用户名: 密码: 验证码:
电冶熔铸WC/钢复合材料的制备工艺及组织、性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
显微缺陷分析显示,采用电冶熔铸工艺制备的WC/钢复合材料不仅气孔、夹杂物含量低,无明显游离石墨痕迹,而且较好地解决了WC颗粒的偏聚问题,具有明显的质量优势。
     WC/钢复合材料的制备过程中,WC颗粒在高温下发生了局部溶解并在WC颗粒和钢基体界面处发生了界面反应;X射线衍射和电子衍射花样分析表明,反应产物为高稳定性的Fe_3W_3C,界面反应有效地改善了WC颗粒与钢基体的界面结合。
     随着WC颗粒含量的增加,WC/钢复合材料中出现了一些不良组织。实验结果表明适当的锻造和热处理可有效地改善WC/钢复合材料中碳化物的不良形态,并相应地提高复合材料的力学性能。
     断口形貌分析显示,wc/钢复合材料的断口形貌呈韧-脆复合断口特征,硬脆的WC颗粒常发生脆性解理断裂,而韧性较高的钢基体的断口形貌则因热处理工艺而异。
     结合磨损特性曲线和不同磨损时间的摩擦面SEM照片,分析了WC/钢复合材料的磨损机理,并讨论了不同热处理工艺和WC颗粒含量对WC/钢复合材料磨损性能的影响。
Microstructure analysis showed that the tungsten carbide particle reinforced steel matrix composites, which were made by electroslag melting and casting method, not only had low content of porosity and nonmetal inclusion, but also could reduce the free carbon content immensely. Meanwhile, the new manufacturing process could solve the problem of tungsten carbide particle aggregation efficiently. It was proved that the electroslag melting and casting method had a remarkable priority compared with other composites manufacturing processes.
    During the manufacturing process, tungsten carbide particles were partly melted because of the high temperature. The melted tungsten carbide would react with the steel matrix on the interface and the reaction zone was observed as a result. The reacting production was examined as Fe3W3C by means of X-ray diffraction and scanning electron microscopy analysis. The reaction between tungsten particle and steel matrix could improve the interfacial bonding strength remarkably.
    Some abnormal microstructures in the tungsten carbide particle reinforced steel matrix composites were observed as the tungsten particulate content was increased. Experimental results showed that annealing and forging treatment could decrease the abnormal microstructure and improve the mechanical properties of the composites accordingly.
    Cross section morphology analysis showed that the fracture appearance of tungsten carbide particle reinforced steel matrix composites was a mixture of quasi-cleavage fracture and toughness fracture. The fracture appearance of tungsten carbide particle always displayed as quasi-cleavage fracture, while the cross section morphology of steel matrix transformed with the heat treatment techniques.
    The wear mechanism of tungsten carbide particle reinforced steel matrix composites was studied according to the frictional and wear characteristics and the scanning electron microscopy photographs of worn surfaces after wear testing. The effect of heat treatment and tungsten carbide content on wear resistance was investigated as well.
引文
[1] Mortenson A. Jm 1. Solidification processing of metal matrix composites. Inter. Mater. Rev., 1982.37(3): 101~128
    [2]V C Nardone and K W Perwe. Seripta Metall, 1986 (20): 43~45
    [3]S G Fishman. Journal of Metals, 1986(38): 26~29
    [4]T W Chon. Composites, 1985 (16): 127~130
    [5]Frank A. Composites Sci&Tech., 1987(30): 155~157
    [6]Alan R Begg. MPR.,1991 (10): 42~44
    [7]David M S. Schutster Light Metal Age, 1989 (2): 15~17
    [8]Amer. Cer. Soc. Bull., 1989(68): 1062~106
    [9]孙国雄,廖恒成,潘治.颗粒增强金属基复合材料的制备技术和界面反应与控制。特种铸造及有色合金,1998(4):12
    [10]刘耀辉,李庆春,何镇明.金属基铸造颗粒复合材料.复合材料学报,1989(1):55
    [11]于琨等.材料科学与工程,1988(1):6~12
    [12]P K Rohatgl and R Asthana S Das.Inter.Met.Rev.,1986(31):115~120
    [13]宋延沛,李秉哲,王文焱等.WC颗粒增强铁基复合材料辊环的研究.机械工程学报,2001(11):99~102
    [14]Lloyd D J. International Materials Reviews, 1994, 39 (1): 1
    [15]周尧和,胡壮麒,乔万奇.凝固技术.机械工业出版社.1998:389
    [16] W H Huni. Powder Metallurgy Composites. 1987. 123~127
    [17]B Ferguson. Int. J. Powder. Metals. Proc. Tech.,1994 (20): 131~135
    [18]严红革,陈振华,黄培云.金属超微粉末制备技术中几个问题.材料导报,1997,11(1):16
    [19]郭绍义,郦剑,茅东升等,Al_2O_3-TiC-Co新型复合材料的力学性能及断裂行为.材料工程,1997(10):3
    [20]吴人洁.金属基复合材料的现状与展望.金属学报,1997(1):78~79
    [21]郑灵仪,金燕平,李鹏兴.SiC颗粒强韧MoSi_2复合材料.无机材料学报,1994(6):232~237
    [22]杨瑞成,王夏冰,王军民等.WC/钢基合金不同处理状态下的微观特征.材料科学与工艺,1998(3):29~33
    [23]梅志,袁洪娣.液态搅拌法制备复合材料分析及进展.电子显微学报.1998,17(5):575
    [24]李昊,杜满昌,周彼德.搅拌铸造金属基复合材料的热力学和动力学机制.中国空间科学技术.1997(2):9~15
    [25]陶杰,崔益华,肖军等.流变铸造法制备Si_p/Zn基复合材料的研究.兵器材料科学与工程,1996,19(6):15
    [26]于思荣等.Al_2O_(3(p))/Zn-Al合金复合材料制备工艺研究.新技术新工艺,1998(2):21~22
    [27]Sui Xiandong, Luo Chenping, Luo Zhuoxuan and Ouyang Liuzhang. The Fabrication and Properties of Particle Reinforced Cast Metal Matrix Composites. Mat. Proc. Tech., 1997(63): 426
    [28]耿林.SiC_w/Al复合材料研究进展.材料导报,1996(1):64~66
    [29]刘政.氧化铝短纤维增强锌基复合材料的凝固组织.热加工工艺,1995(2):
    
    11~13
    [30]符寒光,邢建东.挤压铸造高速钢辊环的研究和应用.机械工程学报,2001,37(11):89~91
    [31]Labib A, Effect of Solidification Rate on the Microstructure of Two Al-Si-10vol% SiC Particle Composites Coatings. Materials Science and Engineering. 1993 Al60:81~90
    [32]Rohatgi P K. Solidification of Cast Metal-ceramic Particle Composites. International Metal Reviews, 1996 (3): 115
    [33]Zhang D L, Brindly C, The Microstructure of Alumium Alloy Metal Matrix Composites Manufactured by Squeeze Casting. Material Science, 1993 (28): 2267~2272
    [34]王玉玮,刘越.离心铸造铁基复合材料的研究.东北大学学报,1994,15(4):395~399
    [35]张震寰,离心铸造石墨复合材料轴瓦,特种铸造及有色金属合金,1995(2):46~49
    [36]宋延沛,李秉哲,王文焱等.WC颗粒增强铁基复合材料辊环的研究.机械工程学报,2001(11):99~102
    [37]王玉玮,刘越.铁基SiC陶瓷颗粒表面耐磨复合材料的研制.铸造1990(11):15~19
    [38]桂满昌等.颗粒增强铝基复合材料的制备及应用.材料导报.1996(3):65~71
    [39]Biswas S, Srinivasa, Shesan S. Cast Aluminum-Graphite Composites for Industrial Application. Modem Casting, 1990 (5): 74
    [40]Kang C G and Rohatgi P K. Transient thermal analysis of solidification in a centrifugal casting for composite materials containing particle segregation. Metallurgica and Materials Transaction, 1996, 27B: 277~285
    [41]彭晓东等.宇航材料工艺.1992(1):13
    [42]丁国陆等.复合材料学报,1995(12):26
    [43]曹鹏.喷射沉积金属基复合材料研究现状及发展趋势.材料导报,1995(2):63~66
    [44]王恩泽,徐学武,邢建东.颗粒增强钢基铸造复合材料研究.材料科学与工程,1996,14(4):27~30
    [45]Yue W, Lavernia E J. JOM, 1991 (8): 16
    [46]Gupta M, et al., Mater. Sci., 1991 (26): 6673
    [47]Brahim IA, et al., Mater Sci, 1991 (26): 1173
    [48]Lawly A. On Fabrication of MMCs. Powder Metallurgy, 1994 (10): 256
    [49]Lloyd D J. Particle Reinforced Aluminum and Magnesium Matrix Composites. International Materials Reviews, 1994,39 (1): 1~22
    [50]Ibrahim I A, Mohamed F A, Lavernia E J. Particulate Reinforced Metal Matrix Composites-a review. Journal of Materials Science, 1991 (26): 1137~1156
    [51]Srivatasan T S, Ibraim I A, Mohamed F A, et al., Processing Techniques for Particulate-reinforced Metal Matrix Composites. Material Science. 1991 (26): 5965~5978
    [52]White J, Willis TC. Materials&Design, 1989, 10(3): 121
    [53]B. P. Krishnan. Mater. Scl. Lett, 1991 (16): 1209~1213
    
    
    [54]K Gopakumar. Materials Science, 1990(15): 1588~1592
    [55]王俊等,复合材料学报,1995(1):56~60
    [56]B. N. Keshavakarm. Mater. Sci. Lett., 1992 (1): 29~31
    [57]朱正吼,陈其善.铸造SiC/钢复合材料中粒子分布特点.热加工工艺,1995(2):8~9
    [58]王箕,王建民.SiC增强铁基耐磨复合材料的试验.中国铸造装备与技术,1997(6):27~29
    [59]Hashim J, Looney L, Hashmi M S J. Particle distribution in cast metal matrix composites, Part I. Journal of Materials Processing Technology, 2002,123 (2): 251~257
    [60] Hashim J, Looney L, Hashmi M S J. Particle distribution in cast metal matrix composites, Part Ⅱ, Journal of Materials Processing Technology. 2002, 123 (2):258~263
    [61]Taha, Mohamed A. Practicalization of cast metal matrix composites (MMCCs).Materials and Design, 2001,22(6): 431~441
    [62]梅志,顾明元,吴人洁.金属基复合材料界面表征及其进展.材料科学与工程,1996,14(3):1~5
    [63]孙国雄,廖恒成,潘冶,颗粒增强金属基复合材料的制备技术和界面反应的控制,特种铸造及有色金属,1998(4):12~17
    [64]王溪,胡汉起.WC_p/Fe-Ni钢基复合材料的界面.钢铁研究学报,1998,10(4):46~49
    [65]Shangguau D, Ahuja S. An Analytical Model for the Interaction Between an Insoluble Particle and an Advancing Solid/Liqui Interface. METTRAN. 1992 (234):669
    [66]严有为,魏伯康,梅志等.铸造原位(In Situ)TiC_p/Fe复合材料制备工艺的研究.铸造,1998(4):5~8
    [67]严有为,魏伯康,梅志等.原位(In Situ)颗粒增强铁基复合材料的制备新技术—反应铸造法.现代铸造,1998(2):50~54
    [68]严有为,魏伯康,傅正义等.原位TiC颗粒增强铁基复合材料组织及其形成机理.金属学报,1999,35(10):1117~1120
    [69]王一三,张欣苑,李风春等.液相合成VC颗粒增强钢基表面复合材料研究.机械工程材料,1999,23(4):35~37
    [70]刘海峰,刘耀辉,于思荣.原位合成VC颗粒增强钢基复合材料组织及其形成机理.复合材料学报,2001,18(4):59~63
    [71]陈小勇,陈玉勇,舒群等.原位反应法制备Al/Al_3Ti复合材料组织和性能.复合材料学报,1997,14(2):66~70
    [72]陈刚,孙国雄.反应Al_2O_(3(p))/Al-Cu复合材料的研究.特种铸造及有色合金,1997(3):1~4
    [73]欧阳柳章等.原位生成制备Al_2O_3增强铝基复合材料.中国有色金属学报,2000(4):159~162
    [74]王自东,李庆春.原位TiC粒子增强Al-Si合金的组织和性能.金属学报,1994,30(1):39~43
    [75]王自东,曾松岩,李庆春.原位接触反应制取TiC颗粒增强Al复合材料的研究.金属学报,1994,30(7):314~317
    
    
    [76]王自东,李庆春.原位TiC粒子增强Al-Si合金的组织和性能.金属学报,1994(1):B40~42
    [77]吕维洁,张小农,张荻等.原位合成TiB/Ti基复合材料增强体的生长机制.金属学报,2000,36(1):104~108
    [78]陈昌明.硼化物自生复合材料的制备.复合材料学报,1997,14(4):57~60
    [79]崔春翔,吴人洁,张国定.原位TiC-AlN/Al复合材料制备及炉内气氛对反应的影响.复合材料学报,1998,15(1):62~67
    [80]Nukim T, Fleming M C. In situ synthesis of TiC Particulate Reinforced Aluminum Matrix Composites. Metall Trans. 1995, 26 (7): 1884~1887
    [81]Zhao H F. On the Morphology of Cast Zinc-based Alloy Reinforced by Spheroidal Silicon Phase and its Wear-resistance. International Journal of Cast Metals Research. 1998(2): 65
    [82]Lui Z, Fredriksson H. On the Reaction Between Fe-Ti and Fe-C liquids under Microgravity. Metall Trans. 1996, 27A(2): 407~414
    [83]Lui Z, Fredriksson H. On the Kinetics of Carbide Precipitation during Reaction between Graphite and Fe-Ti liquids under Microgravity. Metall Trans. 1997, 28A (3): 707~719
    [84]Chrysanthou A, Davies N M, Li J et al. Reaction synthesis of Carbide-reinforced cast iron. Mater. Sci. Lett., 1996(15): 473~474
    [85]Berns H, Koch S. Influence of abrasive particles on wear mechanism and wear resistance in sliding abrasion tests at elevated temperatures. Wear. 1999, 233(6): 424~430
    [86]Sheikh-Ahamed J Y, Bailyey J A. The wear characteristics of some cemented tungsten carbide in machine particleboard. Wear. 1999, 225(1): 256~266
    [87]Voyer J, Marple B R. Sliding wear behavior of high velocity oxy-fuel and high power plasma spray-processed tungsten carbide-based cermet coatings. Wear. 1999, 229(2): 135~145
    [88]Kiourtsidis, Grigoris E, Skolianos, Stefanos M. Wear behavior of artificially aged AA2024/40 μ mSiCp composites in comparison with conventionally wear resistant ferrous materials. Wear. 2002, 253 (6): 946~956
    [89]Dogan O N, Hawk J A, Tylczak J H. Wear of cast chromium steels with TiC reinforcement. Wear. 2001, 250 (5): 462~469
    [90]Vardavoulias M, Durand J M, Jeandin M. Role of reinforcing ceramic particles in the wear behaviour of polymer-based model composites. Wear. 1995 , 253 (2): 833~839
    [91]Albertin E, Sinatora A. Effect of carbide fraction and matrix microstmcture on the wear of cast iron balls tested in a laboratory ball mill. Wear.2001, 250 (5): 492~501
    [92]Dogan O N, Hawk J A, Tylczak J H. Wear of titanium carbide reinforced metal matrix composites. Wear. 1999, 225 (2): 758~769
    [93]Sahin Y, Murphy S. The effect of sliding speed and microstructure on the dry wear properties of metal matrix composites. Wear. 1998, 214 (1): 98~106
    [94]Martin B, Vincent L, Wright C S. Fretting wear and cracking in sintered metal matrix composites. Wear. 2001, 248 (1-2): 65~74
    
    
    [95]Liao H, Normand B, Coddet C. Influence of coating microstructure on the abrasive wear resistance of WC/Co cermet coatings. Wear. 2000, 124 (2-3): 235~242
    [96]Liao H, Normand B, Coddet C. Influence of coating microstructure on the abrasive wear resistance of WC/Co cermet coatings. Surface and Coating Technology. 2000, 124(2-3): 235~242
    [97]Wang H, Xia W, Jin Y. A study on abrasive resistance of Ni-based coatings with a WC hard phase. Wear. 1996, 195(1-2): 47~52
    [98]Sheikh-Ahamed J Y, Bailey J A. The wear characteristics of some cemented tungsten carbides in machining particleboard. Wear, 1999,225 (1): 256~266
    [99]郭成,程羽,尚春阳.SiC颗粒增强铝合金基复合材料断裂与强化机理.复合材料学报,2001,18(4):54~57
    [100]陈尚平,解念锁.非连续增强铝合金复合材料的力学性能.材料科学与工程,1997,15(4):72~78
    [101]Zheng W M, Lesperance G, Suery M. Effect of thermomechanical processing on the microstructure and mechanical properties of SiC/Al-Mg and Al_2O_3/Al-Mg composites, Part 3: Fracture mechanisms of the composites. Mater Sci&Eng, 1996,214A(1): 104~114
    [102]秦蜀懿,张国定等.改善颗粒增强金属基复合塑性和韧性的途径与机制.中国有色金属学报,2000(10):621
    [103]Holzgruber W, Holzgruber H. Innovative Electroslag Remelting Technologies. MPT International, 2000, 23(2): 46~48
    [104]尤显卿,黄曼平,郑玉春.电冶熔铸碳化钨钢结硬质合金的微观组织研究.矿冶工程.2003.23(2):87~90
    [105]王强,赫冀成,川合悟.磁声波对金属凝固组织的影响.金属学报.2002.38(9):961~965
    [106]王昌生,易继松.轴承钢非真空精炼及其冶金效果.特殊钢(中).1992(1):23~26
    [107]Surappa M K, Rohatgi P. K. Mater Sci Lett. 1981, 16:562
    [108]游兴河.WC在WC/钢复合材料中的溶解行为.复合材料学报.1994,11(1):29~35
    [109]丁厚福.WC溶解对钢结硬质合金组织的影响.材料科学与工艺.1997,5(1):86~88
    [110]李正邦,张家雯,车向前.电渣重熔钢中非金属夹杂物含量及成分的控制.钢铁研究学报.1997,4:7~12
    [111]游兴河.WC系钢结硬质合金断裂过程和断裂机制的研究.粉末冶金技术.1988,3:141~146
    [112]吴洁君,王殿斌,桂满昌.SiC_p增强铝基复合材料的铸造缺陷分析.金属学报.1999,35(1):103~105
    [113]株洲硬质合金厂.钢结硬质合金.冶金工业出版社.1982:82~85
    [114]闫毓禾,钟敏霖.高功率激光加工及其应用.天津科技出版社.1994:143
    [115]Rivlin V G. International Metals Reviews, 1995, 30(6): 259
    [116]袁晓光,刘正,许昕.电磁铸造对A291D合金组织及力学性能的影响.中国有色金属学报.2002,12(4):784~790
    [117]储少军,王淑生,素示林.ESR前后硬质合金中WC形貌变化的分形研究.
    
    钢铁研究学报.2001,13(1):54~59
    [118]蒋业华,周荣,张王勤.颗粒体积分数对WC/铁基复合材料冲蚀磨损性能的影响.铸造.2002,51(7):428~430
    [119]梁作俭,刑建东,鲍崇高.碳化钨/铁基铸造复合材料的抗冲蚀磨损性能.铸造.2000,49(5):265~267
    [120]刘家浚.材料磨损原理及其耐磨性.清华大学出版社.1993:244
    [121]孙家枢.金属的磨损.冶金工业出版社.1992
    [122]邓志煜.摩擦学全国第三届学术交流会论文集.1982.7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700