铸过程建模与控制方法的研究[D],沈阳:东北大学,1998.
    [114]张殿华.热带钢连轧活套和张力的智能控制[D],沈阳:东北大学,2003.5.
    [115]薛定宇陈阳泉基于MATLAB/Simulink的系统仿真技术与应用[M],北京:清华大学出版社,2002.
    [116]Tavares R P, Isac M, Guthrie R L. Roll-strip interfacial heat fluxes in twin-roll casting of low-carbon steels and their effects on strip microstructure[J], ISIJ international,1998,38(12):1353-1361.
    [117]Strezov L, Herbertson J. Experimental studies of interfacial heat transfer and initial solidification pertinent to strip casting[J], ISIJ International,1998,38(9):959-966.
    [118]陶文栓.数值传热学[M],西安:西安交通大学出版社,1988.
    [119]陈矛章.粘性流体动力学理论及紊流工程计算[M],北京:北京航空学院出版社,1986.
    [120]熊勇刚,谭建平,李小东.超薄快速铸轧轧制压力分布计算[J],中国有色金属学报,2005,15(8):1243-1247.
    [121]王国栋,刘相华.金属轧制过程人工智能优化[M],北京:冶金工业出版社,2000,21-137.
    [123]Masazumi H, Katsuhiro T, Yuji Y. Effect of chemical composition on apparent viscosity of semisolid alloys[J],ISIJ International 1993,33(11):1182-1189.
    [124]罗中华,张质良,李雄.半固态表观粘度的两段半抛物线拟合插值法[J],上海交通大学学报,2003,37(7):1077-1080.
    [125]孙一康.带钢热连轧的模型与控制[M],北京:冶金工业出版社,2002.
    [126]张铃,张钹.人工神经网络理论及应用[M],浙江:浙江科学技术出版社,1997.50-58.
    [127]魏东,张明廉,蒋志坚等.基于贝叶斯方法的神经网路非线性模型辨识[J],计算机工程与应用,2005,(11):5-11.
    [128]Penny W D, Roberts S J. Bayesian neural networks for classification:how useful is the evidence framework[J],Neural Networks,1999,12:877-892.
    [129]Li J, Huang Y L. Bayesian-based on-line applicability evaluation of neural network models in modeling automotive paint spray operations[J], Neural Networks,2006,30(19).1392-1399.
    [130]Foresee F D, Hagan M T. Gauss-newton approximation to bayesian learning[A],In:Proceedings of the International Conference on Neural Networks,Houston, Texas,1997.
    [131]Thodberg H H, A review of bayesian neural networks with an application to near infrared spectroscopy[J], IEEE Transactions on Neural Networks,1996,7(1):56-72.
    [132]Mackay D J C. A practical bayesian framework for backpropagation networks[J],Neural Computation, 1992,4(3):448-472.
    [133]Martin T H, Mohammad B M. Training feedforward networks with the marquardt algorithm[J], IEEE Transactions on Neural Networks,1994,5(6):989-993.
    [134]刘兴刚,丛德宏,郝丽娜等.基于数据库的神经网络轧制力建模[J],系统仿真学报,2005,17(1):7~10.
    [135]Ray P K, Ganguly R I, and Panda A K:Mater. Sci. Eng., A346 (2003),122.
    [136]J. Malas III et al:Metall. Mater. Trans.28A (1997),1921.
    [137]干勇,刘正东,王国栋等.组织性能预报系统在宝钢2050热轧生产线的在线应用[J],钢铁,2006,41(3)39-43.
    [138]谭文,刘振宇,吴迪等.热轧中厚板冲击功的神经网络预报模型[J],钢铁,2007,42(2):51-55.
    [139]许云波,刘相华,王国栋等.热轧中厚板组织-性能预测及软件开发[J],2006,41(3):51-54.
    [140]Kennedy J, Eberhart R. Particle swarm optimization[A], IEEE International Conference on Neural Networks[C] Piseataway,NI:IEEE Service,1995,1942-1948..
    [141]Liu Z, Wang G, Gao W, Prediction of the mechanical properties of hot-rolled C-Mn steels using artificial neural networks[J], Journal of Materials Processing Technology,1996,57:332-336.
    [142]Parsopoulos K E, Vrahatis M N. Particle swarm optimization method in multiobjective problems[C], Proceedings of the ACM Symposium on Applied Computing, Madrid, Spain:Association for Computing Machinery,2002:603-607.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700