用户名: 密码: 验证码:
内蒙古乌奴格吐山斑岩铜钼矿床成矿作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内蒙古乌奴格吐山斑岩铜钼矿床位于得尔布干成矿带西南段,是我国东北地区典型的斑岩型矿床之一。矿体产于燕山早期二长花岗斑岩、流纹斑岩等构成的火山通道相与外围黑云母花岗岩接触带内外。矿床从中心向外发育典型的热液蚀变分带:钾化带、绢英岩化带和伊利石—水白云母化带。根据矿物组合和矿石组构的不同,将热液成矿期分为早、中、晚三个阶段,其矿物组合分别为石英+钾长石+黄铁矿±辉钼矿、石英+绢云母+黄铜矿±辉钼矿+黄铁矿、石英+碳酸盐矿物±绢云母+黄铁矿±闪锌矿
     岩石地球化学研究表明,乌山矿床成矿斑岩属于过铝质高钾钙碱性花岗岩类;稀土配分曲线表现出轻稀土富集的右倾特征;微量元素蛛网图表现出相对富集Rb、Ba、Th、K、La、Ce等大离子亲石元素,相对亏损Ta、Nb、Sr、P、Ti等高场强元素的特点,具有汇聚板块边缘火山弧花岗岩的特征。7件样品(87Sr/86Sr)(?)和εNd(t)变化范围分别是0.70386-0.70691和-0.4~+1.1,指示成矿斑岩属于壳幔混合型花岗岩类。
     同位素年代学研究表明,矿区外围黑云母花岗岩LA-ICP-MS锆石U-Pb年龄年龄为198±3Ma (MSWD=0.42);成矿斑岩—二长花岗斑岩LA-MC-ICP-MS锆石U-Pb年龄年龄为178.1±0.6Ma (MSWD=1.07);辉钼矿Re-Os等时线年龄为177.4±2.4Ma。以上精确年代学数据表明乌山矿床成岩、成矿时代吻合,指示矿床成矿作用发生在早-中侏罗世,属于燕山早期成矿。
     同位素地球化学方面,硫、铅同位素及辉钼矿铼含量结果共同表明,乌山铜钼矿床成矿物质主要来源于地幔或深部岩浆,但有少量地壳物质的混入;氢、氧同位素组成表明成矿流体为岩浆水和大气降水的混合。
     流体包裹体研究表明,鸟山斑岩铜钼矿床发育L型富液相包裹体、V型富气相包裹体、S型含子矿物多相包裹体以及PG型纯气相包裹体。成矿早、中、晚三个阶段均—温度分别集中在340-460℃,240~360℃和120~240℃;盐度变化范围分别为5.32~53.26wt% NaCl.eqv,1.65~41.58wt% NaCl.eqv和0.66~14.05 wt% NaCl.eqv。水溶液包裹体和含子矿物的多相包裹体普遍共生在一起,它们均一温度相近,盐度却相差很大,代表流体发生了多次的沸腾作用。
     激光拉曼探针分析表明,石英斑晶和早阶段石英内水溶液包裹体除H2O外,多数含CO2,少数还含有CH4, C4H6等,含子矿物多相包裹体中子矿物主要有赤铁矿、黄铜矿;中阶段石英内只有少量V型包裹体含CO2,多数只有H2O, S型包裹体中子矿物有黄铜矿和黄铁矿,不再含有赤铁矿;而晚阶段石英内包裹体只含H2O。成矿流体由H2O—CO2—NaCl体系逐渐演化为H2O—NaCl体系。估算获得矿床形成时的压力在27-31Ma之间,对应的静岩压力深度应该在1200m左右,可能说明了成矿斑岩体侵位深度为浅成。
     我们认为,乌山矿床初始流体是直接从结晶冷凝的岩浆熔体中出溶的高温、高盐度、高氧逸度、含CO2的成矿流体,该流体同时携带了大量的成矿物质。在460℃左右流体开始发生沸腾作用,在温度为240~420℃范围内,大量金属硫化物沉淀成矿,流体沸腾可能是金属硫化物大量沉淀的重要机制;结合流体的氢、氧同位素组成,分析认为中—晚阶段天水混入造成的流体混合及其降温作用在晚期成矿过程中也发挥了重要作用。
Wunugetushan porphyry Cu-Mo deposit, Inner Mongolia, is located in the southwestern of Derbugan metallogenic belt, which is one of the representative porphyry deposits in the northeast part of China. The orebodies are mainly hosted in the volcanic vent constituted by monzoniticgranite porphyry and rhyolite porphyry, and its contact zones with biotite granite. Wushan porphyry Cu-Mo deposit exhibits a typical mineralization and alteration characters, three alteration zones can be circled around the ore-bearing porphyry outwardly, including a center core of potassic and silicic alteration zone, outside ring zone of phyllic and illite-damourite zone. According to mineral assemblages, the ore-forming processes were divided into early, middle and late stages.
     The results of geochemical characteristics show that, the host porphyry is characterized by relative rich SiO2 and K2O, and belongs to high-K calc-alkaline granites. Compared with chondrite and primitive mantle, the host porphyry and the wallrock-biotite granite are characterized by relative richment of LREE, LILE and depletion of HREE, HFSE, which suggest that they are all analogous to volcanic arc granites in converge plate margin settings. Sr-Nd isotopic compositions of the host porphyry display initial (87Sr/86Sr)(?) ratio of 0.70386~0.70691,εNd(t) values of -0.4~+1.1, which shows characteristics of source-mixed granite from mantle source rock and crust source rock.
     According to the studies on isotopic chronology, the zircon U-Pb ages of the wallrock-biotite granites and the host porphyry- plagiogranite are 198±3Ma and 178.1±0.6Ma respectively. The Re-Os isotopic model ages of six molybdenite samples range from 176.8±2.5 to 179.8±2.4 Ma, and yield a weighted average age of 178±1 Ma. The results indicate that the deposit was formed during Early-Middle Jurassic.
     The Sulfer and lead isotopic composition in various metal sulfides, combind with the Re content in molybdenites suggest that the ore-forming materials were mainly dereived from mantle sources or hypomagma. The hydrogen and oxygen isotopic composition in Quartz suggests that the ore-forming fluid was mainly derived from the mixture of magma water and meteoric water.
     In quartz phenocryst and quartz veins, four types of fluid inclusions are distinguished, namely L-type and V-type aqueous fluid inclusions, daughter mineral bearing multiphase inclusions, and pure gaseous phase inclusions. Homogeneous temperatures in the early, middle and late stage quartz veins are 340~460 ℃,240~360℃and 120~240℃respectively, and the salinities are 5.32-53.26wt% NaCl.eqv, 1.65~41.58wt% NaCl.eqv and 0.66~14.05 wt% NaCl.eqv respectively. Coexistence of daughter mineral bearing multiphase inclusions with L-type, V-type aqueous fluid inclusions in quartz phenocryst and early stage quartz veins, suggests that the the fluid was boiling.
     According to the analysis of Laser Raman probe, most aqueous fluid inclusions in quartz phenocryst and early-stage quartz veins contain H2O and CO2, some of them also contain CH4 and C4H6; the daughter minerals in multiphase inclusions include hematite and chalcopyrite. In the middle-stage quartz veins, most fluid inclusions only consist of H2O, and only some V-type inclusions contain CO2, the daughter minerals in multiphase inclusions include chalcopyrite and pyrite. There are only H2O in aqueous fluid inclusions in late-stage quartz veins. The ore-forming fluid evolved from H2O—CO2—NaCI system to H2O—NaCl fluid system gradually.
     We think that the initial fluid, exhibiting high-temperature, hypersaline and high-oxygen fugacity, was directly resulted from the fluid exsolution of the shallow crystallizing magma melt at the final stage. Fluid boiling may be the most important mechanism of the precipitation of massive metal sulphides in the early stage. The fluid mixing of meteoric water with early-stage magmatic water in the middle-late stage may play a crucial role in the late-stage mineralization.
引文
Barnes H L.1979. Solubilities of ore minerals. In:Barnes H L ed. Geochemistry of hydrothermal ore deposits (2nd edition). New York:J Wiley & Sons,404-460.
    Bodnar R J.1983. A method of calculating fluid inclusion volumes based on vapor bubble diameters and PVTX properties of inclusion fluids. Econ Geol,78:535-542
    Bodnar R J.1993. Revised equation and stable for determining the freezing point depression of H2O-NaCl solutions [J].Geochimica et Cosmochimica Acta,57:683-684.
    Boynton W V.1984. Cosmochemistry of the rare earth elements:meteorite studies, in Henderson, P., ed., Rare earth element geochemistry, Amsterdam, Elsevier,63-114.
    Brown P.E. and Lamb W.M.1989. P-V-T properties of fluids in the system H2O-CO2-NaCl:New graphical presentations and implications for fluid inclusion studies. Geochim. Cosmochim. Acta 53,1209-1221.
    Burnham C W.1967. Hydrothermal fluids at the magmatic stage[J]. Geochemistry of Hydrothermal Ore Deposits,34-76.
    Burnham C W.1979. Magmas and hydrothermal fluids. In:Barnes H L ed. Geochemistry of hydrothermal ore deposits (2nd edition). New York:J Wiley & Sons,71-136.
    Chaussidon M, Lorand J P,1990. Sulfur isotope composition of orogenic spinel lherzolite massifs from Ariege (N.E. Pyrenees, France):An ion microprobe study [J]. Geochim. Cosmochim. Acta,54: 2835-2846.
    Clayton R N and Mayeda T K.1963. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochimica et Cosmochimica Acta,27:43-52.
    Clayton R N, O'Neil J R, Mayeda T K.1972. Oxygen isotope exchange between quartz and water[J]. Geophys. Res.,77:3057-3067.
    Coleman M L, Sheppard T J, Durham J J, Rouse J E and Moore G R.1982. Reduction of water with Zinc for hydrogen isotope analysis. Analytical Chemistry,54:993-995
    Cunningham C G.1978. Pressure gradients and boiling as mechanisms for localizing ore in porphyry systems. J Res US Geol Sur,6:745-754.
    Du A D, Wu SH Q, Sun D ZH, Wang SH X, Qu W J, Richard Markey Holly Stein, John Morgan and Dmitry Malinovskiy.2004. Preparation and Certification of Re-Os Dating Reference Materials: Molybdenite HLP and JDC. Geostandard and Geoanalytical Research,28 (1):41-52.
    Fan W M, Guo F, Wang Y L, Lin G.2003. Late Mesozoic calc-alkaline volcanism of post oroginic extension in the north Da Hinggan Mountains, northeast China. Journal of Volcanology and Geothermal Research,121:115-135.
    Foster J G, Lambert D D, Frick L R, Maas R.1996. Re-Os isotopic evidence for genesis of Archen nickel ores from uncontaminated komatiites[J]. Nature,382:703-706.
    Hall D L, Sterner S M, Bodnar R J.1988. Freezing point depression of NaCl-KCl-H2O solutions. Econ Geol,83:197-202
    Hall D L, Sterner S M, Bodnar R J.1988. Freezing point depression of NaCl-KCl-H2O solutions. Econ Geol,83:197-202
    Hoefs J.1987. Stable isotope geochemistry[M].3rd edition, Springer-Verlag, Barlin.
    HOU Z Q,MA H W, ZAW K, et al. The Himalayan Yulong porphyry copper belt:Product of large-scale strike-lip faulting in eastern Tibet [J]. Economic Geology,2003,98:125-145.
    HOU Z Q, QU X M, RUI Z Y, et al. The Gangdese Miocene porphyry copper belt generated during post-Collisional extension in the Himalayan-Tibetan Orogen [J]. Economic Geology,2004.
    Liu, Y. S., Hu, Z. C., Gao, S., Gunther, D., Xu, J., Gao, C. G.& Chen, H. H.2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology 257,34-43.
    Liu, Y., Gao, S., Hu, Z., Gao, C., Zong, K.& Wang, D.2010a. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology 51,537-571.
    Liu, Y., Hu, Z., Zong, K., Gao, C., Gao, S., Xu, J.& Chen, H.2010b. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin in press.
    Mao J W, Zhang Z C, Zhang Z H.1999. Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the Northern Qilian Mountains and its geological significance[J]. Geochimica et Cosmochimica Acta.63 (11-12):1815-1818.
    Meng Q R.2003. What drove late Mesozoic extension of the northern China-Mongolia tract?. Tectonophysics.369:155-174.
    Nasdala L, Hofmeister W, Norberg N, Mattinson J M, Corfu F, Dor W, Kamo S L, Kennedy A K, Kronz A, Reiners P W, Frei D, Kosler J, Wan Y, Gotze J, Hager T, Kroner A and Valley J.2008. Zircon M257-a
    homogeneous natural reference material for the ion microprobe U-Pb analysis of ziron[J]. Geostandards and Geoanalytical Research,32:247-265.
    Norton D, Knight J.1977. Transport phenomena in hydrothermal systems:cooling plutons. Am J Sci, 277:937-981.
    Pearce J A, Harris N B W, Tindle A G.1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology,25:956-983.
    Ramboz C, Pichavant M, Weisbrod A.1982. Fluid immiscibility in natural proccesses:use and misuse of fluid inclusion data Ⅱ.lnterpratation of fluid inclusion data in terms of immiscibility. Chem. geol., 37:29-48.
    Sengor, A M C., Natal'in,B,A., Burtman,V.S.1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in the Eurasia, Nature,364:299-307.
    Shirey S B, Walker R J.1995. Carius tube digestion for low-blank rhenium-osmium analysis, Anal[J]. Chem.,67:2136-2141.
    Sillitoe R H.1972. A plate tectonic model for the origin of the porphyry copper deposits. Economic Geology[J],67:184-197.
    Sivell W J, Waterhouse J B.1988. Petrogenesis of Gympie group volcanics:evidence for remnants of an early Permian volcanic arc in eastern Australia. Lithos,21:81-95.
    Smoliar.M I., Walker, R. J. Morgan, J W.1996. Re-Os ages of group ⅡA, ⅢA, ⅣA, and ⅣB iron meteorites, Science,271:1099-1102.
    Sun S S, Mcdonough W F.1989. Chemical and isotopic systematics of Ocean basins:implications for mantle composition and processes, in Saunders A D and Norry M J, eds, Magamatism in Ocean basins,42, London, Geological Society of London and Blackwell Scientific Publications,313-345.
    Taylor H P.1974. The application of oxygen and hydrogen isotope studies to problem of hydrothermal alteration and ore deposition. Economic Geology,69:843-884.
    Vally J W, Tayor H P, O'neil J R.1986. Stable isotopes and high temperature geological processes. Reviews in Mineralogy,16:570.
    Wilson W.1989. Igneous petrogenesis. Unwin Hyman, London,172-183.
    Wu F Y, Sun D Y, Li H M, Jahn B M, Wilde S.2002. A-type granites in northeastern China:age and geochemical constrains on their petrogenesis. Chemical Geology,187:143-173.
    Ying J F, Zhou X H, Zhang L C, Wang F, Zhang Y T.2008. Geochronological and Geochemical investigation of the late Mesozoic volcanic rocks from the North Great Xing'an Range and their tectonic implications. International oceanic lithosphere at plate edges. Nature,409:500-504.
    Zartman R E, Doe B R.1981. Plumbotectonics—the model[J]. Tectonophysics,75 (1):62-135.
    Zhang J H, Ge W C, Wu F Y, Simon A W, Yang J H, Liu X M.2008a. Large-scale Early Cretaceous volcanic events in the northern Great Xing'an Range, Northeastern China. Lithos,102:138-157.
    Zhang L C, Zhou X H, Ying J F, Wang F, Guo F, Wan B, Chen Z G.2008b. Geochemistry and Sr-Nd-Pb-Hf isotopes of early Cretaceous basalts from the Great Xing'an Range, NE China:Implication for their oringin and mantle source characteristics. Chemical Geology,256:12-23.
    陈殿芬,艾永德,李荫清.鸟奴格吐山斑岩铜钼矿床中金属矿物的特征[J].岩石矿物学杂志,15(4):346-354.
    陈衍景,倪培,范宏瑞等.2007.不同类型热液金矿系统的流体包裹体特征[J].岩石学报,23(9):2085-2108.
    陈志广,张连昌,万博等.2008.内蒙古乌奴格吐山斑岩铜钼矿床低Sr-Yb型成矿斑岩地球化学特征及地质意义[J].岩石学报,24(1):115-128.
    陈志广,张连昌,周新华,万博,英基丰,王非.2006.满洲里新右旗火山岩剖面年代学和地球化学特征[J].岩石学报,22(12):2971-2986.
    陈志广.2010.中国东北得尔布干成矿带中生代构造—岩浆成矿作用及其地球动力学背景.北京:中国科学院地质与地球物理研究所[博士学位论文].190.
    邓晋福,罗照华,莫宣学,吴宗絮,赵海玲.1996.中国_大陆根—柱构造.北京:地质出版社,110.
    杜安道,何红蓼,殷宁万等.1994.辉钼矿的铼-锇同位素地质年龄测定方法研究[J].地质学报,68(4):339-347.
    杜安道,赵敦敏,王淑贤,孙德忠,刘敦一.2001Carius管溶样和负离子热表面电离质谱准确测定辉钼矿铼-饿同位素地质年龄[J].岩矿测试,20(4):247-252.
    高合明.1995.斑岩铜矿床研究综述[J].地球科学进展,10(1):40-46.
    葛文春,林强,孙德有,吴福元等.1999.大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据.岩石学报,15:396-407.
    顾巧根,季绍新.1996.得尔布干成矿带的火山—侵入杂岩及成矿作用,中国地质科学院南京地质矿产研究所所刊,18:58-65.
    郭欣,杜杨松,庞振山等.2009.云南普朗斑岩铜矿蚀变带成矿流体特征及其成矿意义[J].现代地质,23(3):465-471.
    侯可军,李艳河,田有荣.2009LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J].矿床地质,2009,28(4):481-492.
    侯增谦,潘小菲,杨志明,曲晓明.2007.初论大陆环境斑岩铜矿[J].现代地质,21(2):332-351.
    华仁民.1993.流体在金属矿床形成过程中的作用和意义——水—岩反应研究进展系列评述[J].南京大学学报(地球科学),5(3):351-360.
    华仁民.1994.成矿过程中由流体混合而导致金属沉淀的研究[J].地球科学进展,9(4):15-22.
    冷成彪,张兴春,陈朝建等.2008.滇西北雪鸡坪斑岩铜矿流体包裹体初步研究[J].岩石学报,24(9):2017-2028.
    李光明,李金祥,秦克章等.2007.西藏班公湖带多不杂超大型富金斑岩铜矿的高温高盐高氧化成矿流体:流体包裹体证据[J].岩石学报,23(5):935-952.
    李诺,陈衍景,赖勇,李文博.2007b.内蒙古乌奴格吐山斑岩铜钼矿床流体包裹体研究[J].岩石学报,23(9):2177-2188.
    李诺,孙亚莉,李晶,李文博.2007a.内蒙古乌奴格吐山斑岩铜钼矿床辉钼矿铼锇等时线年龄及其成矿地球动力学背景[J].岩石学报,23(11):2881-2888.
    李晓峰,梁金城,风佐海.2009.斑岩铜矿研究最新进展[J].桂林工学院学报,29(2):216-222.
    李荫清,芮宗瑶,程莱仙.1981.玉龙斑岩铜(钼)矿床的流体包裹体及成矿作用研究[J].地质学报,(3):216-231.
    林强,葛文春,曹林,孙德有,林经国.2003.大兴安岭中生代双峰式火山岩的地球化学特征[J].地球化学,32(3):208-222.
    林强,葛文春,孙德有,吴福元等.1998.中国东北地区中生代火山岩的大地构造意义.地质科学,33:129-139.
    林强,葛文春,吴福元,孙德有,曹林.2004.大兴安岭中生代花岗岩类地球化学.岩石学报,20:208-222.刘斌,沈昆.1999.流体包裹体热力学.北京:地质出版社.1-290.
    卢焕章,范宏瑞,倪培,欧光习,沈昆,张文淮.2004.流体包裹体[M].北京:科学出版社,205-226.卢焕章.1997.成矿流体[M].北京:科学技术出版社.1-210.
    路远发.2004. GeoKit:一个用VBA构建的地球化学工具软件包[J].地球化学,33(5):459-64.
    吕志成,段正国,郝立波,李殿超,魏存第.2001.满洲里—额尔古纳地区岩浆作用及其大地构造意义[J].矿物岩石,21(1):77-85.
    吕志成,郝立波,段正国,李殿超,连长云.2000.满洲里—额尔古纳地区中生代火山岩地球化学研究[J].矿物学报,20(4):406-414.
    聂凤军,江思宏,张义,刘妍,胡朋.2004.中蒙边境及邻区斑岩型铜矿床地质特征及成因[J].矿床地质,23(2):176-189.
    秦克章,李惠民,李伟实Shunso Ishihara.1999内蒙古鸟奴格吐山斑岩铜钼矿床的成岩成矿时代[J].地质评论,45(2):180-185.
    秦克章,田中亮吏,李伟实,石原舜三.1998.满洲里地区印支期花岗岩Rb-Sr等时线年代学研究[J].岩石矿物学杂志,17(3):235-240.
    秦克章,王之田.1993.内蒙古乌奴格吐山铜钼矿床稀土元素的行为及意义[J].地质学报,11(4):323-335.
    曲晓明,辛洪波.2006.藏西班公湖斑岩铜矿带的形成时代与成矿构造环境[J].地质通报,25(7):792-799.
    屈文俊,杜安道.2003.高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼—锇地质年龄.岩矿测试,22(4):254-257
    权恒,张炯飞,武广,祝洪臣.2002.得尔布干有色、贵金属成矿区、带划分[J].地质与资源,11(1):38-42.
    芮宗瑶,黄崇轲,齐国明等.1984.中国斑岩铜(钼)矿床[M].北京:地质出版社,1-350.
    芮宗瑶,张洪涛,陈仁义等.2006.斑岩铜矿研究中若干问题探讨[J].矿床地质,25(4):491-500.
    邵济安,刘福田,陈辉,韩庆军.2001.大兴安岭—燕山晚期中生代岩浆活动与俯冲作用关系.地质学报,75:56-63.
    佘宏全,李进文,丰成友等.2006.西藏多不杂斑岩铜矿床高温高盐度流体包裹体及其成因意义[J].地质学报.80(9):1434-1447.
    王莉娟,石山大三,佐藤比奈子,世良耕一郎,王玉往.1999.满洲里-新巴尔虎右旗斑岩系列矿床石英流体包裹体液相组分的PIXE分析和地质应用[J].地球化学,28(2):145154.
    王守旭,张兴春,陈朝建等.2007.滇西北中旬普朗斑岩铜矿流体包裹体初步研究[J].地球化学,36(5):467-478.
    王之田,秦克章.1989.满洲里-西旗斑岩铜多金属成矿系列REE地球化学特征及应用[J].地球化学,4:304-314.
    王之田,秦克章.1988.乌奴格吐山下壳源斑岩铜钼矿床地质地球化学特征与成矿物质来源[J].矿床地质,7(4):3-15.
    吴福元,江博明,1997.中国北方造山带造山后花岗岩的同位素特点与地壳生长意义,科学通报,42,2188-2192.
    吴开兴,胡瑞忠,毕献武等.2002.矿石铅同位素示踪成矿物质米源综述[J].地质地球化学,30(3):73-79.
    吴元保,郑永飞.2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.地学前缘,49(16):1589-1604.
    武广,刘军,钟伟等.2009.黑龙江省铜山斑岩铜矿床流体包裹体研究[J].岩石学报,25(11):2995-3006.
    夏斌,陈根文,王核.2002.全球超大型斑岩铜矿床形成的构造背景分析[J].中国科学(D辑),32(增刊):87-95.
    夏斌,涂光炽,陈根文,喻享祥.2000.超大型斑岩铜矿床形成的全球地质背景[J].矿物岩石地球化学通报,19(2):406-408.
    谢玉玲,侯增谦,徐九华,杨志明,徐文艺,何建平.2005.藏东玉龙斑岩铜矿多期流体演化与成矿的流体包裹体证据.岩石学报,21(5):1409-1415.
    阎鸿铨,胡绍康,叶茂,向伟东.1998.中、俄、蒙边境成矿密集区与超大型矿床.中国科学(D辑),28:43-48.
    杨光树.温汉捷,胡瑞忠等.2008.安庆夕卡岩型铁铜矿床流体包裹体研究[J].地球化学,37(1)27-36.
    杨竞红.1991.内蒙额尔古纳—呼伦多金属成矿带的稳定同位素研究[J].矿产与勘查,3:50-56.
    杨祖龙,张德全,李进文,佘宏全等.2009.得尔布干成矿带西南段矿床类型、成矿分带及找矿方向[J].矿床地质,28(1):53-62.
    姚凤良,孙丰月.2006.矿床学教程[M].北京:地质出版社,90-99.
    叶欣,王莉娟.1989.鸟奴格吐山斑岩铜钼矿床流体包裹体与成矿作用研究.地质与勘探,25(6):14-21.
    袁见齐,朱上庆,翟裕生.1985.矿床学[M].北京:地质出版社,167-170.
    张德会.1997.流体的沸腾和混合在热液成矿中的意义[J].地球科学进展,12(6):546-552.
    张德全等,2006.内蒙古自治区得尔布干成矿带成矿环境及找矿方向研究.科研报告.
    张海心.2006.内蒙古鸟奴格吐山铜钼矿床地质特征及成矿模式.长春:吉林大学[硕士研究生学位论文].83.
    张理刚.1985.稳定同位素在地质科学中的应用[M].西安:陕西科学技术出版社,152-185.
    张理刚.1988.长石铅和矿石铅同位素组成及其地质意义[J].矿床地质,7(2):55-64.
    张绮玲,曲晓明,徐文艺等.2003.西藏南木斑岩铜钼矿床的流体包裹体研究[J].岩石学报,19(2) 251-259.
    张文淮,张志坚.1996.成矿流体及成矿机制[J].地学前缘,3(4):245-252.
    赵文津.2007.大型斑岩铜矿成矿的深部构造岩浆活动背景[J].中国地质,34(2):179-205.
    赵一鸣,张德全等.1997.大兴安岭及其邻区铜多金属矿床成矿规律与远景评价[M].北京:地震出版社.318.
    郑永飞,陈江峰.2000.稳定同位素地球化学[M].北京:科学出版社,218-247.
    朱炳泉,李献华等.1998.地球科学中同位素体系理论与应用——兼论中国大陆壳幔演化[M].北京:科学出版社,216-230.
    朱群,武广,张炯飞,邵军,祝洪臣.2001.得尔布干成矿带成矿区划与勘查技术研究进展[J].中国地质,28(5):19-27.
    朱训,黄崇轲,芮宗瑶等.1983.德兴斑岩铜矿床[M].北京:地质出版社,1-336.
    左力艳,张德会,李建康,张文淮.2007.江西德兴铜厂斑岩铜矿成矿物质来源的再认识——来自流体包裹体的证据[J].地质学报,81(5):684-694.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700