用户名: 密码: 验证码:
铝合金连续铸轧过程流变行为研究及热—力耦合分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双辊铸轧工艺是将快速凝固和变形结合在一起的技术。近年来,由于提高铸轧速度和减薄铸坯厚度具有降低能耗、提高效率和获得良好的带坯力学性能等优点而引起了众多研究者的关注。然而由于铸轧速度的提高和带坯厚度的减薄,铸轧区内金属的流变行为被强化,尤其是对于厚度为2mm量级的带坯,高温固—固流变更为突出,在液—固临界点迅速进入强力轧制,对于这种状态的铸轧区金属流变本构关系的研究几乎还是空白,其间带坯的热力学行为亦难以用传统的规律来分析。为了能准确认识快速铸轧中的一些新现象和建立铝带坯生产过程中最优工艺系统,对极为强化的铸轧过程流变行为基本规律的研究已是十分迫切的需要。
     本文结合国家计委产业化前期关键技术与成套装备研制开发项目《铝及铝合金铸轧新技术与设备研制开发》及国家重大基础研究发展规划(“973”项目)《提高铝材质量的基础研究》的子项“瞬态凝固连续大变形能量转换与组织形成多重耦合机理”,对连续铸轧过程材料在瞬态凝固、连续轧制成形过程中的流变行为进行研究,并在此基础上进行热力耦合连续铸轧过程仿真分析。主要包括以下内容:
     (1)研制了一套与Gleeble-1500热/力模拟机配套的实验装置进行常规与快速铸轧过程的物理模拟实验研究,分别在10~(-2)—10秒的范围内完成了金属从凝固到流变成形的全过程。同时,对铝合金在液固相变与热形变过程中的流变行为及其影响因素进行了系列的实验研究,获得了铝合金在这一特定过程中组织结构的变化情况。
     (2)根据铝合金连续铸轧过程的变形特点,对比分析各种已有的铝合金半固态、固态高温本构模型,基于热力学理论,研究了铝合金铸轧过程中流变应力与变形温度、应变速率和应变等的相互关系,建立了相应的流变本构模型;运用多元线性回归分析方法确定了依赖于温度、应变速率等的本构模型参数,建立了适用于连续铸轧这一特定工况条件下的铝合金流变本构方程,并将其应用于铸轧过程的仿真分析之中,与实验结果进行了比较,证明了所建立的本构模型表达了其真实的流变规律。
     (3)基于传热学和有限元基本理论,建立了凝固过程铸坯与轧
Twin roll casting process is a kind of technology which combines fast solidification and continuous deformation progresses together. In recent years, because of improving roll casting speed and decreasing strip thickness can bring many advantanges such as reducing the energy consumption, raising the work efficiency and obtaining good mechanics performance etc., which aroused the attention of numerous researchers. But with the increase of roll casting speed and the decrease of strip thickness, rheological behavior of the metal in the roll casting zone is strengthened, especially when the thickness is reduced to equal to or less than 2mm, high temperature solid-solid rheology phenomenon stands out, roll casting process rapidly enters mighty force rolling at the liquid-solid critical point. Now research of the rheological constitutive relation of the metal in the roll casting zone is nearly a blank, and its thermodynamics behavior is also difficult to be analysed with traditional laws. In order to abtain accurate understanding of some new phenomena in high speed roll casting and set up optimum technologic system in the production process, it has already been a very urgent need to research the basic law of the rheology behavior of the extremely intensive roll casting course.This paper based on the State Planning and Administration Committee Project of Industrialization Prophase Key Technology and Whole Set Equipment Development "New Technology and Equipment Development of Aluminium and its Alloy Roll Casting" and the subitem "Multiple Coupling Mechanism of Energy Transfer and Microstructure Forming during Transient Solidification and Continuous Deformation Process" of State Key Project of Foundamental Research "Foundamental
    Research about Improvement the Quality of Aluminum"("973" project), to study the rheological behavior in transient solidification and contiuous rolling process, then to carry on thermo-mechanical coupling simulation of such process. The main contents are as following:(1) A set of experimental equipment which in conjunction with Gleeble-1500 Thermal-Mechanical Simulation Tester is developed to carry on physical analogy experiment research of the normal and high speed roll casting, the whole course from transient solidification to continuous deformation is finished within 10~-2-10 seconds. Meanwhile, a series of simulating experiments on the rheological behavior and its influential factors have been studied, and the changes of microstructure of aluminium alloy during such process have been obtained.(2) On the basis of thermodynamics theory, the deformation characteristics and the physical simulating experimental data of continuous roll casting, and the comparing and analysing of existed various kinds of constitutive models for semi-solid and solid state aluminium alloy, relative constitutive models of continuous roll casting were set up; parameters depend on temperature and strain rate in those models were obtained through multivanable linear regression analysis, a set of constitutive equations applicable for roll casting process were built and then applied to the analyse of roll casting course, the analysis results were compared with the experimental ones, which proved that the established constitutive equations can describe its real rheological rules.(3) Based on heat transfer principle and basic finite element theory, heat transfer finite element mathematics models, which combined casting strip and roll shell together, were set up. Then a kind of analysis method to carry on temperature field simulation was put forward. With ANSYS, a
    set of temperature field analysis software system for continuous roll casting process was set up. Through changing relative parameters according to different work conditions (pouring temperature, rolling speed, etc.), then reexecuting the pre-compiled order flow of ANSYS software, relative temperature field simulation results were obtained, which offers the theoretical foundation for parameter design of roll casting course. Meanwhile, the results can provide temperature field information for thermo-mechanical coupled simulation.(4) A set of thermal-mechanical coupled finite element analysis equations were set up based on rigid visco-plasticity finite element principle and mathematics models of temperature field, the influence of thermal contact conductance between casting roller and strip and some other factors, such as metal flows, hot exchanges and deformation energy changing into heat energy etc. were also synthetically considered. A method to conduct multi-nonlinear thermo-mechanical coupling analysis suitable for aluminum strip roll casting process and is explored by carrying out secondary development of ANSYS finite element analysis software, which solved the problem that direct thermo-mechanical coupling anslysis is unable to be used with ANSYS under the condition of both heat mass transfer and phase change phenomenon. The variational rules of temperature field and stress-strain field are obtained in the rheological forming of continuous roll casting; the influencial laws of pouring temperature, rolling speed, length of roll casting zone, etc. on the solidification and deformation behavior were also studied. Simulation results show the thermo-mechanical coupled analyses method, basic equations and programming system basically reflect the real rule of continuous roll casting process and have certain practical value.
    (5) A series of experimental tests and analysis of the technologic parameters, such as the pouring temperature, exit temperature of strip, rolling velocity and rolling force on the O1003* 1850mm cast roller of aluminium foil mill of Chengdu and O1030xl 600mm super-thin high speed cast roller of North China Aluminum Company were done, the results of those main technologic parameters were obtained. Meanwhile, Simulating results are compared with experimental ones, both are basically matched, which verified the accuracy of simulation.In sum, this paper combined physical simulation research, heat-conduction, basic theories of rigid visco-plasticity finite element and metal formation, studied the rheology behavior in the course of roll casting. The rheological stress curve and relative regression equations established good foundation for engineering calculation of the deformation behavior and numerical simulation of aluminium roll casting course; a method to conduct multi-nonlinear thermo-mechanical coupled analysis suitable for aluminum strip roll casting process was explored, then a set of software system which combined the thermo-mechanical coupled characteristic of continuous roll casting process was elementarily built, which provided a kind of research method for the development of continous roll casting technology.
引文
[1] 潘世明.世界铝连续铸轧技术综述.世界有色金属,2003,(3):49-51
    [2] 王祝堂.铝带坯双辊式连续铸轧技术的现状与新进展.世界有色金属,1997,(8):9-13
    [3] 王祝堂.迈向新世纪的世界铝带坯铸轧.轻合金加工技术,2001,29(4):8-15
    [4] 马锡良.铝带坯连续铸轧生产.长沙:中南工业大学出版社,1992
    [5] 郎鸿滨.铸轧机在我国的应用及其发展趋势.有色设备,1996,(4):6-9
    [6] 朱志华,毛大恒.双辊式连续铸轧技术的新进展.轻合金加工技术,1997,25(8):1-4
    [7] 谢风华.世界高速薄板铸轧机的开发现状及技术发展概况.世界有色金属,1998,(4):22-24
    [8] 林暾熹.双辊快速连续超薄带坯技术进展.轻合金加工技术,2001,29(10):14-16
    [9] 王祝堂.双辊高速薄铝带铸轧机.有色设备,1994,(5):25
    [10] T Haga, K Takahashi, M Ikawa, et al. A vertical-type twin roll caster for aluminum alloy strips. Journal of Materials Processing Technology, 2003, (140): 610-615
    [11] T Haga, K Tkahashi, M Ikawaand, et al. Twin roll casting of aluminum alloy strips. Journal of Materials Processing Technology, 2004, 153-154: 42-47
    [12] T Haga, S Suzuki. A high speed twin roll caster for aluminum alloy strip. Journal of Materials Processing Technology, 2001, 113: 291-295
    [13] 蒋励.Davy四重高速薄带铸轧机研制概况.轻合金加工技术,1998,26(12):4-9
    [14] C.M.Sellars, A.M.Irisarri, E.S.Puchi. Microstmctural control in aluminum alloys: Deformation, Recovery and Recrystallisation. (edit by E.H.Chia and H.J.McQueen, PA,TMS,1985): 179-196
    [15] 张辉.铝合金多道次热轧显微组织演变的模拟研究.博士学位论文,长沙:中南工业大学,2000
    [16] J.J.Jonas, C.M.Swllars, W.J.McG.Tegart. Int. Metall. Reviews, 1969, 14(130): 1
    [17] J.P.Poirier.晶体的高温塑性变形.关德林译,大连:大连理工大学出版社,1989:24,155-160
    [18] J.Hirsch. Modeling Of microstructures and properties for industrial sheet production. Lecture held at the Department of Material and Engineering, CSUT, 1999
    [19] 沈健,张新明,章四琪等.工业纯Al高温扭转时的动态回复和动态再结晶.金属学报,1995,31(9):411-416
    [20] 赵鸿金,张迎晖,马宏声.热轧状态Al-0.328%Sc合金的动态再结晶.轻合金加工技术,2001,29(2):13-14,27
    [21] 林高用,张胜华,胡泽毫.2024铝合金挤压过程动态再结晶问题的研究.兵器材料科学与工程,2000,23(1):40-45
    [22] 林均品,程荆卫,Al-2Mg合金的动态再结晶,中国有色金属学报,Sep.1999, VOL.9, NO.3: 510-514
    [23] 沈健,尹志民,章四琪等.变形条件对2091铝锂合金高温变形组织的影响.矿冶工程,1996,16(4):57-61
    [24] Weatergen H, Nes K. Twin roll casting of aluminum: the occurrence of structure inhomogeneities and defects in as-cast strip. AIME Publications, TMS, 1984
    [25] 彭成章,毛大恒,黄明辉.快速铸轧铝薄板的组织和性能.矿冶工程,2002,22(1):101-103
    [26] Clyne T W. Heat-flow, solidification and energy aspects of DC strip casting of aluminum. Metal Technology, 1984, 11(8): 350-357
    [27] Li B Q. Production of thin strips by twin-roll casting- Part 1: Process aspects and quality issues. JOM, 1995, (5): 29-33
    [28] Tsuji Nobuhiro, Nagai Yuiehi, Sakai Tetsuo, et al. Microstructure and texture of commercial purity aluminum strips produced by melt direct rolling. Materials Transaction, JIM, 1998, 39(2): 252-261
    [29] 孟庆福,董中伟.铸轧板对板箔质量的影响.铝加工,1986,19(4):6-10
    [30] Taraglio B, Romanowski C. Thin-gauge/high speed roll casting technology for foil production. Ed. Evans J, Light Metals, TMS, 1995: 1165-1169
    [31] 钟掘.铝合金的超常铸轧制备.中国有色金属学报,2004,14(1):147-153
    [32] 陈敬超,高俊生,苏云生.铝合金6063在双辊连铸条件下变形特性的研究.昆明工学院学报,1994,19(6):57-63
    [33] Philippe Jarry, Denis Toitot, Pierre-Yves Menet. Thermo-mechanical Modelling of 3C Roll Casting of Alloys. Light Metals, 1996: 905-911
    [34] 李晓谦,湛利华,朱志华.连续铸轧塑变与温变强耦合接触压力计算模型.矿冶工程,2000,20(2):48-51
    [35] 李晓谦,黄晓林.铝带坯连续铸轧变形的有限元分析.中南工业大学学报,1998,29(4):374-377
    [36] 朱志华,肖文锋.铝带坯铸轧过程轧制压力的建模与仿真研究.特种铸造及有色合金,2001,(2):37-39
    [37] 朱志华,肖文锋,李晓谦.双辊连续铸轧过程中轧制界面接触压力切块法建模与数值模拟.中国机械工程,2002,13(13):1091-1095
    [38] C.G.Kang, Y.D.Kim. Optimum Shape Design Techniques of Direct Roller under Thermal Load and Rolling Force in the Direct Rolling Process of Molten Materials Considering Solid Fraction. Journal of Materials Processing Technology, 1997, (67): 71-77
    [39] C.G.Kang, Y.D.Kim. Model Experiments for the Determination of the Heat-transfer Coefficient and Transition Thermal Analysis in the Direction Rolling Process. Journal of Materials Processing Technology, 1998, (84): 210-224
    [40] 刘咏,周科朝,林映红.铝合金铸轧组织的物理模拟.中国有色金属学报,2003,13(3):589-593
    [41] 刘咏,林映红,周科朝.强冷条件下铝合金的变形行为.中国有色金属学报,2003,13(4):903-907
    [42] Bagshaw M J, Hunt J D, Jordan R M. A steady state model for roll casting. Proceedings of the Third Conference on Modeling of Casting and Welding Processes, (Warrendale, PA:1986), AIME Publications: 135-147
    [43] C.A.Santos, J.A.Spim Jr., A.Garcia. Modeling of Solidification in Twin-roll Strip Casting. Journal of Materials Processing Technology, 2000, (102): 33-39
    [44] 张奇,许嘉龙,孙祖庆.双辊薄带连铸工艺热传输的计算机模拟.钢铁,1992,27(12):1993
    [45] 崔小朝,史荣,曾建潮.变形体凝固传热焓式有限元数学模型与过程仿真.系统仿真学报,1997,9(4):29-34
    [46] 史荣,崔小朝,孙斌煜等.铝带坯连续铸轧凝固过程的数值模拟.中国有色金属学报,1996,6(2):98-105
    [47] 高志,肖刚.铝材铸轧过程中成型界面传热行为的仿真.中国有色金属学报,2003,13(6):84-87
    [48] 高志,肖刚,周亚军等.铝材铸轧过程中辊-板系统温度场的数值分析.湘潭大学自然科学学报,2000,22(4):84-87
    [49] 胡仕成,李晓谦,朱志华等.连续铸轧过程中的热-力耦合模型及数值计算.上海有色金属,2000,21(4):161-164
    [50] K. Miyazawa, J. Szekely, Metallurgical Transaction, 1981, 12A: 1047-1056
    [51] C.G.Kang, Y.D.Kim, S.W.Lee. A Coupled Solidification Analysis of Materials and Cooling Roller in Direct Rolling Process. Journal of Material Processing Technology, 1997, (66): 277-286
    [52] Amit Saxena, Yogeshwar Sahai. Modeling of Fluid Flow and Heat Transfer in Twin-roll Casting of Aluminum Alloys. Materials Transactions, 2002, 43 (2): 206-213
    [53] R.I.L.Guthrie, R.P.Tavares. Mathematical and Physical Modelling of Steel Flow and Solidification in Twin-roll/Horizontal Belt Thin-strip Casting Machines. Applied Mathematical Modelling, 1998, 23: 851-872
    [54] R.P.Tavares, R.I.L.Guthrie. Computational Fluid Dynamics Applied to Twin-roll Casting. Canadian Metallurgical Quarterly, 1998, 37 (3-4): 241-250
    [55] S.M.Hwang, Y.H.Kang. Analysis of Flow and Heat Transfer in Twin-roll Strip Casting by Finite Element Method. Transactions of the ASME, 1995, 117: 304-315
    [56] C.H.Moon, S.M.Hwang. Analysis of Flow, Heat Transfer, Solidification, and Inclusion Removal in Continuous Slab Caster by Finite Element Method. Ironmaking and Steelmaking, 2003, 30 (1): 48-56
    [57] S.A.Lockyer, Ming Yun, J.D.Hunt, D.V.Edmonds. Micro- and Macrodefects in Thin Sheet Twin-roll Cast Aluminum Alloys. Materials Characterization, 1996, 37: 301-310
    [58] M. Yun, S. Lokyer, J.D.Hunt. Twin Roll Casting of Aluminum Alloys. Materials Science and Engineering, 2000, A280: 116-123
    [59] Gupta Manish, Cook Daniel P., Sahai Yogeshwar. Strip casting of aluminum using twin roll casters. Light Metals: Proceedings of Sessions, TMS Annual Meeting(Warrendale,, Pennsylvania), 1999: 925-930
    [60] 金珠梅,赫冀成.双辊式薄带连续铸轧凝固终结点位置控制数学模型.中国有色金属学报,1998.8(Suppl.2):694-695
    [61] 金珠梅,赫冀成,邸洪双.广义流体的概念在金属流动凝固传热分析模型 中的应用.计算物理,1999,16(4):409-413
    [62] 金珠梅,赫冀成,邸洪双.双辊薄带连续铸轧熔池内金属流动及传热特性的研究.冶金能源,1998,17(4):34-36
    [63] 苗雨川,邸洪双,张晓明等.不锈钢薄带液态铸轧过程的数值模拟.塑性工程学报,2000,7(4)
    [64] 杜艳平,杨建伟,梁爱生.铸轧熔池内三维流场与温度场耦合数值模拟.特种铸造及有色合金,2004,(1):41-44
    [65] Manish Gupta. Yogeshwar Sahai. Mathematical Modeling of Thermally Induced Stresses in Two-roll Melt Drag Thin Strip Casting of Steel. ISIJ International, 2000, 40 (12): 137-143
    [66] 孙斌煜,梁爱生,王海文.双辊式铝板铸机的铸轧力的计算.重型机械,1991,(2):43-46
    [67] O.Z.Zienkiewicz,et al, Plastic Flow in Metal Forming, Applications of Numerical Methods to Forming Process,ASME,AMD, 1978, 28: 107-117
    [68] O.Z.Zienkiewicz, et al, Flow of Solids during Forming and Extrusion: Some Aspects of Numerical Solutions. Int. J. Solids and Structures, 1978, 14: 15-33
    [69] N.Rebelo, S.Kobayshi, A Coupled Analysis of Viscoplastic Deformation and Heat Transfer Ⅰ, Int. J. Mech. Sci., 1980, 22: 699-706
    [70] N.Rebelo, S.Kobayshi, A Coupled Analysis of Viscoplastic Deformation and Heat Transfer Ⅱ, Int. J. Mech. Sci., 1980, 22: 707-718
    [71] 董湘怀,郑廷顺,杨文敏等.铝合金模锻件热处理过程的热力耦合分析.热加工工艺,2002(3):17-21
    [72] 洪深泽,董定福,王树军等.热锻成形过程温度场的热力耦合数值模拟.机械工程学报,1996,32(1):62-67
    [73] A. Mo, S.H.Hoydal. Modeling of Casting, Welding and Advanced Solidification Process Ⅵ, 1993: 671-677
    [74] Hallvard G. Fjaer, A. Mo. AISPEN. A Mathematical Model for Thermal Stresses in Direct Chill Casting of Aluminum Billets. Metallurgical Transactions B, 1990, 21B: 1049-1061
    [75] K Miyazawa. Continuous casting of steels in Japan. Science and Technology of Advanced Materials, 2001, 2: 59-65
    [76] Amit Saxena, Yogeshwar Sahai. Modeling of Thermo-mechanical Stresses in Twin-roll Casting of Aluminum Alloys. Materials Transactions, 2002, 43 (2): 214-221
    [77] R.Kopp, F.Hagemann, L.Hentschel, et al. Thin-Strip casting-modeling of the combined casting/metal forming process. J. of Materials Processing Tech., 1998, 80-81: 458-462
    [78] 逯洲威,蔡开科,张家泉.薄板坯连铸液芯铸轧铸坯变形特点.北京科技大学学报,1999,21(5):432-435
    [79] 逯洲威,蔡开科.薄板坯连铸液芯铸轧过程铸坯的应力应变分析.北京科技大学学报,Vol.22,No.4,Aug.2000:303-306
    [80] 逯洲威,蔡开科.薄板坯连铸液芯铸轧过程的三维有限元分析.金属学报,2000,38(7):757-760
    [81] 金珠梅,赫冀成,徐广儁.双辊连续铸轧工艺中流场、温度场和热应力场 的数值计算.金属学报,2000,36(4):391-394
    [82] 张启芳.热加工工艺基础.南京:东南大学出版社,1996
    [83] 胡忠,朱利华,李家庆.圆环压缩过程的有限元模拟—一种标定摩擦系数理论曲线的新方法.金属学报,1997,33(4):337-344
    [84] 王少林,阮雪榆,俞新陆等.运用热模拟压缩实验确定精确的金属流动方程.中国机械工程,1996,7(6):101-102
    [85] 杨雄飞,康永林,宋仁伯等.60Si2Mn半固态压缩变形组织演变.中国有色金属学报,2000,10(Suppl.1):120-125
    [86] 潘维国,曹起骧,马喜腾等.20MnMoNiCr低合金钢恒温压缩动态软化.塑性工程学报,1999,6(4):106-108
    [87] 彭益群,潘雅琴,杨昭苏.TA5钛合金热压缩流变应力的研究.稀有金属,1994,18(1):28-30
    [88] 朱宗季.Gleeble-1500热/力模拟试验机高速压缩系统功能的改善.钢铁钒钛,1997,18(1):47-50
    [89] 陈森灿,何舒星,吴伯杰等.GLEEBLE材料热模拟试验机高温压缩试验的数据整理与修正.唐山工程技术学院学报,1993,(4):40-48
    [90] 黄勇,刘心宇,曾中明.1050铝合金热轧流交应力研究.轻合金加工技术,2002,30(9):15-17
    [91] 孙坚,胡赓祥,赵晓宁等.高温变形时Al(67)MnSTi(25)的动态回复和动态再结晶.上海交通大学学报,1999,33(2):127-130
    [92] 袁鸽成,杨安宸,张新明.Al-10Sn-4Si合金高温塑性变形的流变应力特征.广东工业大学学报,2000,17(2):1-6
    [93] 王仁,熊祝华,黄文彬.塑性力学基础.北京;科学出版社,1982
    [94] 赵祖武.塑性力学导论.北京:高等教育出版社,1989
    [95] A. R. Alhassan-Abu, M. A. Wells. Determinaton of constitutive behaviour of as cast AA 5182 for deformations that occur during direct chill casting using the Gleeble 1500 machine. Materials Science and Technology January, 2003, 19: 55-61
    [96] Frost H J, Ashby M F, Deformation mechanism maps, New York, Pergamon Press, 1982
    [97] Brown S B, Kim K H, Anand L, An internal variable constitutive model for hot working of metals, Int. J of Plast., 1989, 5: 95-130
    [98] Dedai C S, Curran D R, Constitutive laws for engineering materials: theory and applications. North Holland: Elsevier Science Publishing Co. Inc, 1987
    [99] W.I.Zuzin, M.Ya, Browman et al. Flow Resistance of Steel at Hot Forming. Metallurgy, Moscow, 1964
    [100] J.J.Urcola, C.M.Sellars. A Model for a Mechanical Equation of State under Continuously Changing Conditions of Hot Deformation. Acta metal., 1987, 35(11): 2659-2669
    [101] J.J.Urcola, C.M.Sellars. Effect of Changing Swain Rate on Stress-strain Behaviour during High Temperature Deformation. Acta metall.,1987, 35(11): 2637-2647
    [102] M. S. Mirza and C. M. Sellars. Modelling the hot plane strain compression test Part 1-Effect of specimen geometry, strain-rate, and friction on deformation. Materials Science and Technology, 2001, 17: 1133-1141
    [103] M. S. Mirza and C. M. Sellars. Modelling the hot plane strain compression test Part 2-Effect of friction and specimen geometry on spread. Materials Science and Technology, 2001, 17: 1142-1148
    [104] S. B. Davenport, N. J. Silk, C. N. Sparks, C. M. Sellars. Development of constitutive equations for modelling of hot rolling. Materials Science and Technology, 2000, 16: 539-546
    [105] Buraehynaky V, Cahoon J.R., A theory for solute impurity diffusion, which considers Enger Brewer Valences, Balancing the Fermi Energy Levels of solvent and solute, and differences in zero point energy, Met. And mat. Trans. A, 1997, 28A(3): 563-585
    [106] K.Nakanishi, S.Okamura, T.Fukui et al. J. Jpn. Soc. Tech. Plasticity, 1981, 22: 669
    [107] Zone-Ching Lin, Wen-Shy Yang. Rolling Process Analysis of Aluminum Strip by a Coupled Thermo-elastic-plastie Model. Int. J. Mach. Tools Manufact, 1995, 35(4): 619-635
    [108] Zone-Ching Lin, Chi-Chih Shen. A Coupled Finite Element Method for a Three-dlmensional Analysis of the Flat Rolling of Aluminum with Different Redutions. Journal of Materials Processing Technology, 2001, 110: 10-18
    [109] S.P.Belyayev, V.A.Likhachev, M.M.Myshlyayev, O.N.Sen'kov. Dynamic Recrystallization of Aluminum. Phys. Met. Metall., 1981, 52 (3): 143-152
    [110] T.C.T.Ting, S.C.Chou. One-dimensional Constitutive Equation for Temperature-rate Sensitive Materials. Mechanics of Materials, 1999, 31: 289-293
    [111] X Duan, T Sheppard. Three dimensional thermal mechanical coupled simulation during hot rolling of aluminum alloy 3003. International Journal of Mechanical Science, 2002, 44: 2155-2172
    [112] J.J.Jonas, S.P.Innarigeon, Z.Metallk., 1969, 60: 27
    [113] B.P.Gearing, H.S.Moon, L.Anand. A Plasticity Model for Interface Friction: Application to Sheet Metal Forming. International Journal of Plasticity, 2001, 17: 237-271
    [114] Stuart B. Brown, Kwon H. Kim, Lallit Anand. An Internal Variable Constitutive Model for Hot Working of Metals. International Journal of Plasticity, 1989, 5: 95-130
    [115] Z.N.Cheng, G.Z.Wang, L.Chen, J.Wilde, K.Becker. Viscoplastic Anand Model for Soler Alloys and its Application. Soldering & Surface Mount Technology, 2000, 12 (2): 31-36
    [116] Lallit Anand. Constitutive Equations for Hot-working of Metals. International Journal of Plasticity, 1985, 1: 213-231
    [117] J.R.Klepaczko. A Practical Stress-strain-strain rote-temperature Constitutive Relation of the Power Form. Journal of Mechanical Working Technology, 1987, 15: 143-165
    [118] B.Chen, X.Peng, J.G.Wang, et al. An Elastoplastic Constitutive Description for Casting Magnesium Alloy AL305. Computational Materials Science, 2004, 30: 404-410
    [119] 王珏.彭大暑.刘育英.LF21铝合金高温高速流动应力研究.铝加工,1996,19(5):32-35
    [120] 王孟君,杨立斌,甘春雷等.6063铝合金高温流变本构方程.华中科技大学学报(自然科学版),2003,31(6):20-22
    [121] 许树勤.许彩霞.工业纯铝热变形流动应力的研究.太原理工大学学报,2003,34(4):406-408
    [122] 刘心宇,张继忠,程仕平等.纯铝(L_2)高温本构方程的研究.中南工业大学学报,1997,28(2):156-159
    [123] 彭大暑,张辉,杨立斌等.铝合金热轧过程中显微组织演变的模拟研究.材料导报,2000,14(12):9-11
    [124] 陈魁英,曾松岩,李庆春.Al-Cu合金液固共存区的流变行为.材料科学进展,1991,5(3):195-198
    [125] 李德福,林柏年.液固态合金流变特点的研究.特种铸造及有色合金,2001,(3):6-8
    [126] 李德福,王志东.铝合金流变性能的研究概况.有色金属(冶炼部分),1997,16(1):44-46
    [127] 张家泉,于震宗,林家骝.合金凝固过程的微分型本构方程及其蠕变与松弛特性.北京科技大学学报,1995,17(1):41-45
    [128] 张家泉,姚新斌,谢徽等.碳钢连铸坯凝固两相区的流变力学特性.钢铁,1996,31(12):22-25
    [129] 张勇,闻德荪,舒光冀等.液态铝在多孔介质中低压渗流过程的模拟实验研究.实验力学,1994,9(1),24-30
    [130] P.Kumar, C.L.Martin, S.Brown. Constitutive Modeling and Characterization of the Flow Behavior of Semi-solid Metal Alloy Slurrie-Ⅰ. The Flow Response. Acta metal. Mater., 1994, 42(11): 3595-3602
    [131] C.L.Martin, P.Kumar, S.Brown. Constitutive Modeling and Characterization of the Flow Behavior of Semi-Solid Metal Alloy Slurries-Ⅱ. Structural Evolution under Shear Deformation. Acta metal. Mater., 1994, 42(11): 3603-3614
    [132] 祖丽君,罗守靖,孙家宽.应变速率、液体体积分数和液体粘度对金属半固态成形变形力的影响.中国有色金属学报,2000,10(Suppl.1):192-197
    [133] 孙家宽,罗守靖.半固态下LY12的变形力学行为.中国有色金属学报,1999,9(3):493-498
    [134] 郑学辉,温景林.金属半凝固加工成形技术的发展现状及趋势.有色矿冶,1991,(1):42-47
    [135] 苗雨川.双辊铸轧薄带钢凝固过程的数值模拟.东北大学博士学位论文,2001:53-54
    [136] 张大辉,毛卫民,钟雪友.变形速率对半固态AlSiTMg合金变形性的影响.中国有色金属学报,2000,10(Suppl.1):132-134
    [137] 苗雨川,邸洪双,王国栋等.液固两相区本构方程的研究.钢铁研究学报,2001,13(4):10-13
    [138] 张少军,周纪华,高永生等.铝合金热塑性变形流动应力及其数学模型.北京科技大学学报,1996,18(3):263-266
    [139] Samanta S. K. Dynamic deformation of aluminum and copper at elevated temperatures. J. Mech. Phys. Sol., 1971, 19: 117
    [140] 黄乃琨.金属塑性加工原理.北京:冶金工业出版社,1980
    [141] 周纪华,王再英,高永生等.铝合金流动应力数学模型.北京科技大学学报,1994,16(4):351-356
    [142] Garofalo F. Fundamentals of creep and creep rupture in metals, Mac Millan, N.Y.,1965
    [143] J.J.Jonas, H.J.McQueen, W.A.Wong. Deformation under Hot Working Conditions. Iron and Steel Institute, London, 1968: 49-54
    [144] 沈健.2091铝锂合金高温塑性变形行为研究.博士学位论文.长沙:中南工业大学,1996:4-6
    [145] Sherby O.D., Robbins J. L., Goldberry A. Calculation of activation volumes for self-diffusion and creep at high temperature. J. Appl. Phys., 1970, 41: 3961
    [146] Sherby O.D., Burke P.M. Mechanical behavior of crystalline solids at elevated temperature. Progr. Met. Sci., 1967, 13: 325
    [147] Raybould D., Sheppard T. Plastic flow in the thermally activated mechanical working processes. J. Inst., Met., 1973a, 101: 45
    [148] 沈健,G.Gottstein.铝合金热变形组织演化的模拟.材料科学与工艺,2001,9(3):329-332
    [149] M.A.扎依科夫.热轧变形制度与轧制力.中国工业出版社,1963
    [150] 管克智,周纪华.热轧金属塑性变形阻力研究.北京钢铁学院学报,1983,(1):123-139
    [151] S.V.帕坦卡.传热和流体流动的数值方法.郭宽良译.安徽:安徽科学技术出版社,1984
    [152] 施天漠.计算传热学.陈越南等译.北京:科学出版社,1987
    [153] 高志.材料[液-固]流变界面传热机理与高梯度温度成形界面的建立.博士学位论文.长沙:中南大学,2001
    [154] 陶文铨.数值传热学.西安:西安交通大学出版社,1988
    [155] 李晓谦.连续铸轧带坯在轧制区的温度场数学模型.中国有色金属学报,1997,7(4)
    [156] J.V.Beck. Combined Parameter and Function Estimation in Heat Transfer With Application to Contact Conductance, Journal of Heat Transfer, 1988, 110: 1046-1058
    [157] Novikov, V. S. The Thermal Contact Resistance of Rough Surfaces under Compression, Heat Transfer-Soviet Research, 1973, 5: 151-159
    [158] Novikov, V. S. The Thermal Contact Resistance as a Function of Compression of Rough Surfaces, Heat Transfer-Soviet Research, 1970, 2: 160-165
    [159] B.Snaith, S.D.Probert, P.W.O'Callaghan. Thermal Resistances of Pressed Contacts.Applied Energy, 1986, 22: 31-73
    [160] F.R.Al-Astrabad, A. M.Jones, S. D.Probert, et al. Effect of Surface Distortions upon the Thermal Resistance of Pressed Contacts, Journal of Mechanical Science, 1979, 21(5): 317-322
    [161] H. Fenech, W. M.Rohsenow. Prediction of Thermal Conductance of Metallic Surfaces in Contact, ASME Journal of Heat transfer, 1963: 15-24
    [162] 徐烈,杨军等.低温下固体表面接触热阻的研究.低温与超导,1996,24 (1):53-58
    [163] 李晓谦,胡仕成.快速铸轧中的接触热导及带坯在铸轧区的温度分布的仿真分析.重型机械,1999,3:34-37
    [164] 胡仕成,李晓谦,湛利华.界面接触热导对铸坯出口温度的影响.矿冶工程,2001,21(4):83-85
    [165] 湛利华.界面接触热阻实验与建模及其在快凝铸轧参数设计中的应用.硕士学位论文,长沙:中南大学,2001
    [166] 周建兴,刘瑞祥,陈立亮等.凝固过程数值模拟中的潜热处理方法.铸造,2001,50(7):404-407
    [167] 陈栋梁,干勇,杨文改等.关于糊状区传热模拟方法的研究.钢铁,1996,31(6):22-26
    [168] 许光明,李兴刚,崔建忠.液固相铝-不锈钢板复合轧制温度场的模拟计算.钢铁研究学报,2000,12(4):19-22
    [169] 美国ANSYS公司北京办事处.ANSYS热分析指南,2000
    [170] 许光明,崔建忠.不锈钢/Al固液轧制复合过程温度场模拟.金属学报,1999,35(2):131-133
    [171] 陈海清,李华基,曹阳.铸件凝固过程数值模拟.重庆:重庆大学出版社,1991
    [172] 王国强.实用工程数值模拟技术及其在ANSYS上的实践.西北工业大学出版社,2000
    [173] 王勖成,邵敏.有限单元法的基本原理和数值方法.清华大学出版社,1997:1-35
    [174] 刘相华.刚塑性有限元及其在轧制中的应用.北京:冶金工业出版社,1994
    [175] 刘相华,白光润.三维平板轧制问题的刚塑性有限元分析,轧钢理论文集(下),1983:5-43
    [176] Liu Xianghua, Jiang Zhengyi, Wang Guodong. Analysis of 3-D Deformation for Crowning Strip Rolling by Rigid-Plastic-FEM. Proc. of 4-th Int. Conf. on Tech. of Plast., 1993: 5-9
    [177] Montmitonnet, P. Use of a Finite Element Computer Code for Optimization of Rolling operation, Proc. of 3-th Int. Conf. on Tech. Kyoto, 1990: 625
    [178] 乔端,钱银根.非线性有限元法及其在塑性加工中的应用.北京:冶金工业出版社,1990
    [179] 王祖堂.金属塑性成形原理.北京:机械工业出版社,1989
    [180] 赵志业.金属塑性变形与轧制原理.北京:冶金工业出版社,1980
    [181] 逯洲威.薄板坯连铸液芯铸轧过程的力学分析.博士论文,北京:北京科技大学,2000
    [182] 荆德君,蔡开科.连铸结晶器内热-力耦合状态有限元模拟.金属学报,2000,36(4):403-406
    [183] Lenard J G, Pietrzy K M, Cser L. Mathematical and physical simulation of the properties of hot rolled products. Amsterdam: Elsevier, 1999
    [184] 肖宏,申光宪,连家创.三维弹塑性有限形变边界元法模拟轧制对界面摩擦的处理.钢铁,1995,30(7):37-40
    [185] 张明如,钟维淳.高温摩擦因数的测量与分析.钢铁,1998,33(4):24-26
    [186] 曹鸿德.塑性变形力学基础与轧制原理.北京:机械工业出版社,1981: 53-57
    [187] Wenhua Ling, Henryk K.Stolarski. On Elasto-plastic Finite Element Analysis of Some Frictional Contact Problems with Large Sliding. Engineering Computations, 1997, 14 (5): 558-580
    [188] Takeshi Shinoda, Mika Kawai. Surface Modification by Novel Friction Thermomechanical Process of Aluminum Alloy Castings. Surface and Coatings Technology, 2003, 169-170: 456-459
    [189] T.A.Laursen, V.G.Oancea. On the Constitutive Modeling and Finite Element Computation of Rate-dependent Frictional Sliding in Large Deformation. Comput. Methods Appl. Mech. Engrg., 1997, 14: 197-227
    [190] N.Bay. Friction Stress and Normal Stress in Bulk Metal-forming Processes. Journal of Mechanical Working Technology, 1987, 14: 203-223
    [191] 许光明,崔建忠.液固相复合轧制力能参数的ANSYS软件模拟.钢铁研究学报,2001,13(1):19-21
    [192] Zhao Hong-liang, Guan Ren-guo, Wen Jing-lin. FEM Analysis of Physical Field in Level Rolling Process of Inversion Casting by ANSYS Program. J. Iron&Steel Res. Int., 2000, 7 (1): 14-16
    [193] 美国ANSYS公司北京办事处.ANSYS非线性分析指南.2000
    [194] 美国ANSYS公司北京办事处.ANSYS高级技术分析指南.2000
    [195] 刘儒勋,李文志.一种自适应变网格有限元法.中国科学技术大学学报,1994,(1):55-59
    [196] 王跃先,陈军,阮雪榆.ALE有限元方法中的网格运动算法.上海交通大学学报,2001,(10):1539-1542
    [197] 徐思浩,杨建新.判别二维有限元网格图的简便算法.计算力学学报,2001,(1):61-63
    [198] 盛伟,谢配良,陈胜.ANSYS二次开发软件在塑性成模拟中的应用.机车车辆工艺,2002(6):24-27
    [199] 夸克工作室.有限元分析基础篇ANSYS与Mathematica.清华大学出版社,2002
    [200] 王人鹏,叶天麒,帅朝林.实现有限元并行分布计算的一种新策略.计算结构力学及其应用,1994,(4):392-400
    [201] R.D.库克.程耿东,何穷.张国荣译.有限元分析的概念和应用.科学出版社,1989
    [202] 美国ANSYS公司北京办事处.ANSYS耦合场分析指南.2000
    [203] 国航空材料手册编委会.中国航空材料手册第3卷.中国标准出版社,1989
    [204] Merton C. Flemings. Behavior of metal alloys in the semisolid state. Metal. Trans. B, 1991, 22B(6): 269-293
    [205] M.A.Cruchaga, D.J.Celentano, R.W.Lewis. Modelling of Twin-roll Strip Casting Processes. Communications in Numerical Methods in Engineering(Commun. Numer. Meth. Engng, 2003, 19: 623-635
    [206] L.Styczynski, W.Pachla, S.Wojciechowski. Thermal-softening Processes in Polycrystalline Aluminum during Hydrostatic Extrusion. Metal Science, Vol.16, November 1982: 525-528
    [207] 王希维.铸轧铝板的组织及其缺陷.轻合金加工技术,1994,22(2):14-17
    [208] 苏凤,王先进,唐荻等.有限元法处理金属塑性成型过程的接触问题.塑性工程学报,2000,7(4):12-15
    [209] Woo-seung Kim, Deok-soo Kim, A.V.Kuznetsov. Simulation of Coupled Turbulent Flow and Heat Transfer in the Wedge-shaped Pool of a Twin-roll Strip Casting Process. International Journal of Heat and Mass Transfer, 2000, 43: 3811-3822
    [210] H.Yamagata. Multipeak Stress Oscillations of Five-nine-purity Aluminum during a Hot Compression Test. Scripta Metallurgica, 1992, 27: 201-203
    [211] 罗迎社,森敏彦.温度、变形速度对铝合金A6061的应力-应变关系的影响.锻压技术,1996,(3):32-35
    [212] 周筑宝.流变固体的本构关系.流变学进展,华中理工大学出版社,1999:227-231
    [213] 史宝军,鹿晓力,鹿晓阳等.建立材料塑性本构方程的实验分析方法.山东建筑工程学院学报,1998,13(2):65-71
    [214] A.Laouadi, M.Lacroix, N.Galanis. A Numerical Method for the Treatment of Discontinuous Thermal Conductivity in Phase Change Problems. International Journal of Numerical Methods for Heat & Fluid Flow, 1998, 8 (3): 265-287
    [215] T.C.Tszeng, Y.T.Im, S.Kobayashi. Thermal Analysis of Solidification by the Temperature Recovery Method. Int. J. Mach. Tools Manufact. 1989, 29 (1): 107-120
    [216] 卫原平,阮雪榆.金属成形过程中热力耦合分析技术研究.塑性工程学报,1994,1(2):3-10
    [217] 曾伟,邓子玉,张立平.热力耦合刚粘塑性有限元模拟技术的研究.沈阳工业学院学报,2003,22(3):69-72
    [218] 王金录,邸洪双,刘相华等.双辊铸轧薄带钢温度场的有限元数值模拟.塑性工程学报,2002,9(3):57-60
    [219] A.A.Tseng, S. X.Tong, S.H.Maslenetal. Thermal behavior of aluminum rolling. Journal of Heat Transfer, 1990, 112: 301-308
    [220] 杨卯生,毛卫民,赵爱民等.半固态合金连续铸轧的技术现状与发展趋势.材料导报,2001,15(3):16-18
    [221] 成都铝箔厂φ1003×1850mm铸轧机测试报告(内部资料).中南大学机电工程学院冶金机械研究所,1998
    [222] 华北铝业有限公司超薄快速铸轧试验测试报告(内部资料).中南大学机电工程学院冶金机械研究所,2004
    [223] M. Ozawa. Heat transfer analysis of roll casting. In: A. F. Giarnei. Modeling and Control of Casting and Welding Processes Ⅳ, Pennsylvania: A Publication of the Metallurgical society, 1988: 255-263
    [224] 佐成弘毅等.双辊法薄带连铸工艺的模拟.葛红林等主编,国外薄板连铸新技术:第四辑,上海:上海钢铁研究所印,1993:192-198
    [225] L.M.Galantucci, L.Tricarico.Thermo-mechanical simulation of a rolling process with an FEM approach. Journal of Materials Processing Technology, 1999, 92-93: 494-501

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700