用户名: 密码: 验证码:
SiC颗粒增强铝基复合材料超精密车削的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳化硅颗粒增强铝基复合材料(SiC_p/Al复合材料)具有比强度和比模量高、耐高温、耐磨损、耐疲劳、热膨胀系数小、尺寸稳定性好等优异的综合性能,已在航空航天、汽车、光学精密仪器等领域获得日益广泛的应用,其中通过精密、超精密加工获得的SiC_p/Al零部件主要应用于卫星轴承/天线、激光反射镜、惯性导航系统等。近年来,有关SiC_p/Al复合材料的超精密切削技术受到人们的极大关注,但关于该类材料的超精密切削机理及表面形成机制研究尚处于起步阶段。本文开展了SiC_p/Al复合材料超精密车削机理及工艺的研究,完成了以下颇具创新性的研究工作:
     1. SiC_p/Al复合材料超精密车削切屑形成机制
     对锯齿型切屑变形时的应力、应变进行了计算,并结合切屑内部不同位置的显微硬度测试分析,探明了该材料超精密车削时第一、第二变形区材料的变形规律。通过切屑形态及切屑根部组织的观察,并结合SiC_p/Al复合材料的本身特性以及切削时剪切区的应力、应变和温度环境,研究了剪切区微裂纹的动态萌生和扩展机制,以及此种动态行为对切屑形态及切屑形成过程的影响。探讨了切屑厚度准周期变化的内在机制,将剪切角周期变化和微裂纹的动态影响相结合,建立了适应含不同颗粒体分比的该材料的切屑形成过程模型。
     2. SiC_p/Al复合材料超精密车削表面形成及加工表面缺陷
     从工件材料膨胀侧流、刀具-工件相对振动、进给量和刀具圆弧半径组成的进给波纹、增强颗粒含量及尺寸、增强颗粒的去除方式等角度探讨了SiC_p/Al复合材料超精密车削表面形成机制。研究了切削用量、冷却条件、刀具刃口半径、基体和界面两者强度关系、刀具磨损状况等对增强颗粒去除方式的影响。阐述了SiC_p/Al复合材料超精密车削表面形成过程与加工表面缺陷的关系,并对SiC_p/Al复合材料超精密车削表面缺陷进行了全面的评估。
     3. SiC_p/Al复合材料超精密车削表面粗糙度研究
     研究了增强颗粒含量、尺寸及分布,切削用量、冷却条件、刀具材料及其几何参数、刀具磨损状况等对SiC_p/Al复合材料超精密车削表面粗糙度Ra的影响,为超精密车削该材料时工艺参数的选择和制定提供了重要依据。
     4. SiC_p/Al复合材料超精密车削金刚石刀具磨损研究
     观察和分析了聚晶金刚石(PCD)、单晶金刚石(SCD)刀具超精密车削SiC_p/Al复合材料时的典型刀具磨损形态,并对刀具磨损机理进行了探讨,为SCD刀具车削不同种类SiC_p/Al复合材料时的前、后刀面合理定向提供了重要依据。
Silicon carbide particle reinforced aluminum matrix composites (SiC_p/Al) have many outstanding properties of high specific stiffness/strength, high wear resistance, low density, high thermal conductivity and low thermal expansion, which make them find inceasing applications in some precision or ultra-precision fields, such as inertial guidance systems, satellite antennae/bearing and laser reflection mirror. Therefore, researchers have paid great attention to the ultra-precision machining of this kind of material. At present, the research about ultra-precision machining of SiC_p/Al composites is still at its initial stage. The present study intends to focus on ultra-precision turning mechanisms and technology for SiC_p/2024Al and SiC_p/ZL101A composites. The following original researches have been performed:
     1. Chip formation in the ultra-precision turning of SiC_p/Al composites
     Shear strain/strain rate during the course of serrated chip formation have been calculated. Combined with microhardness measurement on different part of the chip, the deformation characteristics of material in the premier and second shear zone were understood. Chip appearance and chip root metallographic structure were studied and strain, strain rate and local temperature rise were computed to investigate the dynamic generation and spread mechanisms of microcracks in the shear zone. The relationship between this dynamic behavior of microcracks and chip shape/chip formation process was discussed. The mechanisms of semi-periodic variation of chip thickness were discussed, and combining with shear angle changing and dynamic behaviour of microcracks, models of chip forming process were established for SiC_p/Al composites with different reinforcement volume fraction.
     2. Surface generation mechanisms and machined surface defects
     From the angle of material swelling and side flow, tool-workpiece relative vibration, feed rate and tool nose radius, SiC particle volume fraction and size, removal mode of SiC particles, surface generation mechanisms when ultra-precision turning SiC_p/Al composites was discussed. Surface generation mechanisms and its relationship with machined surface defects were expounded and the machining induced defects were evaluated comprehensively.
     3. Factors that affect ultra-precision turning surface roughness
     The influences of cutting tool material, reinforcement volume fraction and size, feed rate and tool nose radius, cooling and tool wear conditions on surface roughness Ra have been investigated when ultra-precision machining of SiC_p/Al composites, which provided important references for selecting the rational machining parameters and tools.
     4. Diamond tool wear pattern and its mechanisms
     The wear pattern and its mechanisms of Single Crystal Diamond (SCD) and Polycrystalline Diamond (PCD) tools have been investigated. The results of this study have offered important rules for selecting rational crystal orientation when SCD tool ultra-precision turning of different SiC_p/Al composites.
引文
[1]Cheung Chi Fai. Modelling and simulation of nano-surface generation in ultra-precision machining, [Doctor Dissertation], Hong Kong Polytechnic University, 2000.4
    [2]K.C. Chan, C.F. Cheung, M.V. Ramesh et al. A theoretical and experimental investigation of surface generation in diamond turning of an Al6061/SiCp metal matrix composite, Mechanical Sciences, 2001, 43: 2047-2068
    [3]吴利英,高建军,靳武刚.金属基复合材料的发展及应用,化工新型材料, 2002, 30(10): 32-35
    [4]朱和祥,黎祚坚,陈国平.碳化硅颗粒增强铝基复合材料的发展概况,材料导报, 1995 (3): 73-76
    [5]高静微,屈树岭.金属基复合材料(MMCs)的应用现状与市场前景,稀有金属, 1997, 21 (4): 277-282
    [6]胡永平,唐启玲,潘复生等.金属基复合材料的应用现状,铝加工, 1998, 21(6): 49-53
    [7]王俊,孙宝德,周晓和等.颗粒增强金属基复合材料的发展概况,铸造技术, 1998,3: 37-41
    [8]张学习,王德尊,姚忠凯等.非连续增强金属基复合材料的应用,航空制造技术, 2002 (5): 35-38
    [9]强颖怀,王晓虹,冯培忠. SiCp增强金属基复合材料的研究进展,轻金属, 2003 (7): 49-51
    [10]吴人洁.金属基复合材料的现状与展望,金属学报, 1997, 33 (1): 78-84
    [11]张彪.陶瓷增强金属基复合材料的研究进展,宝钢技术, 1996 (6): 11-15
    [12]李成功.金属基复合材料的研究与发展,宇航材料工艺, 1995 (4): 1-5
    [13]邢绍美,马建平.碳化硅铝基复合材料的应用和加工,航天返回与遥感, 1998, 19(2): 45-49
    [14]欧阳柳章,罗承萍.复合材料应用及其进展,汽车工艺与材料, 2000 (2): 28-31
    [15]Miracle D B. Metal matrix composites-From science to technological significance, Composites Science and Technology, 2005, 65: 2526-2540
    [16]C.F. Cheung, K.C. Chan, S. To et al. Effect of reinforcement in ultra-precision machining of Al6061/SiC metal matrix composites, Scripta Materialia, 2002, 47: 77-82
    [17]Z. J. Yuan, L. Geng. Ultraprecision machining of SiC/Al composites, Annals of the CIRP, 1993, 42(1): 107-109
    [18]韩荣第,王大镇,李刚. SiC晶须增强铝复合材料超精密切削试验研究,航空精密制造技术, 2002, 38 (1): 2-5
    [19]C.F. Cheung, K.C. Chan, W.B. Lee. Surface characterization in ultra-precision machining of Al/SiC metal matrix com posites using data dependent systems analysis, Materials Processing Technology, 2003 (140): 141-146
    [20]韩荣第,王大镇,韩滨.铝复合材料超精密加工表面微观分析,中国机械工程, 2003, 14 (9): 747-749
    [21]Hung N P, Tan T C, Zhong Z W et al. Ductile-regime machining of particle-reinforced metalmatrix composites, Machining science and technology, 1999, 3(2): 255-271
    [22]H.Chandrasedaran, J.O.Johanson. Influence of processing conditions and reinforcement on the surface quality of finish machined aluminum alloy matrix composites, Annals of the CIRP, 1997, 46(1): 493-496
    [23]M.V. Ramesh, K.C. Chan, W.B. Lee et al. Finite-element analysis of diamond turning of aluminium matrix composites, Composites Science and Technology, 2001, 61: 1449-1456
    [24]全燕鸣,叶邦彦.复合材料的切削加工表面结构与表面粗糙度,复合材料学报, 2001, 18 (4): 128-132
    [25]全燕鸣,周泽华.硬脆颗粒增强铝基复合材料的已切削加工表面形貌及影响因素,中国机械工程, 1998, 9 (7): 10-11
    [26]Caroline J.E. Andrewes, His-Yung Feng, W.M.Lau. Machining of an aluminum/SiC composite using diamond inserts, Materials Processing Technology, 2000, 102: 25-29
    [27]S. Durante, G. Rutelle, F. Rabezzana. Aluminum based MMC machining with diamond-coated cutting tools, Surface and Coatings Technology, 1997, 94-95: 632-640
    [28]N. P. Hung, F. Y. C. Boey, K. A. Khor. Machinability of aluminum alloys reinforced with silicon carbide particulates, Materials Processing Technology, 1996, 56: 966-977
    [29]J. Paulo Davim, A. Monteiro Baptista. Relationship between cutting force and PCD cutting tool wear in machining silicon carbide reinforced aluminium, Materials Processing Technology, 2000, 103: 417-423
    [30]M. El-Gallab, M. Sklad. Machining of Al/SiC particulate metal-matrix composites Part I: Tool perform ance, Materials Processing Technology, 1998, 83: 151-158
    [31]A.Manna, B. Bhattacharayya. A study on machinability of Al/SiC-MMC, Materials Processing Technology, 2003,140: 711-716
    [32]J.T. Lin, D. Bhattacharyya, W.G. Ferguson. Chip Formation in The Machining of SiC-Particle-Reinforced Aluminium-Matrix Composites, Composites Science and Technology 1998, 58: 285-291
    [33]M. El-Gallab, M. Sklad. Machining of Al/SiC particulate metal matrix composites Part II: Workpiece surface integrity, Materials Processing Technology, 1998, 83: 277-285
    [34]M. El-Gallab, M. Sklad. Machining of Al/SiC particulate metal matrix composites Part III: comprehensive tool wear models, Materials Processing Technology, 2000, 101: 10-20
    [35]N.P. Hung, F.Y.C. Boey, K.A. Khor. Machinability of Cast and Powder-Formed Aluminum Alloys Reinfored With SiC Particles, Materials Processing Technology, 1995, 48: 291-297
    [36]Mariam S. EI-Gallab. Machining of particulate metal matrix composites, [Doctor Thesis], McMaster University, Canada, 1999.9
    [37]Mariam S. El-Gallab, Mateusz P. Sklad. Machining of aluminum/silicon carbide particulate metal matrix composites Part IV: Residual stresses in the machined workpiece, Journal of Materials Processing Technology, 2004, 152: 23-34
    [38]袁哲俊,李建广.金属切削与先进制造技术的新进展,机械工人, 2000 (3): 3-4
    [39]盖玉先,董申.超精密加工机床的关键部件技术,制造技术与机床, 2000 (1): 7-10
    [40]吴明根.航空超精密加工技术的发展,航空科学技术, 1994 (4): 17-21
    [41]李圣怡,戴一帆.超精密加工技术的发展及对策,中国机械工程, 2000, 11(8): 841-844
    [42]荣烈润.面向21世纪的超精密加工技术,机电一体化, 2003(2): 6-10
    [43]杨辉,吴明根.现代超精密加工技术,航空精密制造技术, 1997, 33(1): 1-7
    [44]杨建东.超精密加工技术,长春光学精密机械学院学报,1998, 21(3): 101-103
    [45]崔彤,薛彦华.超高速与超精密加工技术,林业机械与木工设备, 2003, 31 (6): 4-6
    [46]李圣怡,戴一帆.超精密加工机床新进展,机械工程学报, 2003, 3(8): 7-14
    [47]徐洲,姚寿山.材料加工原理,北京:科学出版社, 2003.1
    [48]Zhang Libin, Hai Jintao. Metal matrix composites in China, materials processing technology, 1998, 75: 1-5
    [49]E. Pagounis, V. K. Lindroos. Processing and properties of particulate reinforced steel matrix composites, Metierals Science and Technology, 1998, A246: 221-234
    [50]A.M.S. Hamouda, M.S.J. Hashrni. Mechanical properties of alumimum metal matrix composites under impact loading, Journal of Materials Processing Technology, 1996, 56: 743-756
    [51]陈浩然,苏晓风,唐立民.微结构对金属基复合材料宏观弹塑性性能的影响,固体力学学报, 1996, 17(2):103-108
    [52]樊建中,姚忠凯.碳化硅增强铝基复合材料界面研究进展,稀有金属, 1997, 21(2):134-138
    [53]郭成,程羽,尚春阳. SiC颗粒增强铝合金基复合材料断裂与强化机理,复合材料学报, 2001.11, 18(4): 54-57
    [54]许广济,丁雨田,寇生中. SiCp/ZL201复合材料的力学性能,甘肃工业大学学报, 1998,24(1):16-19
    [55]陈剑锋,武高辉,孙东立.金属基复合材料的强化机制,航空材料学报, 2002, 22(2):51-55
    [56]秦蜀懿,张国定.改善颗粒增强金属基复合材料塑性和韧性的途径和机制,中国有色金属学报, 2000, 10(5):621-630
    [57]罗祖道,王震鸣.复合材料力学进展,北京:北京大学出版社,1992. 8
    [58]全燕鸣,周泽华.硬脆颗粒增强金属基复合材料的切屑形成机理,华南理工大学学报(自然科学版), 1998, 26(8): 33-36
    [59]宫能平,周元鑫,夏源明.应变率对SiC颗粒增强铝基复合材料拉伸性能的影响,力学季刊, 2000, 21(4):415-420
    [60]程羽,郭生武,郭成. SiC颗粒增强Al基复合材料拉伸性能与断裂机理的研究,西安交通大学学报, 1999, 33(9):94-97
    [61]钱立和,王中光,小林俊郎. SiC颗粒增强6061Al基复合材料的动态拉伸性能:Ⅰ应变硬化,材料研究学报, 2002, 16(3):285-288
    [62]王莺,周元鑫,夏源明. SiC颗粒增强铝基复合材料冲击拉伸力学性能的试验研究,材料科学与工艺, 1998, 6(3):1-6
    [63]吕毓敬,陈礼清,赵明久. SiCp尺寸及基体强度对铝基复合材料破坏机制的影响,金属学报, 1998, 34(11):1188-1192
    [64]全燕鸣,周泽华.硬脆颗粒增强金属基复合材料切削区的变形,华南理工大学学报(自然科学版), 1998, 26(4):4-6
    [65]小野浩二著,高希正译.理论切削学,北京:国防工业出版社, 1985.6
    [66]臼井英治著,高希正译.切削磨削加工学,北京:机械工业出版社, 1982.9
    [67]张幼桢.金属切削理论,航空工业出版社, 1988.6
    [68]Y.M. Quan, Z.H. Zhou, B.Y. Ye. Cutting process and chip appearance of aluminum matrix composites reinforced by SiC particle, Journal of Materials Processing Technology, 1999, 91: 231-235
    [69]W.B. Rice, M.E.I.C. the formation of continuous chips in metal cutting, the engineering journal, 1961, 44: 41-45
    [70]Paul Albrecht. Self-induced vibrations in metal cutting, Journal of engineering for industry, 1962, 84: 405-417
    [71]M.C. Shaw, A. Vyas. Chip formation in the machining of hardened steel, CIRP, 1993,40(1): 29-33
    [72]R. Komanduri, R.H. Brown. On the mechanics of chip segmentation in machining, Journal of engineering for industry, 1981, 103: 33-51
    [73]Kazuaki Iwata, Kanji Ueda. The significance of dynamic crack behavior in chip formation, Proc. Int. Conference on Production Engineering, Japan Soc. Of Precision Engrs., Tokyo,1974:516-524
    [74]Nan Liu, Analytical modeling serrated chip formation in high-speed machining of aluminum alloys, [Master thesis], Utah State University, 2003.7
    [75]Lemaire J.C., Backofen W.A. Adiabatic instability in orthogonal cutting of steel, Metall. Trans., 1972,3: 477-489
    [76]Komanduri R. Some clarification on the mechanics of chip formation when machining titanium alloys, Wear, 1982,76: 15-30
    [77]N. Ueda, T. Matsuo. An analysis of saw-toothed chip formation, CIRP, 1982,31(1): 81-84
    [78]R. Komanduri, T.A. Schroeder. On shear instability in machining a nickel-iron base superalloy, journal of engineering for industry, 1986, 108: 93-100
    [79]R. Komanduri, T.A. Schroeder, J.Hazra et al. On the catastrophic shear instability in high-speed machining of an AISI 4340 steel, journal of engineering for industry, 1982, 104: 121-131
    [80]M.A. Irfan, V. Prakash. Dynamic deformation and fracture behavior of novel damage tolerant discontinuously reinforced aluminum composites, International Journal of Solids and Structures, 2000, 37: 4477-4507
    [81]刘林海.金属基复合材料的切削加工,武汉交通科技大学学报, 1994, 18(4):363-368
    [82]韩荣第,姚洪权,严春华. SiCp/2024复合材料切削力与刀具磨损的试验研究,复合材料学报, 1997, 14(2):71-75
    [83]韩荣第, SiCp/Al、SiCw/Al复合材料加工的切削温度和刀具磨损的试验研究,宇航材料工艺, 1997(3): 36-39
    [84]王大镇,刘华明,韩荣第. SiCp增强铝基复合材料切削加工中刀-屑摩擦模型及其磨损性能研究,摩擦学学报, 2000, 20(2):85-89
    [85]R.T. Coelho, S. Yamada, D.K. Aspinwall. The application of polycrystalline diamond (PCD) tool materials when drilling and reaming aluminium based alloys including MMC, Machine Tools and Manufacture, 1995, 35(5): 761-774.
    [86]K. Winert. A consideration of tool wear mechanism when machining metal matrix composites (MMC), CIRP Ann., 1993, 42 (1): 95-98
    [87]Xu Jiuhua, Zuo Dunwen, Yang Mingda. Machining of Mental Matrix Composites, Transactions of Nanjing University of Aeronautics & Astronautics, 1995, 12 (2): 161-167
    [88]Xiaoping Li, W.K.H. Seah. Tool wear acceleration in relation to workpiece reinforcement percentage in cutting of metal matrix composites, Wear, 2001, 247:161-171
    [89]J.T. Lin, D. Bhattacharyya, C. Lane. Machinabiilty of a silicon carbide reinforced aluminium mental matrix composite, WEAR, 1995,181-183: 883-888
    [90]Ibrahim Ciftci, Mehmet Turker, Ulvi Seker. Evaluation of tool wear when machining SiCp-reinforced Al-2014 alloy matrix composites, Materials and Design, 2004,25:251-255
    [91]N.P. Hung, N.L. Loh, Z.M. Xu. Cumulative tool wear in machining metal matrix composites Part II: Machinability, Materials Processing Technology, 1996, 58: 114-120
    [92]N. Ikawa, R.R. Donaldson, R. Komanduri et al. Ultraprecision metal cutting─The past, the present and the future, Ann. CIRP, 1991, 40(2): 587-593
    [93]Joseph Datsko, M.F. DeVRIES. A microscopic study of chip formation, Trans. ASME, 1964: 82-84
    [94]B.F. Von Turkovich, J.T. Black. Micro-machining of copper and aluminum crystals, Trans. ASME, 1970: 130-134
    [95]Kanji Ueda, Kazuaki Iwata. Chip formation mechanism in single crystal cutting ofβ-brass, Ann. CIRP, 1980, 29(1): 41-45
    [96]T.Nishiguchi, Y.Maeda, M.Masuda et al. Mechanism of micro chip formation in diamond turning of Al-Mg alloy, Ann. CIRP, 1988, 37(1): 117-120
    [97]M.Masuda, Y.Maeda T.Nishiguchi et al. A study on diamond turning of Al-Mg alloy─Generation mechanism of surface machined with worn tool, Ann. CIRP, 1989, 38(1): 111-114
    [98]Toshimich Moriwaki, Koichi Okuda. Machinability of copper in ultra-precision micro diamond cutting, Ann. CIRP, 1989, 38(1): 115-118
    [99]R.Rentsch, I.Inasaki. Molecular dynamics simulation for abrasive processes, Ann. CIRP, 1994, 43(1): 327-330
    [100]N.Ikawa, Sh. Shimada, H.Tanaka. An atomistic analysis of nanometric chip removal as affected by tool-work interaction in diamond turning, Ann. CIRP, 1991, 40(1): 551-554
    [101]Yuji Furukawa, Nobuyuki Moronuki. Effect of material properties on ultra precise cutting processes, Ann. CIRP, 1988, 37(1): 113-116
    [102]Toyoshiro Inamura, Nobuhiro Takezawa, Yasuhiro Kumaki et al. On a possible mechanism of shear deformation in nanoscale cutting, Ann. CIRP, 1994, 43(1): 47-50
    [103]R. Komanduri, N. Chandrasekaran, L.M. Raff. M.D. Simulation of nanometric cutting of single crystal aluminum–effect of crystal orientation and direction of cutting, Wear, 2000, 242:60-88,
    [104]Chee Keong Ng, Shreyes N. Melkote, M. Rahman et al. Experimental study of micro- and nano-scale cutting of aluminum 7075-T6, International Journal of Machine Tools & Manufacture 2005, 315: 1-8
    [105]唐玉兰,梁迎春,霍德鸿等.单晶硅和单晶铝纳米切削过程比较,哈尔滨工业大学学报, 2004, 36(1):39-42
    [106]罗熙淳,梁迎春,董申.单晶铝纳米切削过程分子动力学模拟技术研究,中国机械工程,2002, 11(8): 860-863
    [107]肖伯律,左涛,张维玉.高能球磨制备15%SiC/2009Al复合材料的微观组织与断裂行为,稀有金属, 2005, 29(1):1-5
    [108]刘静安,谢水生.铝合金材料的应用于技术开发,北京:冶金工业出版社, 2004
    [109]樊建中,左涛,徐骏.高能球磨粉末冶金SiCp/Al复合材料的界面,稀有金属, 2004, 28(4):648-651
    [110]崔岩,耿林,姚忠凯. SiCp/6061Al复合材料的界面优化与控制,中国有色金属学报, 1997, 7 (4): 159-161
    [111]吴洁君,王殿斌,桂满昌. SiCp增强铝基复合材料的铸造缺陷分析,金属学报, 1999, 25(1):103-108
    [112]Kazuo Nakayama, Minoru Arai, Torahiko Kanda. Machining characteristics of hard materials, Ann. CIRP, 1988, 37(1): 89-92
    [113]B.M. Manyindo, P.L.B. Oxley. Modelling the catastrophic shear type of chip when machining stainless steel, Proc Instn Mech Engrs, 1992,200 (C5): 349-358
    [114]M.A. Elbestawi, A.K. Srivastava, T.I.EI-Wardany. A model for chip formation during machining of hardened steel, Ann. CIRP, 1996, 45(1): 71-75
    [115]R. Komanduri, R.H. Brown. The formation of microcracks in machining a low carbon steel, Metals and Materials, 1972:531-533
    [116]L.H.S. Luong, R.H. Brown. The role of microcracks in large plastic deformation, journal of engineering for industry, 1981,103:431-436
    [117]李旦,王洪祥,孙涛.超精密车削切屑形成过程的试验研究,制造技术与机床, 2002(6):17-19
    [118]Christopher Arcona, Tool force, chip formation and surface finish in diamond turning, [Ph.D.Dissertation], North Carolina State University, 1996.7
    [119]张国定,赵昌正.金属基复合材料,上海:上海交通大学出版社, 1996.5
    [120]张维平,金俊泽,胡汉起. SiCp/ZA22复合材料的动态断裂机制,大连理工大学学报, 1998, 38(6):729-732
    [121]Zhang Hong. plastic deformation and chip formation mechanisms during machining of copper, aluminum and an aluminum matrix composite, [Ph.D. Dissertation], North Carolina State University, University of Windsor, 1996.2
    [122]周泽华.金属切削理论,北京:机械工业出版社, 1992.5
    [123]陈日曜.金属切削原理,北京:机械工业出版社, 1993.10
    [124]范继美,万光珉.位错理论及其在金属切削中的应用,上海:上海交通大学出版社, 1991.5
    [125]J.Hazra, D.Caffarrelli, S.Ramalingam. Free machining steels——The behavior of type I MnS inclusions in machining, journal of engineering for industry, 1974: 1230-1238
    [126]葛晓陵,吴东隶. Al/SiCp复合材料断裂失效的微观机理,复合材料学报, 1994, 11(4):44-48
    [127]侯敬春,胡更开.金属基复合材料损伤细观力学分析,复合材料学报, 1996, 13(4):117-122
    [128]程光旭,李峰,李志军.颗粒增强铝基复合材料细观损伤演化特征及最弱环损伤模型,复合材料学报, 2002, 19(6): 45-49
    [129]丁占来,樊云昌,齐海波. SiCp/Al合金基复合材料的室温拉伸性能,中国有色金属学报, 1997, 9(增刊1):265-268
    [130]葛晓陵,吴东隶. Al/SiCp复合材料微裂纹产生的原位研究,固体力学学报, 1994, 15(4):340-344
    [131]M. Elmadagli, A.T. Alpas. Metallographic analysis of the deformation microstructure of copper subjected to orthogonal cutting, Materials Science and Engineering, 2003,A355 :249-259
    [132]B.E. Klamecki. Catastrophe theory model of chip formation, Journal of engineering for industry, 1982, 104: 369-373
    [133]R. Stevenson. The morphology of machining chips formed during low speed quasi-orthogonal machining of CA 360 brass and a model for their formation, Journal of engineering for industry, 1992,114: 405-411
    [134]D.P. Mondal, N.V. Ganesh, V.S. Muneshwar. Effect of SiC concentration and strain rate on the compressive deformation behaviour of 2014Al-SiCp, composite Materials Science and Engineering, 2006, A 433: 18-31
    [135]Michael Field, M.E. Merchant. Mechanics of formation of the discontinuous chip in metal cutting, Trans. ASME, 1949: 421-430
    [136]庞滔,郭大春,庞楠.超精密加工技术,北京:国防工业出版社, 2000.8
    [137]谭美田.金属切削微观研究,上海:上海科学技术出版社, 1988.4
    [138]B.F. Von Turkovich. Shear stress in metal cutting, journal of engineering for industry, 1970: 151-157
    [139]N.He, T.C. Lee, W.S.Lau. Assessment of deformation of a shear localized chip in high speed machining, Journal of Materials Processing Technology, 2002, 129:101-104
    [140]全燕鸣,曾志新,叶邦彦.复合材料的切削加工表面质量,中国机械工程, 1999, 13(21):1872-1875
    [141]H. Ni, M. Elmadagli, A.T. Alpas. Mechanical properties and microstructures of 1100 aluminum subjected to dry machining, Materials Science and Engineering, 2004, A385: 267-278
    [142]龙乐.电子封装中的铝碳化硅及其应用,电子与封装, 2006, 6, (6):16-20
    [143]王洪祥,孟庆鑫,宗文俊.金刚石刀具前角对超精密切削过程影响的有限元分析,哈尔滨工业大学学报, 2004, 36(9):1220-1224
    [144]王洪祥,孟庆鑫,高群涛.切削深度对超精密切削过程影响的有限元分析,工具技术, 2004, 38(7):6-9
    [145]C.F. Cheung , W.B. Lee. Characterisation of nanosurface generation in single-point diamond turning, International Journal of Machine Tools & Manufacture, 2001,41: 851-875
    [146]王朝英,冯新喜.信号处理原理,北京交通大学出版社, 2005.7
    [147]应启珩,冯一云,窦维蓓.离散时间信号分析和处理,清华大学出版社, 2001.9
    [148]李成贵,沈国帅.三维粗糙表面的高阶谱分析,航空精密制造技术, 2003, 39(5):26-28
    [149]李成贵.三维表面微观形貌的二维功率谱表征,计量学报, 2004, 25(1):11-15
    [150]冯秀,顾伯勤.表面形貌的研究现状和发展趋势,润滑与密封, 2006(2): 168-170
    [151]李成贵,董申.三维表面微观形貌的表征趋势,中国机械工程, 2005, 11(5):488-493
    [152]李成贵,董申.三维表面微观形貌的表征参数和方法,宇航计测技术, 1999, 19(6):33-43
    [153]T. Sata, M. Li, S. Takata et al. analysis of surface roughness generation in turning operation and its applications, CIRP, 1985, 34(1): 55-59
    [154]侯朝焕,阎世尊,蒋银林.实用信号处理技术,海洋出版社, 1990.10
    [155]门爱东,苏菲,王雷等.数字信号处理,科学出版社, 2005.8
    [156]庞滔,郭大春,庞楠.超精密加工技术,北京:国防工业出版社, 2000.8
    [157]W.B. Lee, S. To, C.F. Cheung. Effect of crystallographic orientation in diamond turning of copper single crystals, Scripta mater, 2000, 42: 937-945
    [158]S. To, W.B. Lee, C.F. Cheung. Orientation changes of aluminium single crystals in ultra-precision diamond turning, Journal of Materials Processing Technology 2003, 140: 346-351
    [159]A. A. Mammoli, M. B. Bush. Effects of reinforcement geometry on the elastic and plastic behaviour of metal matrix composites, Acta metall, mater. , 1995, 43(10): 3743-3754
    [160]P.N. Bindumadhavan, Heng Keng Wah, O. Prabhakar. Dual particle size (DPS) composites: effect on wear and mechanical properties of particulate metal matrix composites, Wear, 2001 248: 112-120
    [161]全燕鸣,周泽华.不同颗粒度SiC增强铝基复合材料的切削加工性与适应刀具,材料科学与工程, 1996, 14(4): 59-64
    [162]全燕鸣,林金萍,张登友. CVD金刚石薄膜涂层刀具切削SiC/Al的适应性及失效机理,金刚石与磨料磨具工程, 2002, 130: 10-12
    [163]全燕鸣.金属基复合材料加工的进展,机械设计与制造工程, 1999, 28(2): 5-8
    [164]R. Wada, H.Kodama, K.Nakamura. Wear characteristics of single crystal diamond tool, Annals of the CIRP, 1980, 29(1): 47-52
    [165]Masao Uemura. An analysis of the catalysis of Fe, Ni or Co on the wear of diamonds, Tribology International, 2004, 37: 887–892
    [166]A. R. Chambers. The machinability of light alloy MMCs, Composites: Part A, 1996, 27A: 143-147
    [167]Ibrahim Ciftci, Ulvi Seker, Mehmet Turker. CBN cutting tool wear during machining of particulate reinforced MMCs, WEAR, 2004, 257: 1041-1046
    [168]J. Paulo Davim. Diamond tool performance in machining metal-matrix composites, Materials Processing Technology, 2002, 128: 100-105
    [169]N.P. Hung, S. H. Yeo, B. E. Oon. Effect of cutting fluid on the machinability of metal matrix composites, Materials Processing Technology, 1997, 67: 157-161
    [170]N.Tomac, K.Tonnessen. Machinability of particulate aluminum matrix composites, Annals of the CIRP, 1992, 42(1): 55-58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700