用户名: 密码: 验证码:
大型高筋复杂截面7A04铝合金底座成形工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题涉及的零件内外均有加强筋,整体截面复杂,并非规整的轴对称零件。原采用钢板焊接而成,重量大,且存在焊接缺陷。本文采用7A04铝合金代替钢板材料,采用等温精密塑性成形技术代替焊接工艺,在现有设备的基础上来成形零件,旨在保证零件性能要求的前提下来减重。本文对很多相似工件的减重以及复杂截面零件的成形具有一定的参考意义。
     本课题采用DEFORM‐3D计算机数值模拟软件结合实验试制的研究方法。对初步拟定的工艺方案进行数值模拟,发现工件内表面加强筋部容易发生折叠、填充不满,以及金属流动速度相差较大影响工件各部位的成形,而且成形载荷达到了2800t,现有的设备并不满足。通过对这一系列问题的分析研究,制定了新的成形工艺方案来消除初步拟定的工艺方案中的缺陷,即:下料→预成形坯料→正挤压底部→局部成形工件内部→整形。对新制定的工艺方案模拟优化,分析模拟过程中金属流动速度矢量图、等效应变分布图、载荷等,未发现缺陷,工件整体变形量比较均匀,载荷从2800t降低到1200t左右,符合现有的成形设备。
     在模拟基础上设计制造出模具并进行实验试制,结果表明:采用等温精密塑性成形技术逐步成形工件,不仅能够减少缺陷的产生,有效降低成形载荷,而且成形后工件的力学性能较好;试制出的工件与模拟结果相吻合,表面尺寸精度高,力学性能完全达到了要求;机加后的工件重量达到了10Kg,相比原工艺成形件减重达30%,达到了轻量化的要求。
Parts involved in this topic have ribs both inside and outside, Cross‐section is complex, and it is not axisymmetric. The original process was welded together by a steel plate, weighing is large, and it may have some welding defects. In this research, 7A04 aluminum alloy be used instead of steel, and use technology of Isothermal precision plastic forming instead of welding. Forming parts on the basis of our existing equipment, Aims to Weight loss on the premises of part excellent performance. This topic will be a certain reference value in weight loss of many similar parts, as well as the forming of complex cross‐section parts.
     The research method is on DEFORM‐3D computer numerical simulation software combined with experimental. Proposing preliminarily scheme is simulated. There are some problems in the analysis of simulation results, for example: Founding that the stiffener of workpiece folding. And our equipment do not have enough forming load. A new forming process is formulated through the analysis of this series of problems, that is, Blanking→Pier extrusion→Forward extrusion→local forming→Reshaping. New process scheme have be simulated as well as optimized. Flowing velocity vector, equivalent strain and load force of simulation process have be analyzed. There are no obvious defects. Deformation of the workpiece is uniform. Load reduced to about 1200t from 2800t, and it accord with simulation results.
     Based on the simulation, we design the mold assembly drawing, and trial production. The results show that: The forming of cross‐section parts should not be used directly forming. Otherwise, some of the parts may have a lot of deficiencies that affect performance parts. We use the isothermal precision plastic forming technology to form parts gradually, not only able to reduce defects, but also reduce the forming load, and parts will have the better mechanical properties. Throughout the experimental results and simulation results are consistent. Inside surface of the workpiece have high precision. Forming parts fully meet the performance requirements. Weight of the workpiece after machine‐made is 10Kg. Comparing with previous forming weight loss 30%. Lightweight requirements have achieved.
引文
[1]潘复生,张丁非等.铝合金及应用[M].北京:化学工业出版社,2006.
    [2]张匀,刘玉林,赵洪思.铝金的特点及应用[J].金属学报,1991,21(4):217.
    [3] A.Heinz,A.Haszler.Recent development in Alumium alloys for aerospace applications.Mater.Sci.Eng,2000,A280:102.
    [4]田福泉,李念奎,崔建忠.超高强铝合金强韧化的发展过程及方向[J].轻合金加工技术,2005,33(12):1~9.
    [5]曾渝,尹志民,潘青林,等.超高强铝合金的研究现状及发展趋势[J].中南工业大学学报,2002,33(6):592~596.
    [6]刘静安,谢水生.铝合金材料的应用与技术开发[M].北京:冶金工业出版社,2004.1.
    [7]马鸣图,李志刚等.汽车轻量化以及铝合金的应用[J].技术与装备应用,2006,(10):10.
    [8] Sujit Das. Light -weighting Opportunities in the GlobalAutomotive Industry [C].2011International Automotivetweight Materials Development Forum.
    [9] Narges Shahmanesh.Lightening the material[J].Au-tomotive Engineering,2003(9):70-77.
    [10]袁海波,褚东宁等.轻金属材料铝和镁在东风汽车上的应用[J].汽车科技,2011,(4):1-5.
    [11] Wu Y L,Li C G,et al.Microalloying of Sc,Ni and Ce in an advanced Al-Zn-Mg-Cualloy.Metall Trans,1999,30A(4):1017.
    [12] Liu J,Kulak M.A New paradigm in the design of aluminum alloys for aerospaceapplications. Mater Sci Forum,2000,(9):63.
    [13] Rogacki J R.Materials for air and space.Adv Mater Proc,2000,(9):63.
    [14] Bucci R J,Warren C J,etal.Need for new materials in aging aircraft structures.JAircraft,2000,37(1):122.
    [15] Matsuoka H,Hiros Y,Kishi Y,et al.Experimental study on strengthening mechanism ofAl-Zn-Mg-Cu system alloy.J Soc Mat Sci Japan,1997,46(6):655.
    [16] Waterloo G,Hansen V,Gjonnes J,Skjervold S R.Effect of predeformation and presaging atroom temperature in Al-Zn-Mg-(Cu,Zr)alloys.Mat Sci Eng,2001,A303:226.
    [17] Senatorova O G,Frindlyander I N.Influence of machining on residual stresses andproperties of superhigh strength B96u thin elements.Mater Sci Forum, 2002, 396-402:1597.
    [18] Srivatsan T S. Microstructure , tensile deformation and fracture behavior of aluminumalloy 7150 [J ]. Journal of Materials Sci. , 1992 , 27 (17) :4772.
    [19] Zakharov V V , Rostova TD. High2resource high2strength aluminumal 2 loys [J ].Metal Science and Heat Treatment , 1995 , 37(5~6) : 203.
    [20] Senkov O N , Bhat R B , Senkova S V , et al. Effect of Sc and heat treatment onmicrostructure and properties of a 7xxxDC cast alloy [A].The 9th Inter. Conf . onAluminum Alloys [C]. 2004 , Australia : 501.
    [21] Lukasak D A. Strong aluminum alloy shaves airframe weight [J ]. Ad2vanced Materials&Processes , 1991 , (10) : 46.
    [22] Srivatsan T S. Microstructure , tensile deformation and fracture behavior of aluminumalloy 7055 [J ]. Journal of Materials Sci. , 1997 , 32 : 2883.
    [23] Srivatsan T S. The tensile response and fracture behavior of an AlZn2 MgCu alloy :influence of temperature [J ]. Journal of Materials Engineer2 ing and Performance ,1997 , 6(3) : 349.
    [24]周鸿章,李念奎.超高强度铝合金强韧化的发展过程及方向[A].铝-21世纪基础研究与技术发展研讨会论文集第一分册[C]. 2002.
    [25] Xiong B Q , Zhang Y A , Shi L K, et al. Research on ultra2highstrength Al211Zn22.9Mg21. 7Cu alloy preapared by spray forming process[J ]. Mater. Sci. Forum. , 2005 ,475 - 479 : 2785.
    [26] Wei Q , Xiong B Q , Zhang YA , et al. Production of high strength Al2 Zn2Mg2Cualloys by spray forming process [J ]. Transaction of Nonferrous Metals Society ofChina, 2001 ,11(2) :279.
    [27]张永安,朱宝宏,刘红伟等.Zn含量对喷射成形7xxx系高强铝合金组织与性能的影响[J ].中国有色金属学报, 2005 , 15(7) : 1013.
    [28]王祝堂.铝合金及其加工手册[M].长沙:中南工业大学出版,2000:94-95.
    [29]尹志民,陈小群.微量元素在2091铝合金中的存在形式和作用机制.全国铝锂合金会议文集[C].长沙:中南工业大学出版社,1992.
    [30] R.Poganitsch等.高强AI-Zn-Mg-Cu合金的金属间化合物.轻合金加工技术,1984(9):40.
    [31] E,A.TxaeHx(前苏联)等.高强变形铝合金,任继嘉译,张录泉校.轻合金加工技术.1986,No(2):33.
    [32]张录泉.7xxx系合金的双级时效.轻合金加工技术,1986(12):16.
    [33]程俊伟,蔡安克等.铸造缺陷分析技术的应用和思考[J].铸造设备与工艺,2011,(1):47.
    [34]张治民.温热成形技术在车辆零件制造中的应用[M].北京:兵器工业出版社,1997.
    [35]王勖成,邵敏.有限元法基本原理和数值方法[M].北京:清华大学出版社,2001.
    [36]周明智,薛克敏.方盒形件精密挤压成形三维弹塑性有限元模拟[J].合肥工业大学学报,2005(8):882-884.
    [37] ZHOU J,LI L,DUSZCZYK J.Computer simulated and experimentally verifiedisothermal extrusion of 7075 aluminum through continuous ram speedvariation[J].Journal of Materials Processing Technology,2004(146):203-212.
    [38]彭辉.等温挤压的实现方式与控制算法[J].工业仪表与自动化装置,1997(4):22-24.
    [39]尹丽丽.国外铝挤压技术及其装备的进展[J].轻合金加工技术,2000,28(10):8-11.
    [40]段新峰,梁岩峰,汪指南.基于有限元分析的铝合金等温挤压工艺设计[J].安徽工程科技学院学报,2008,18(3):57-60.
    [41]王正波.挤压的热平衡及温度变化[J].轻合金加工技术,1986(6):14-21.
    [42]张君,杨合,何养民.铝及铝合金型材等温挤压关键技术研究进展[J].重型机械,2003(6):1-5.
    [43]胡基贵.基于数值模拟的等温挤压研究[D].长沙:湖南大学,2007:35-40.
    [44]刘展鸿,徐宏佳.铝型材模拟等温挤压工艺的有益探索[J].机电工程技术,2008,37(5):82-24.
    [45]孙卫刚.7A04铝合金轮辋挤压成形工艺与实验研究[D].中北大学,2008.
    [46]王涛,尹志民.高强变形铝合金的研究现状和发展趋势[J].稀有金属,2006,30(2):197-202.
    [47]贾俐俐.挤压工艺及模具[M].北京:机械工业出版社,2004.
    [48]王德云.超硬铝LC4合金热处理工艺研究.兵器材料科学与工程,1991-2.
    [49]李晋敏.塑性加工技术[M].北京:机械工业出版社,2004.
    [50]余伟,李保成等.变形温度对7A04-T5铝合金组织与性能的影响[J].热加工工艺,2011,40(2):51-53.
    [51]刘静安,黄凯,谭炽东.铝合金挤压工模具技术[M].北京:冶金工业出版社,2009.
    [52]赵振铎,张召铎,王家安.金属塑性成形中的润滑材料[M].北京:化学工业出版社,2005.
    [53]倪俊义.锚杆斜轧成形规律及工艺参数研究[D].武汉:武汉理工大学,2010.
    [54]李传民,王向丽等.DEFORM5.03金属成形有限元分析实例指导教程[M].北京:机械工业出版社,2006,12.
    [55]白星良.有色金属压力加工[M].北京:冶金工业出版社,2004.
    [56]余伟.高温变形对7A04铝合金组织和性能影响研究[D].太原:中北大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700