用户名: 密码: 验证码:
AZ31镁合金铸轧板材热变形行为及其温热拉深工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的镁合金薄板主要采用热轧和挤压方法生产,’其工艺流程长、成材率低、成本高、价格昂贵。因此,采用高效、短流程的铸轧技术来生产高质量的镁合金板坯成为未来镁合金板材生产的一个主流。然而,目前还没有对镁合金铸轧板塑性变形行为进行系统研究以及直接冲压成形性能研究报道。为探索一条铸轧镁合金薄板直接冲压成形的高效、短流程深加工道路,推进镁合金工业发展,本文对铸轧镁合金铸轧板的热塑性成形进行了系统地试验研究与理论分析,并进一步研究了其温热拉深工艺。
     铸轧板坯材料中存在高固相率且尺寸细小的半固态组织,其固相颗粒以网络结构与聚合体形式存在,在高温下变形且应变量超过临界应变时,网络结构与聚合体被打破,固相晶粒发生滑动、转动和换位现象。本文针对这一特点,从金属非晶的非牛顿流体粘塑性理论出发,考虑半固态固相颗粒在变形中可以发生滑动、转动和换位,运用混合法则,将铸轧镁合金中滑移、孪生变形结合起来,得到铸轧镁合金的半固态混合流变应力方程。该流变应力模型分为两种情况,当Zener-Hollomon参数Z小于临界值Z0=1.54E11时,高温下滑移是其主导变形机制;当Zener-Hollomon参数Z大于临界值Z0=1.54E11时,即低温下孪生成为主导变形机制。将J.J.Janas (滑移变形机制)经典模型、M.R.Bamett(低温孪晶)应力模型和本模型进行比较,结果表明,在低Z值高温区,J.J.Janas经典模型出现较大的偏差,而本文新模型计算结果与实测结果符合得很好。在高Z值低温区,J.J.Janas经典模型的计算值与实测值偏差进一步扩大,而M.R.Barnett孪晶应力模型和本文新模型都表现了很高的精度,本文新模型的精度略高于M.R.Barnett孪晶应力模型。这说明,半固态混合流变应力模型是合理的,更能反映铸轧镁合金的变形特点。
     针对仅根据材料热加工图来制定材料热加工工艺参数得到的工艺笼统、不具体的问题,本文建立了热加工图、有效扩散系数变化图、激活能与变形速率和变形温度的三维变化图,提出了综合以上三种变化图,进行材料热加工工艺最优化的新型分析方法。利用该方法,得到的铸轧镁合金的最佳热加工工艺参数如下:a)变形温度568~603K,变形速率7×10-3~2×10-3s-1之间,适合高温蠕变成形。b)变形温度583~613K,应变速率0.07~0.7s-1,适合锻造、挤压和轧制。c)变形温度538~553K,应变速率0.001~0.002s-1之间,适合温热冲压成形。本文的分析方法同样适合其它金属材料的热加工工艺的制定。
     镁合金在高温下变形时,动态再结晶容易产生,造成强烈的软化现象,基于Fields-Backofen材料模型的拉深工艺压边力计算公式不再适用。本文在新流变应力模型的基础上,采用能量法对铸轧镁合金板圆筒件拉深过程压边力公式进行推导,得到了适合铸轧镁合金的防皱最小压边力的工程计算方程。利用该方程计算的应力值在各个温度段都与实测值符合得较好。另外,针对实际生产情况,采用三段式变压边力方法对镁合金板料进行热拉深证明,变压边力可以提高板料的极限拉深比。
     针对AZ31B铸轧镁合金板材温热拉深性能差的问题,结合镁合金动态与静态再结晶动力学模型理论,提出了预变形温热拉深工艺。正交实验发现,该工艺中,预变形量成为拉深成形中的主要影响因素;得到最佳工艺参数为:冲头速度45mm/min,预变形量16%,成形温度220℃。对AZ31B铸轧镁合金板材在20-220℃进行预变形温热拉深实验研究发现:预变形使铸轧镁合金板材的拉深性能明显改善,220℃成形可得到极限拉深比LDR=2.26的完整的圆筒件,而未经预变形处理的LDR仅为1.55;使AZ31B铸轧镁合金板材具有最佳拉深性能的冲头温度范围在20-95℃之内;成形温度选择在160~220℃范围内,铸轧镁合金板材具有良好的拉深性能,极限拉深比可达到2.26;随着拉深成形温度的升高,工件中动态再结晶晶粒数量逐渐增加,220℃拉深成形时工件中再结晶晶粒分布趋于均匀。
The conventional magnesium sheets mainly manufactured with the hot-rolling and extrusion, and which have the long flow of process, low efficiency, high cost and price. Recently, as the breach of the process in the twin-roll cast (TRC), the technology of twin-roll cast with high efficiency and short flow process are becoming the mainstream of the manufacture of magnesium sheets. However, the plastic deformation behaviors of TRC-Mg sheets hadn't been systemic research, and there weren't the reports of the study about the direct deep-drawing performance of TRC-Mg sheets. In order to explore a high efficiency and short low process way of the direct deep-drawing TRC-Mg, and boost the industry of magnesium, we investigated the thermo-plasticity deformation behaviors and the process of warm deep-drawing of TRC-Mg sheets.
     Since there are fine and high solid fraction semi-solid structure grains in the TRC-Mg sheet, the solid particles constitute a network and aggregation. The construction of network and aggregation will be breakout when the strain up to critical strain during the high temperature deformation, and the phenomena of gliding, wheeling and transposition appear among the solid particles. So we considered that the phenomena of gliding, wheeling and transposition which appear among the solid particles in the hot deformation, based on the non-Newtonian shear viscosity model of amorphous metals, using the mixture law to mix the slid and twin, we got the semi-solid metal mixture flow stress model for the TRC-Mg. The new mixture flow stress model could serve as two conditions. When the Zener-Hollomon parameter (Z) is less than the critical value Zo (1.54E11), the dominant mechanism of TRC-Mg is slip. When the Zener-Hollomon parameter (Z) is higher than the critical value Zo (1.54E11), the dominant mechanism of TRC-Mg is twining. Comparison with the J.J.Jonas (based on the mechanism of slip) and M.R.Barnett (based on the mechanism of twin at low temperature) models indicated that the simulated stress-strain curves calculated by J.J.Jonas model occurred biggish error in the low Z region, and our new mixture model shown fitting the experiment data very well. In the high Z region, the error of calculated by J.J.Jonas model ascended, but M.R.Barnett and the new mixture model also shown the high precision. And the new mixture model was more accurate than M.R.Barnett model. The mentioned above means that the new semi-solid mixture model is reasonable and it can reflect the deformation characteristic of the TRC-Mg.
     Generally, the processing map was used to establish the working parameters of the materials. Whereas the working parameters obtained by the processing map is rough. In order to obtain the precise working parameters, the processing map, the effective diffusion coefficient and activation energy map of the alloy were established. Combining the processing map, effective diffusion coefficient and activation energy map obtained the optimum conditions for thermo-mechanical processing. The optimum conditions are as follows:a) At temperature range of 568K to 603K and the strain-rate range from 7×10-3 to 2×10-3S-1. It adapt to the high temperature creep forming. b) At the temperature range of 583K to 613K and the strain-rate range from 0.07 to 0.7 S-1. It adapt to the forging, extrusion and rolling. C) At temperature range of 538K to 553K and the strain-rate range from 0.001 to 0.002S-1. It adapt to the warm deep-drawing. This analysis way is adapted to establish hot working parameters of others metal materials.
     The dynamic recrystallization (DRX) can be generated easily during the high temperature deformation for the magnesium alloys. It resulted in the sharp soften phenomena. So the calculating equation of blank holder force (BHF) based on the Fields-Backofen materials model wasn't fit to the deep-drawing of TRC-Mg sheets. In order to optimized control the BHF in the process of deep-drawing cylinder parts, the variable BHF engineering equation of the curve of minimum wrinkles of TRC-Mg sheets was concluded out by the aid of consulting correlative energy conversation theorem, which based on the new flow stress model. The calculated data using the new model fit the tested data very well when the TRC-Mg blank deep-drawing at the temperature from low temperature to high temperature. In addition, according to the practical working-condition, the three segment way of load variable BHF was adopted to the hot deep-drawing of TRC-Mg sheets. The results revealed that limit drawing ratio (LDR) of the TRC-Mg sheets can be improved by loading the variable BHF.
     To solve the problem of the poor warm deep drawability of twin-roll cast AZ31B Mg alloy sheet, a warm deep drawing process by utilizing a pre-forming approach which based on the theoretics of dynamic recrystallization (DRX) and static recrystallization was proposed. Orthogonal test design for optimization the working parameters shown that the influence of the pre-forming had become the main factor in the deep-drawing of TRC-Mg sheets. And obtained the optimization working parameters were as follows:punch velocity 45mm/min,strain of pre-forming 16 %,eformation temperature 220℃. The warm deep-drawing experiments of twin-roll cast AZ31B Mg alloy sheets were examined by utilizing a pre-forming approach at temperature range from 20 to 220℃. It is indicated that the deep drawing performance has been significantly improved by utilizing a pre-forming approach. The punch temperature range of 20-95℃was recommended to obtain the best drawability for the twin-roll cast AZ31B Mg alloy sheet. It is found that the twin-roll cast AZ31B Mg alloy sheet was of good deep drawability at forming temperature range of 160-220℃with the higher limit drawing ratio up to 2.26. The dynamic recrystallization (DRX) grains of the workpieces increased gradually with the increase of temperature. And the DRX grains distribution of the materials was more well-distributed, when the workpieces obtained at temperature of 220℃.
引文
[1]左铁镛.中国镁及镁合金发展战略[J].科学中国人.2006,(2):28-29
    [2]殷建华.世界镁工业的发展与前景[J].世界有色金属,2005,(7):59-66
    [3]王凤娥.国内外镁合金材料专利的分析[J].轻合金加工技术,2006,34(3):7-10
    [4]卢晨,卫中山.镁合金的研究与应用进展[J].汽车工艺与材料,2005,(9):1-3
    [5]王渠东,丁文江.镁舍金研究开发现状与展望[J].世界有色金属,2004,(7):8-11
    [6]B.L. Mordike, T. Ebert. Magnesium Properties -applications-potential [J]. Materials Science and Engineering A,2001,302(1):37-45
    [7]E. Aghion, B. Brontin, D. Eliezer. The role of the magnesium industry in protecting the environment [J]. Journal of Materials Processing Technology [J].2001,117(3):381-385
    [8]F. A. Slooff, J. Zhou, J. Duszczyk, L Katgerman. Constitutive analysis of wrought magnesium alloy Mg-AI4-Zn1 [J]. Scripta Materialia,2007,57(8):759-762
    [9]M. T. Perez-prado, J. A. Delvalle, A Ruano. Effect of sheet thickness on the microstructural evolution of an Mg AZ61 alloy during large strain hot rolling [J]. Scripta Materialia,2004, 50(5):667-671
    [10]娄花芬,李周,李宏磊.变形镁合金连续铸轧技术研究进展[J].材料导报,2005,19(4):58-60
    [11]余琨,黎文献,王日初,等.变形镁合金研究、进展及应用[J].中国有色金属学报,2003,13(2):277-287
    [12]王渠东,丁文江.镁合金及其成形技术的国内外动态与发展[J].世界科技研究与发展,2004,26(3):39-46
    [13]张佩武,夏伟,刘英,等.变形镁合金成形工艺研究及其应用[J].材料导报,2005,19(4):82-85
    [14]H. Friedrich, S. Schumann. Research for a "new age of magnesium" in the automotive industry [J].Journal of Materials Processing Technology,2001,117(3):276-281
    [15]陈振华,夏伟军,严红革,等.镁合金材料的塑性变形理论及其技术[J].化工进展,2004,23(2):127-135
    [16]A. Staroselsky, L. Anand. A constitutive model for hep materials deforming by slip and twinning:application to magnesium alloy AZ31B [J]. International Journal of Plasticity,2003, 19(10):1843-1864
    [17]黎文献.镁及镁合金[M].长沙:中南大学出版社,2005
    [18]OscarA.Ruano, JeffreyWadsworth, Oleg D. Sherby. Deformation of fine-grained alumina by grain boundary sliding accommodated by slip [J]. Acta Materialia,2003,51(12):3617-3634
    [19]范立坤,于彦东,曾小勤,等.镁合金板料拉深技术现状[J].轻合金加工技术,2005,33(9):6-11
    [20]张士宏,王忠堂,徐永超.镁合金板件温热冲压技术[J].机器工人,2006,(3):22-25
    [21]刘志民,王红阁,邢书明,等.短流程制备镁合金板材的研究进展[J].材料导报,2008,22(7):96-98
    [22]YANG Yong-biao, WANG Fu-chi, TAN Cheng-wen, et al. Plastic deformation mechanisms of AZ31 magnesium alloy under high strain rate compression [J]. Trans. Nonferrous Met. Soc. China,2008,18(5):1043-1046
    [23]HOU Li-feng, WEI Ying-hui, LIU Bao-sheng, et al. Microstructure evolution of AZ91D induced by high energy shot peening [J]. Trans. Nonferrous Met. Soc. China,2008, 18(5):1053-1057
    [24]YANG Lian-fa, MORI K, TSUJI H. Deformation behaviors of magnesium alloy AZ31 sheet in cold deep drawing [J]. Trans. Nonferrous Met. Soc. China,2008,18(1):86-91
    [25]李铮,赵凯,邸洪双,等.双辊铸轧法生产变形镁合金薄带新工艺的研究[J].轻金属,2003,(12):35-37
    [26]李永林,李铮,邸洪双,等.AZ31镁合金薄带直接铸轧新工艺[J].轻合金加工技术,2004,32(7):15-17
    [27]陈洪美.铸轧镁合金的变形工艺及其组织和力学性能的研究[D].山东大学博士论文,2009
    [28]R.Kopp, F.Hagemann,L. Hentschel, et al.Thin-strip casting-modelling of the combined Casting:metal-forming process[J].Journal of Materials Processing Technology,1998,80-81: 458-462
    [29]N. Zapuskalov. Effect of coiling operation on strip quality of 4.5%Si steel in twin-roll casting process[J].ISIJ international,1999,39(5):463-470
    [30]李英虹,许光明,郑佳伟,等.双辊铸轧-热轧镁合金组织的试验研究[J].轻合金加工技术,2006,34(11):28-31
    [31]翁文凭,闰蕴琪,陈琦,等.双辊铸轧镁合金板坯微观组织特征[J].特种铸造及有色合金,2007,27(11):827-828
    [32]丁培道,蒋斌,杨春楣,等.薄带连铸技术的发展现状与思考[J].中国有色金属学报,2004,14(1):192-196
    [33]娄花芬,汪明朴,唐宁,等.AZ31B镁合金的铸轧组织及其相关变形机制[J].中国有色金属学报,2008,18(9):1584-1589
    [34]冯康,赵红阳,胡林,等.双辊铸轧AZ31 B镁合金薄板的均匀化退火工艺[J].材料热处理,2007,36(8):4-8
    [35]娄花芬,汪明朴,马可定,等.轧制及退火处理对铸轧态AZ31镁合金组织的影响[J].材料热处理学报,2008,29(1):62-65
    [36]H. Watari, N. Koga, K. Davey, et al. Warm deep drawing of wrought magnesium alloy sheets produced by semi-solid roll strip-casting process [J]. International Journal of Machine Tools & Manufacture,2006,46(11):1233-1237
    [37]H. Watari, K. Daveyb, M.T. Rasgado, et al. Semi-solid manufacturing process of magnesium alloys by twin-roll casting [J]. Journal of Materials Processing Technology,2004,155-156 1662-1667
    [38]S.S. Park, Y.S. Oh, D.H. Kang, et al. Microstructural evolution in twin-roll strip cast Mg-Zn-Mn-Al alloy [J]. Materials Science and Engineering A,2007,449-451:352-355
    [39]S.S. Park, G.T. Bae, D.H. Kang, et al. Microstructure and tensile properties of twin-roll cast Mg-Zn-Mn-Al alloys [J]. Scripta Materialia,2007,57(9):793-796
    [40]T. Haga, T. Nishiyama, S. Suzuki. Strip casting of A5182 alloy using a melt drag twin-roll caster [J]. Journal of Materials Processing Technology,2003,133(1-2):103-107
    [41]张莹,耿茂鹏,谢水生,等.半固态AZ91D流变铸轧正交试验研究[J].南昌大学学报·工科版,2007,29(1):1-3
    [42]张颂阳,耿茂鹏,张莹,等.半固态铸轧AZ91D镁合金板带的再加工组织性能[J].塑性工程学报,2007,14(1):31-35
    [43]谢水生,杨浩强,黄国杰,等.半固态镁合金连续铸轧过程的数值模拟[J].塑性工程学报,2007,14(1):80-84
    [44]A. Laasraoui, J.J.Jonas. Prediction of Steel Flow Stressed at High Temperatures and Strain Rates [J]. METALLURGICAL TRANSACTIONS A,1991,22A:1545-1558
    [45]Z. Yang, Y.C. Guo, J.P. Li, et al. Plastic deformation and dynamic recrystallization behaviors of Mg-5Gd-4Y-0.5Zn-0.5Zr alloy [J]. Materials Science and Engineering A,2008,485(1-2): 487-491
    [46]汪凌云,黄光胜,范永革,等.变形AZ31镁合金的晶粒细化[J].中国有色金属学报,2003,13(3):594-598
    [47]A.G. Beer, M.R. Barnett. Microstructural Development during Hot Working of Mg-3Al-1Zn [J]. METALLURGICAL AND MATERIALS TRANSACTIONS A,2007,38(8):1856-1867
    [48]M.F. Abbod, C.M. Sellars, P. Cizek, et al. Modeling the Flow Behavior, Recrystallization, and Crystallographic Texture in Hot-Deformed Fe-30 Wt Pct Ni Austenite[J]. METALLURGICAL AND MATERIALS TRANSACTIONS A,2007,38(10):2400-2409
    [49]J.M. Cabrera, A. Alomar, J.J. Jonas, et al. Modeling the Flow Behavior of a Medium Carbon Microalloyed Steel under Hot Working Conditions[J]. METALLURGICAL AND MATERIALS TRANSACTIONS A,1997,28(11):2233-2244
    [50]黄光胜,汪凌云,黄光杰,等.AZ31镁合金高温本构方程[J].金属成形工艺,2004,22(2):41-44
    [51]何宜柱,陈大宏,雷廷权.热变形动态软化本构模型[J].钢铁.1999.34(9):29-33
    [52]金蕾,徐有容.C-Mn钢热变形行为及其流变应力模型的研究[J].上海大学学报(自然科学 版),1999,5(2):123-127
    [53]N. Stanford, M. Barnett. Effect of composition on the texture and deformation behaviour of wrought Mg alloys [J]. Scripta Materialia,2008,58(3):179-182
    [54]J. Jiang, A. Godfrey, W. Liu, et al. Identification and analysis of twinning variants during compression of a Mg-Al-Zn alloy [J]. Scripta Materialia,2008,58:122-125
    [55]L. Wu, A. Jain, D.W. Brown, et al. Twinning-detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy, ZK60A [J]. Acta Materialia,2008, 56(4):688-695
    [56]J. Jiang, A. Godfrey, W. Liu, et al. Microtexture evolution via deformation twinning and slip during compression of magnesium alloy AZ31[J]. Materials Science and Engineering A,2008, 483-484:576-579
    [57]Y.N. Wang, J.C. Huang. The role of twinning and untwinning in yielding behavior in hot-extruded Mg-Al-Zn alloy[J]. Acta Materialia,2007(3),55:897-905
    [58]A. Jain, S.R. Agnew. Modeling the temperature dependent effect of twinning on the behavior of magnesium alloy AZ31B sheet [J]. Materials Science and Engineering A,2007,462(1-2):29-36
    [59]L. Jiang, J.J. Jonas, A.A. Luo, et al. Twinning-induced softening in polycrystalline AM30 Mg alloy at moderate temperatures [J]. Scripta Materialia,2002,54(5):771-775
    [60]L. Jiang, J.J. Jonas, R.K. Mishra, et al. Twinning and texture development in two Mg alloys subjected to loading along three different strain paths [J]. Acta Materialia,2007,55(11): 3899-3910
    [61]M.R. Barnett. Twinning and the ductility of magnesium alloys Part I:"Tension" twins [J]. Materials Science and Engineering A,2007,464(1-2):1-7
    [62]M.R. Barnett, C.H.J. Davies, X. Ma. An analytical constitutive law for twinning dominated flow in magnesium [J]. Scripta Materialia,2005,52(7):627-632
    [63]M.R. Barnett, Z. Keshavarz, X. Ma. A Semianalytical Sachs Model for the Flow Stress of a Magnesium Alloy [J]. METALLURGICAL AND MATERIALS TRANSACTIONSA,2006, 37(7):2283-2293
    [64]宁仁伯,康永林,孙建林,等.半固态钢铁材料轧制产品的力学特性[J].金属学报,2002,38(2):153-156
    [65]宋仁伯,康永林,孙建林,等.半固态60Si2Mn流变轧制的组织及性能[J].材料研究学报,2002,12(2):131-135
    [66]Cunasekera J S. Development of a constitutive model for mush (semi-solid) materials. The Second International Conference on Semi-olid Processing of Alloys and Composites, 1992:211-212
    [67]C.G. Kang, J.W. Bae. Numerical simulation of mold filling and deformation behavior in rheology forming process [J]. International Journal of Mechanical Sciences,2008,50(5): 944-955
    [68]C.G. Kang, H.K. Jung. Finite element analysis with deformation behavior modeling of globular microstructure in forming process of semi-solid materials [J]. International Journal of Mechanical Sciences,1999,41 (12):1423-1445
    [69]陈光,傅恒志等.非平衡凝固新型金属材料[M].北京:科学出版社,2004
    [70]闫志杰 柴跃生.大块非晶合金[M].北京:兵器工业出版社,2005
    [71]惠希东,陈国良.块体非晶合金[M].北京:化学工业出版社,2007
    [72]C.A. Schuh, T.C. Hufnagel, U. Ramamurty. Mechanical behavior of amorphous alloys [J]. Acta Materialia,2007,55(12):4067-4109
    [73]D. Henann, L. Anand. A constitutive theory for the mechanical response of amorphous metals at high temperatures spanning the glass transition temperature:Application to microscale thermoplastic forming [J]. Acta Materialia,2008,56(13):3290-3305
    [74]曾卫东,周义刚,周军.加工图理论研究进展[J].稀有金属材料与工程,2006,35(5):673-677
    [75]曾卫东,周义刚,舒滢,等.基于加工图的Ti-40阻燃钛合金热变形机理研究[J].稀有金属材料与工程,2007,36(1):1-6
    [76]张仁鹏,李付国,王晓娜.FGH96合金的热变形行为及其热加工图[J].西北工业大学学报,2007,25(5):652-656
    [77]康福伟,孙剑飞,张国庆,等.喷射成形镍基高温合金热变形特性及微观组织变化[J].金属学报,2007,43(10):1053-1058
    [78]周军,曾卫东,舒滢,等.应用热加工图研究TC17合金片状组织球化规律[J].稀有金属材料与工程,2006,35(2):265-268
    [79]Y.V.R.K. Prasad, K.P. Rao. Influence of oxygen on the processing maps for hot working of electrolytic tough pitch copper [J]. Materials Letters,2006,60(21-22):2786-2790
    [80]O. Sivakesavam, Y.V.R.K. Prasad. Characteristics of superplasticity domain in the processing map for hot working of as-cast Mg-11.5Li-1.5A1 alloy [J]. Materials Science and Engineering A,2002,323(1-2):270-277
    [81]V.V. Balasubrahmanyam, Y.V.R.K. Prasad. Deformation behaviour of beta titanium alloy Ti-10V-4.5Fe-1.5Al in hot upset forging [J]. Materials Science and Engineering A,2002, 336(1-2):150-158
    [82]O. Sivakesavam, Y.V.R.K. Prasad. Hot deformation behaviour of as-cast Mg-2Zn-lMn alloy in compression:a study with processing map [J]. Materials Science and Engineering A,2003, 362(1-2):118-124
    [83]R.S. Sundar, D.H. Sastry, Y.V.R.K. Prasad. Hot workability of as-cast Fe3Al-2.5%Cr intermetallic alloy [J]. Materials Science and Engineering A,2003,347(1-2):86-92
    [84]S.V.S.N. Murty, B.N. Rao. On the flow localization concepts in the processing maps of titanium alloy Ti-24Al-20Nb [J]. Journal of Materials Processing Technology,2000,104(1-2):103-109
    [85]S.V.S.N. Murty, B.N. Rao, B.P. Kashyap. Identification of flow instabilities in the processing maps of AISI 304 stainless steel [J]. Journal of Materials Processing Technology,2005, 166(2):268-278
    [86]K.P. Rao, Y.V.R.K. Prasad, N. Hort, et al. Hot workability characteristics of cast and homogenized Mg-3Sn-1Ca alloy [J]. Journal of Materials Processing Technology,2008, 201(1-3):359-363
    [87]N. Srinivasan, Y.V.R.K. Prasad, K.P. Rao. Hot deformation behaviour of Mg-3Al alloy-A study using processing map [J]. Materials Science and Engineering A,2008,476(1-2):146-156
    [88]PENG W P, LI P J, ZENG P, LEI L P. Hot deformation behavior and microstructure evolution of twin-roll-cast Mg-2.9Al -0.9Zn alloy:A study with processing map [J]. Materials Science and Engineering A,2008,494(1-2):173-178
    [89]E. Doege, K. Droder. Sheet metal forming of magnesium wrought alloys-formability and process technology [J]. Journal of Materials Processing Technology,2001,115(1):14-19
    [90]H. Takudaa, T. Enamia, K. Kubotab, et al. The formability of a thin sheet of Mg-8.5Li-1Zn alloy [J]. Journal of Materials Processing Technology,2001,101(1-3):281-286
    [91]F.K. Chen, T.B. Huang, C.K. Chang. Deep drawing of square cups with magnesium alloy AZ31 sheets [J]. International Journal of Machine Tools & Manufacture,2003,43(15):1553-1559
    [92]S. Yoshihara, K. Manabe, H. Nishimura. Effect of blank holder force control in deep-drawing process of magnesium alloy sheet [J]. Journal of Materials Processing Technology,2005,170(3): 579-585
    [93]S. Yoshihara, H. Nishimura. H. Yamamoto, et al. Formability enhancement in magnesium alloy stamping using a local heating and cooling technique:circular cup deep drawing process [J]. Journal of Materials Processing Technology,2003,142(3):609-613
    [94]苌群峰,李大永,彭颖红,等.AZ31镁合金板材温热冲压数值模拟与实验研究[J].中国有色金属学报,2006,16(4):580-585
    [95]张坤,徐永超,张十宏,等.镁合金板材温热拉深成形工艺的研究[J].轻合金加工技术,2004,32(8):16-18
    [96]陈振华,程永奇,夏伟军,等.AZ31镁合金薄板热拉深工艺研究[J].湖南大学学报(自然科学版),2005,32(1):83-86
    [97]刘英,李元元,李卫.ZE10镁合金板材非等温拉深的试验研究[J].热加工工艺,2006,35(13):1-4
    [98]赵虎,彭伟平,何良菊,等.铸轧AZ3 1镁合金板的冲压工艺及性能[J].特种铸造及有色合金年会会刊,2008:229-232
    [99]郭成,储家佑.现代冲压技术手册[M].北京,中国标准出版社,2005
    [100]L.H. Lang, J. Danckert, K.B. Nielsen. Investigation into the effect of pre-bulging during hydromechanical deep drawing with uniform pressure onto the blank [J]. International Journal of Machine Tools & Manufacture,2004,44(6):649-657
    [101]Y. Luo, S.G. Luchey, P.A. Friedman, et al. Development of an advanced superplastic forming process utilizing a mechanical pre-forming operation [J]. International Journal of Machine Tools & Manufacture,2008,48(12-13):1509-1518
    [102]B.N. Nguyen, S.K. Bapanapalli. Forming analysis of AZ31 magnesium alloy sheets by means of a multistep inverse approach [J]. Materials and Design,2009,30(4):992-999
    [103]鲍培玮,邸洪双,刘相华等.双辊铸轧不锈钢薄带中细小晶粒组织的形成[J].材料科学与工艺,2003,11(4):360-363
    [104]谢水生,黄声宏.半固态金属加工技术[M].北京:冶金工业出版社,1999
    [105]毛卫民.半固态金属成形技术[M].北京:机械工业出版社,2004
    [106]陈振华.变形镁合金[M].北京:化学工业出版社,2005
    [107]郭强,严红革,陈振华,等.AZ31镁合金高温压缩变形特性[J].中国有色金属学报,2005,15(6):900-906
    [108]张青来,肖富贵,郭海玲等.AZ31B镁合金热拉伸流变应力研究[J].塑性工程学报,2009,16(1):167-172
    [109]姜巨福,唐全波,罗守靖等.变形的AZ91D镁合金半固态等温压缩的力学行为[J].材料科学与工艺,2007,15(2):166-169
    [110]陈振华,杨春花,黄长清,等.镁合金塑性变形中孪生的研究[J].材料导报,2006,20(8):107-113
    [111]A. Galiyev, R. Kaibyshev, G. Gottstein. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60 [J].Acta mater.,2001,49(7):1199-1207
    [112]GUAN Shao-kang, WU Li-hong, WANG Li-guo. Flow stress and microstructure evolution of semi-continuous casting AZ70 Mg-alloy during hot compression deformation [J]. Trans. Nonferrous Met. Soc. China,2008,18(2):315-320
    [113]Myshlyaev M M, Mcqueen H J, Mwembela A, et al. Twinning, dynamic recovery and recrystallization in hot worked Mg-Al-Zn alloy[J]. Mater Sci Eng A,2002,337(1-2):121-133
    [114]Yin D L, Zhang K F, Wang G F, et al. Warm deformation behavior of hot-rolled AZ31 Mg alloy [J].Mater sci and Eng A,2005,392(1-2):320-325
    [115]Sitdikov O, Kaibyshev R, Sakai t Dynamic recrystallization based on twinning in Coarse-grained Mg[J]. Materials Science Forum,2003,419-422:521-526
    [116]J. Lu, G. Ravichandran, W.L. Johnson. Deformation behavior of the Zr41.2Til3.8Cu12.5Nil0Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures [J]. Acta Materialia,2003,51(12):3429-3443
    [117]M.R. Barnett. A Taylor Model Based Description of the Proof Stress of Magnesium AZ31 during Hot Working [J].METALLURGICAL AND MATERIALS TRANSACTIONSA, 2003,34(9):1799-1806
    [118]T.G. Langdon. Grain boundary sliding revisited:Developments in sliding over four decades [J]. J MATER SCI.2006,41(3):597-609
    [119]O.A. Ruano, J. Wadsworth, O.D. Sherby. Deformation of fine-grained alumina by grain boundary sliding accommodated by slip [J]. Acta Materialia,2003,51(12):3617-3634
    [120]Y.N. WANG, J.C. HUANG. Transition of Dominant Diffusion Process during Superplastic Deformation in AZ61 Magnesium Alloys [J]. METALLURGICAL AND MATERIALS TRANSACTIONS A.2004,35(2):555-562
    [121]K. Ishikawa, T. Watanabe, T. Mukai. High temperature compressive properties over a wide range of strain rates in an AZ31 magnesium alloy [J]. Journal of materials science,2005, 40(7):1577-1582
    [122]唐仁正.物理冶金基础[M].北京:冶金工业出版社,1997
    [123]胡世光,陈鹤峥.板料冷压成形的工程解析[M].北京:北京航空航天大学出版社,2004
    [124]朱伟,董湘怀,张质良,等.圆筒件拉深成形临界防皱变压边力加载曲线研究[J].塑性工程学报,2007,14(1):109-114
    [125]刘饶川,汪凌云,辜蕾钢,等.AZ31B镁合金板材退火工艺及晶粒尺寸模型的研究[J].轻合金加工技术,2004,32(2):22-25
    [126]M.R. Barnett, Z. Keshavarz, A.G. Beer, et al. Influence of grain size on the compressive deformation of wrought Mg-3A1-lZn [J]. Acta Materialia,2004,52(17):5093-5103
    [127]M.R. Barnett, A.G. Beer, D. Atwell, et al. Influence of grain size on hot working stresses and microstructures in Mg-3A1-lZn [J]. Scripta Materialia,2004,51(1):19-24
    [128]刘东,罗子健.GH4169合金热加工过程中的显微组织演化数学模型[J].中国有色金属学报,2003,13(5):1211-1218
    [129]M.T. Perez-Prado, O.A. Ruano. Texture evolution during annealing of magnesium AZ31 alloy [J]. Scripta Materialia,2002,46(2):149-155
    [130]D.W. Brown, S.R. Agnew, M.A.M. Bourke, et al. Internal strain and texture evolution during deformation twinning in magnesium[J]. Materials Science and Engineering A 2005, 399(1-2):1-12
    [131]彭伟平,彭彩虹,李培杰,等.AZ31B镁合金再结晶过程的动力学[J].中国有色金属学报,2006,16(10):1724-1729
    [132]路君,靳丽,董杰,等.等通道角挤压变形AZ31镁合金的变形行为[J].中国有色金属学报,2009,19(3):424-432
    [133]J. Bohlen, F. Chmelk, P. Dobron, et al. Orientation effects on acoustic emission during tensile deformation of hot rolled magnesium alloy AZ31[J]. Journal of Alloys and Compounds, 2004,378(1-2):207-213
    [134]M.R. Barnett. Recrystallization during and following hot working of magnesium alloy AZ31 [J]. Mater Sci Forum,2003,419/422:503-508
    [135]ZHANG K F, YIN D L, WU D Z. Formability of AZ31 magnesium alloy sheets at warm working conditions [J]. International Journal of Machine Tools & Manufacture,2006, 46(11):1276-1280
    [136]尹德良,张凯锋,吴德忠.AZ31镁合金非等温拉深性能的研究[J].材料科学与工艺,2004,12(1):87-91
    [137]ZHANG S H, ZHANG K, XU Y C, et al.Deep-drawing of magnesium alloy sheets at warm temperatures [J]. Journal of Materials Processing Technology,2007,185(1-3):147-151

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700