用户名: 密码: 验证码:
含铼镍基单晶高温合金组织稳定性及低铼成分的热力学设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了进一步提高镍基单晶高温合金的承温能力,满足于航空发动机对于提高涡轮入口温度的需要,通常在镍基单晶高温合金中加入难熔元素Re、W、Ta、Mo等,以提高γ基体相的固溶强化作用和γ'相析出强化作用,尤其是Re元素的加入,大大提高了合金的高温强度。但这些难熔元素的加入在提高材料承温能力的同时促进了合金在高温服役时TCP相的生成,影响了γ/γ'相的微观结构稳定性,同时对合金的制备和加工亦带来了不利的影响。此外,由于Re不仅价格昂贵而且密度较大,Re元素的添加大大提高了合金的成本和密度,这势必限制了其在合金中的大量使用。因此,本文通过实验研究和热力学计算结合的方法,研究了一种含铼镍基单晶高温合金的组织稳定性以及合金元素在γ/γ'两相及界面处的分布规律;并且尝试了将合金中的Re含量降低到1wt.%,而微调其他合金元素的相对含量,以取代Re元素,设计了几种低铼含量且承温能力达到二代水平的单晶高温合金。
     用光加热悬浮区熔法制备了一种铼含量为5wt.%的镍基单晶高温合金。借助扫描电镜(SEM)、透射电镜(TEM)、扫描透射电镜(STEM)以及能谱仪(EDS),研究了不同热处理条件下,该合金的微观组织演化规律以及合金元素在γ/γ'两相及界面处的分布规律。在该合金中观察到了相分离现象(即γ'相中析出γ相),且对相分离的过程、产生原因以及其对微观组织演化的影响进行了分析。实验结果表明:一次时效后,γ'相主要以立方形形态析出,且无相分离现象出现,合金元素Re、Co、Cr、Mo富集于γ基体相,而合金元素Ni、Al富集于γ'析出相,此外,W元素平均分配于γ/γ'两相中。二次时效后,有细小的近球形γ'相二次析出,且出现了相分离现象,合金元素Re、Co、Cr、Mo富集于γ基体相,而合金元素Ni和Al富集于γ'析出相,此外,W元素富集在γ/γ'界面附近处,且其在γ'析出相中的含量高于其在γ基体相中的含量。
     另外,本文利用热力学软件JMatPro和相应的镍基高温合金数据库分析总结了几代典型镍基单晶高温合金与性能相关的参数,如合金初熔温度、密度、γ'相体积分数、γ/γ'相错配度、TCP相含量、热加工窗口以及糊状区区间等,且从单晶叶片设计要求、微观组织稳定性要求和加工工艺性能要求三方面出发,制定了合金设计相应的热力学判据。并在此基础上,通过固定Re、Al、Cr等部分合金元素含量,调整W、Mo、Co、Ta等合金元素的相对含量,在二代单晶合金的基础上降低铼元素含量至1wt.%,尝试设计了一系列不同成分的合金,且利用JMatPro对合金初熔温度、密度、γ'相体积分数、γ/γ'错配度、TCP相含量、热加工窗口以及糊状区区间等进行了分析,得到了几组低铼且承温能力达到二代单晶水平的合金成分。
In order to improve the temperature capability of nickel-based single crystal superalloys to meet the need for an increased turbine entry temperature, refractory elements such as Re, W, Ta, Mo, most notably Re, are added to enhance the high-temperature properties through both the solid solution strengthing in theγmatrix and precipitation strengthening via theγ' formation. The additions of these refractory elements improve the temperature capability of materials, and in the meanwhile increase the tendency of forming topologically close-packed (TCP) phases during prolonged exposures to elevated temperatures in service. This results in destabilization of theγ/γ' microstructure and gives rise to the negative effect on the preparation and processing of the alloys. Besides, Re additions increase the cost and density of the alloys since Re is both expensive and heavy. These drawbacks limit Re addition in the nickel-based single crystal superalloys. In this paper, a Re-containing nickel-based single crystal superalloy has been studied based on thermodynamic calculation and experiments. The microstructure stability ofγ/γ' phase and elemental partitioning both betweenγandγ' phase and at its interface have been investigated. In addition, attempts have been made to the design of some low Re-containing nickel-based single crystal superalloys which bear a temperature capability of the second-generation nickel-based single crystal superalloys. The Re content in the alloys was set to 1 wt.%, and the contents of other alloying elements were slightly modified to compensate for the strengthening effect from Re.
     A nickel-based single crystal superalloy containing 5 wt.% Re has been prepared by optical heating floating zone method. Theγ/γ' microstructure and the elemental distribution in the microstructure have been investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectrometry (EDS) using specimens under different heat treatment conditions. In the studied alloy, phase-separation (γphases precipitate withinγ' precipitates) was observed, and its process, mechanism and the effects on the microstructural evolution have been systematically investigated. After the first-step aging at 1100γC,γ' phases were found to mainly precipitate in cuboidal shape and no phase-separation was observed. Re, Co, Cr and Mo were enriched in theγmatrix, while Ni and Al were concentrated in theγ' phase. W partitioned equally to theγandγ' phase. After second-step aging at 870γC, fineγ' phases were further precipitated in spherical shape and phase-separation withinγ' precipitates was observed. The elements of Re, Co, Cr, Mo, were enriched in theγmatrix, while Ni and Al were concentrated in theγ' phase. Besides, there was certain enrichment of W in the vicinity of theγ/γ' interface, and the contents of W in theγ' phase was higher than that in theγmatrix.
     Besides, some typical nickel-based single crystal superalloys have been studied by thermodynamic calculation, including the incipient melting temperature, density, the volume fraction ofγ', theγ/γ' misfit, the TCP contents, heat treatment window, and the temperature range of mush zone etc. All the thermodynamic properties have been investigated using JMatPro and the latest relevant database for nickel-based superalloys. According to requests for single-crystal blade design,γ/γ' microstructure stability and process-ability, design criteria of the alloys were made. Based on these, a series of alloys with different contents were designed by fixing the contents of some elements such as Re, Al, Cr, etc. and changing the relative contents of W, Mo, Co, Ta. The Re content was set to 1 wt.%. Meanwhile, the incipient melting temperature, density, the volume fraction ofγ', theγ/γ' misfit, TCP contents, heat treatment window, and the temperature range of mush zone of all the designed alloys were estimated by JMatPro. Finally, some low Re-containing alloys with reaching the temperature capability of second-generation nickel-based single crystal superalloys have been obtained.
引文
[1].黄乾尧,李汉康.高温合金[M].北京:冶金工业出版社, 2000: 4-6.
    [2].李成功,傅恒志,于翘.航空航天材料[M].北京:国防工业出版社, 2002: 87-99.
    [3]. Driver, D. Developments in areo engine materials[J]. Metals and Materials (Institute of Metals), 1985. 1(6): 345-354.
    [4].冶军.美国镍基高温合金[M].北京:科学出版社, 1978: 1-48.
    [5].《世界中小型航空发动机手册》编委会.世界中小型航空发动机手册[M].北京:航空工业出版社, 2006: 434-450.
    [6].刘大响,陈光.航空发动机——飞机的心脏[M].北京:航空工业出版社, 2003: 1-205.
    [7]. Reed, R.C. The Superalloys Fundamentals and Applications[M]. Cambridge Cambridge University Press, 2006: 2-5.
    [8]. Reed, R.C. The Superalloys Fundamentals and Applications[M]. Cambridge Cambridge University Press, 2006: 18-20.
    [9].张卫国,刘林,赵新宝, et al.定向凝固高温合金的研究进展[J].铸造, 2009(01): 1-6.
    [10].胡壮麒,刘丽荣,金涛, et al.镍基单晶高温合金的发展[J].航空发动机, 2005(3): 1-7.
    [11]. Milligan, W.,Antolovich, S. Yielding and deformation behavior of the single crystal superalloy PWA 1480[J]. Metallurgical and Materials Transactions A, 1987. 18(1): 85-95.
    [12]. Feller-Kniepmeier, M., Link, T., Poschmann, I., et al. Temperature dependence of deformation mechanisms in a single crystal nickel-base alloy with high volume fraction ofγ′phase[J]. Acta Materialia, 1996. 44(6): 2397-2407.
    [13]. Harris, K., Erickson, G.L., Sikkenga, S.L., et al. Development of two rhenium- containing superalloys for single- crystal blade and directionally solidified vane applications in advanced turbine engines[J]. Journal of Materials Engineering and Performance, 1993. 2(4): 481-487.
    [14]. Brückner, U., Epishin, A., Link, T., et al. The influence of the dendritic structure on theγ/γ′-lattice misfit in the single-crystal nickel-base superalloy CMSX-4[J]. Materials Science and Engineering A, 1998. 247(1-2): 23-31.
    [15]. Acharya, M.V.,Fuchs, G.E. The effect of long-term thermal exposures on the microstructure and properties of CMSX-10 single crystal Ni-base superalloys[J]. Materials Science and Engineering A, 2004. 381(1-2): 143-153.
    [16].东华.第三代单晶高温合金[J].航空制造工程, 1995(12).
    [17].陈晶阳,赵宾,冯强, et al. Ru和Cr对镍基单晶高温合金γ/γ′热处理组织演变的影响[J].金属学报, 2010(08).
    [18]. Koizumi, Y., Koguchi, H., Yokokawa, T., et al. Effect of Ru Additions on the TCP-Phase Formation and Creep Strength of a Ni-base Single Crystal Superalloy[J]. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2004. 68(2): 54-57.
    [19].《高温合金手册》编写组.高温合金手册[M].北京:冶金工业出版社, 1972: 1-322.
    [20].师昌绪,仲增墉.中国高温合金五十年[M].北京:冶金工业出版社, 2006: 95-100.
    [21]. Yu, J., Sun, X., Zhao, N., et al. Effect of heat treatment on microstructure and stress rupture life of DD32 single crystal Ni-base superalloy[J]. Materials Science and Engineering: A, 2007. 460-461: 420-427.
    [22].李嘉荣,金海鹏,刘世忠.第二代单晶高温合金DD6在980℃长期时效后的显微组织与持久性能[J].稀有金属材料与工程, 2007(10): 1784-1787.
    [23]. Reed, R.C. The Superalloys Fundamentals and Applications[M]. Cambridge Cambridge University Press, 2006: 33-34.
    [24]. Zhang, J., Li, J., Jin, T., et al. Effect of Mo concentration on creep properties of a single crystal nickel-base superalloy[J]. Materials Science and Engineering A, 2010. 527(13-14): 3051-3056.
    [25]. Pessah, M.,Caron, P., Superalloys. 1992. 567-576.
    [26]. Drapier, J.M., Coutsouradis, D., Habraken, L. Measuerments of Stacking Fault Energies in Co-Ni and Co-Ni-Cr Alloys[J]. Acta Materllurgica, 1967. 15(4): 673-675.
    [27].张遗民.航空涡轮风扇发动机[M].北京:国防工业出版社, 1985: 104-108.
    [28]. Puetz, P., Huang, X., Lima, R.S., et al. Characterization of transient oxide formation on CoNiCrAlY after heat treatment in vacuum and air[J]. Surface and Coatings Technology, 2010. 205(2): 647-657.
    [29]. Yeh, A.,Tin, S. Effects of Ru on the high-temperature phase stability of Ni-base single-crystal superalloys[J]. Metallurgical and Materials Transactions A, 2006. 37(9): 2621-2631.
    [30]. Sato, A., Harada, H., Yokokawa, T., et al. The effects of ruthenium on the phase stability of fourth generation Ni-base single crystal superalloys[J]. Scripta Materialia, 2006. 54(9): 1679-1684.
    [31]. Hobbs, R., Zhang, L., Rae, C., et al. TCP suppression in a ruthenium-bearing single-crystal nickel-based superalloy[J]. JOM Journal of the Minerals, Metals and Materials Society, 2008. 60(7): 37-42.
    [32]. Reed, R.C., Yeh, A.C., Tin, S., et al. Identification of the partitioning characteristics of ruthenium in single crystal superalloys using atom probe tomography[J]. Scripta Materialia, 2004. 51(4): 327-331.
    [33]. Yokokawa, T., Osawa, M., Nishida, K., et al. Effect of Ru Addition to Partitioning Behavior of Alloying Elements intoγandγ′phases of Ni-base Superalloys[J]. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2004. 68(2): 138-141.
    [34]. Chen, J.Y., Feng, Q., Sun, Z.Q. Topologically close-packed phase promotion in a Ru-containing single crystal superalloy[J]. Scripta Materialia, 2010. 63(8): 795-798.
    [35].颜呜皋,陈学印.金属学刊第3号镍基高温合金的强化[M].北京:科学出版社, 1964: 1-15.
    [36].陈国良.高等学校教学用书高温合金学[M].北京:冶金工业出版社, 1988: 1-297.
    [37].徐志超,马培立.高温合金中微量元素的作用与控制[M].北京:冶金工业出版社, 1987: 1-524.
    [38]. Tawancy, H.M., Abbas, N.M., Bennett, A. Role of Y during high temperature oxidation of an M-Cr-Al-Y coating on an Ni-base superalloy[J]. Surface and Coatings Technology, 1994. 68-69: 10-16.
    [39].黄乾尧,李汉康.高温合金[M].北京:冶金工业出版社, 2000: 11-31.
    [40].颜呜皋,陈学印.金属学刊第3号镍基高温合金的强化[M].北京:科学出版社, 1964: 4-10.
    [41].冶军.美国镍基高温合金[M].北京:科学出版社, 1978: 48-60.
    [42].陈国良.高等学校教学用书高温合金学[M].北京:冶金工业出版社, 1988: 3-18.
    [43]. Reed, R.C. The Superalloys Fundamentals and Applications[M]. Cambridge Cambridge University Press, 2006: 95-101.
    [44].郭建亭.高温合金材料学(上册)应用基础理论,[M].北京:科学出版社, 2008: 82-135.
    [45].胡赓祥,蔡珣,戎咏华.材料科学基础(第二版)[M].上海:上海交通大学出版社, 2006: 43-44.
    [46]. Reed, R.C. The Superalloys Fundamentals and Applications[M]. Cambridge Cambridge University Press, 2006: 41-42.
    [47].戴安邦,沈孟长.元素周期表[M].上海:上海科学技术出版社, 1979.
    [48]. Nembach, E. The high temperature peak of the yield strength of [gamma]'-strengthened superalloys[J]. Materials Science and Engineering: A, 2006. 429(1-2): 277-286.
    [49]. Giamei, A.,Anton, D. Rhenium additions to a Ni-base superalloy: Effects on microstructure[J]. Metallurgical and Materials Transactions A, 1985. 16(11): 1997-2005.
    [50]. Blavette, D., Caron, P., Khan, T. An atom probe investigation of the role of rhenium additions in improving creep resistance of Ni-base superalloys[J]. Scripta Metallurgica, 1986. 20(10): 1395-1400.
    [51]. C.M. Neubauer, D. Mari, Dunand, D.C. Diffusion in the nickel-rhenium system[J]. Scripta Metallurgica et Materialia, 1994. 31(1): 99-104.
    [52]. Hobbs, R.A., Zhang, L., Rae, C.M.F., et al. Mechanisms of Topologically Close-Packed Phase Suppression in an Experimental Ruthenium-Bearing Single-Crystal Nickel-Base Superalloy at 1100°C[J]. Metallurgical and Materials Transactions A, 2008. 39(5): 1014-1025.
    [53]. Tsuji, I.,Okada, K. Development of a new Ni-base superalloy for industrial gas turbine combustor by statistical alloy design method[J]. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1991. 77(4): 574-581.
    [54]. Koizumi, Y., Jianxin, Z., Kobayashi, T., et al. Development of Next Generation Ni-base Single Crystal Superalloys Containing Ruthenium[J]. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2003. 67(9): 468-471.
    [55]. Kobayashi, T., Koizumi, Y., Yokokawa, T., et al. Development of 4th generation SC superalloys without Re[J]. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2005. 69(2): 272-275.
    [56]. Jena, A.K.,Chaturvedi, M.C. The role of alloying elements in the design of nickel-base superalloys[J]. Journal of Materials Science, 1984. 19(10): 3121-3139.
    [57]. Caron, P.,Khan, T. Design of superalloys for single crystal blade applications: A 20-year experience[J]. Materials Design Approaches and Experiences, 2001: 1-14.
    [58]. Reed, R.C., Tao, T., Warnken, N. Alloys-By-Design: Application to nickel-based single crystal superalloys[J]. Acta Materialia, 2009. 57(19): 5898-5913.
    [59]. Yeh, A.-C., Sato, A., Kobayashi, T., et al. On the creep and phase stability of advanced Ni-base single crystal superalloys[J]. Materials Science and Engineering: A, 2008. 490(1-2): 445-451.
    [60]. Caldwell, E., Fela, F., Fuchs, G. The segregation of elements in high-refractory-content single-crystal nickel-based superalloys[J]. JOM Journal of the Minerals, Metals and Materials Society, 2004. 56(9): 44-48.
    [61].郭建亭.高温合金材料学(上册)应用基础理论,[M].北京:科学出版社, 2008: 353-362.
    [62]. Sugui, T., Minggang, W., Tang, L., et al. Influence of TCP phase and its morphology on creep properties of single crystal nickel-based superalloys[J]. Materials Science and Engineering A, 2010. 527(21-22): 5444-5451.
    [63].刘跃生,赵先国,刘志中.镍基高温合金中片状γ相对合金的弱化机制研究[A].第六届全国高温合金年会论文集[C]. 1987.
    [64]. Kattner, U.R.,Campbell, C.E. Modelling of thermodynamics and diffusion in multicomponent systems[J]. Materials Science and Technology, 2009. 25(4): 443-459.
    [65]. Rettig, R.,Singer, R.F. Numerical modelling of precipitation of topologically close-packed phases in nickel-base superalloys[J]. Acta Materialia, 2011. 59(1): 317-327.
    [66]. Saunders, N., Guo, Z., Li, X., et al. Modelling the Material Properties and behaviour of Ni-based superalloys[A]. Champion, PA, 2004.
    [67]. Saunders, N., Li, X., Miodownik, A.P., et al. Computer modelling of materials properties[A]. Indianapolis, ID, 2001.
    [68]. Wang, Y., Sun, F., Dong, X., et al. Thermodynamic study on equilibrium precipitation phases in a novel Ni-Co base superalloy[J]. Jinshu Xuebao/ Acta Metallurgica Sinica, 2010. 46(3): 334-339.
    [69]. Auburtin, P.,Wang, T. Freckle formation and freckle criterion in superalloy castings[J]. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2000. 31(4): 801-811.
    [70]. Clemens, M., Price, A., Bellows, R. Advanced solidification processing of an industrial gas turbine engine component[J]. JOM Journal of the Minerals, Metals and Materials Society, 2003. 55(3): 27-31.
    [71].周尧和,胡壮麒,介万奇.凝固技术[M].机械工业出版社, 1998: 155-166.
    [72]. Reed, R.C. The Superalloys Fundamentals and Applications[M]. Cambridge Cambridge University Press, 2006: 40-49.
    [73].郭建亭.高温合金材料学(中册)制备工艺[M].北京:科学出版社, 2008: 357-384.
    [74]. Caron, P.,Khan, T. Improvement of Creep strength in a nickel-base single-crystal superalloy by heat treatment[J]. Materials Science and Engineering, 1983. 61(2): 173-184.
    [75]. Pollock, T.M.,Argon, A.S. Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipitates[J]. Acta Metallurgica et Materialia, 1994. 42(6): 1859-1874.
    [76]. Murakumo, T., Kobayashi, T., Koizumi, Y., et al. Creep behaviour of Ni-base single-crystal superalloys with variousγ′volume fraction[J]. Acta Materialia, 2004. 52(12): 3737-3744.
    [77]. Nie, J.F., Liu, Z.L., Liu, X.M., et al. Size effects ofγ′precipitate on the creep properties of directionally solidified nickel-base super-alloys at middle temperature[J]. Computational Materials Science, 2009. 46(2): 400-406.
    [78]. Van Sluytman, J.S., Fontaine, A.L., Cairney, J.M., et al. Elemental partitioning of platinum group metal containing Ni-base superalloys using electron microprobe analysis and atom probe tomography[J]. Acta Materialia, 2010. 58(6): 1952-1962.
    [79]. Carroll, L.J., Feng, Q., Mansfield, J.F., et al. Elemental partitioning in Ru-containing nickel-base single crystal superalloys[J]. Materials Science and Engineering: A, 2007. 457(1-2): 292-299.
    [80]. Karunaratne, M.S.A., Rae, C.M.F., Reed, R.C. On the microstructural instability of an experimental nickel-based single-crystal superalloy[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001. 32(10): 2409-2421.
    [81].刘丽荣,金涛,孙晓峰, et al. Al、Ti和Ta对单晶高温合金组织和性能的影响[J].动力与能源用高温结构材料—第十一届中国高温合金年会论文集, 2007.
    [82]. Müller, L., Glatzel, U., Feller-Kniepmeier, M. Modelling thermal misfit stresses in nickel-base superalloys containing high volume fraction of [gamma]' phase[J]. Acta Metallurgica et Materialia, 1992. 40(6): 1321-1327.
    [83]. Merrick, H.F. Precipitation Withinγ′Particles in Nickel-Base Superalloys[J]. Metallurgical Transactions, 1973. 4: 885-887.
    [84]. Oblak, J.M., Doherty, J.E., Giamei, A.F., et al. Precipitation ofγin theγ′of Nickel-Base Superalloys[J]. Metallurgical Transactions, 1974. 5: 1252-1255.
    [85]. Hata, S., Kimura, K., Gao, H.Y., et al. Electron tomography imaging and analysis ofγ′andγdomains in Ni-based superalloys[J]. Advanced Materials, 2008. 20(10): 1905-1909.
    [86]. Guo Jianting, RANUCCI, D., GHERARDI, F. Precipitation ofγ'phase in theγ′particles of nickel-base superalloy[J]. Metallugical Transactions A, 1984. 15A: 1331-1334.
    [87].吴建生,张寿柏.材料制备新技术[M].上海:上海交通大学出版社, 1996: 13-14.
    [88].胡赓祥,蔡珣,戎咏华.材料科学基础(第二版)[M].上海:上海交通大学出版社, 2006: 149-150.
    [89]. Kitashima, T. Coupling of the phase-field and CALPHAD methods for predicting multicomponent, solid-state phase transformations[J]. Philosophical Magazine, 2008. 88(11): 1615-1637.
    [90]. Rae, C. Alloys by Design: modelling next generation superalloys [J]. Materials Science and Technology, 2009. 25(4): 479-487.
    [91]. Zhang, J.X., Harada, H., Koizumi, Y., et al. Dislocation motion in the early stages of high-temperature low-stress creep in a single-crystal superalloy with a small lattice misfit[J]. Journal of Materials Science, 2009. 45(2): 523-532.
    [92]. Pyczak, F., Neumeier, S., Gγken, M. Influence of lattice misfit on the internal stress and strain states before and after creep investigated in nickel-base superalloys containing rhenium and ruthenium[J]. Materials Science and Engineering A, 2009. 510-511(C): 295-300.
    [93].田素贵,钱本江,李唐, et al.时效期间含Re镍基单晶合金中TCP相的演化[J].沈阳工业大学学报, 2010(02): 121-125+140.
    [94]. O'HARA, Kevin, Sawayne, Low rhenium nickel base superalloy compositions and superalloy articles, W.I.P. Organization, Editor. 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700