用户名: 密码: 验证码:
双节距分时啮合齿形输送链的啮合机理及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国工业发展迅速,汽车的生产与需求都大幅上升,一辆汽车的产出,往往需要经过上万道工序,组成的几百条流水线来完成的。链式输送机广泛用于汽车装配流水线的输送工作,现有输送机上的输送链均为滚子链,随着对输送机可靠性、同步性和环境友好性要求的提高,滚子输送链的自身特点制约着链式输送机的进一步发展,亟需研究新型输送链系统来提高几百条流水线上链式输送机的同步性、可靠性和环境友好性。本文通过分析输送链对输送机性能的影响和齿形链的性能,提出了双节距分时啮合齿形输送链,并开展了双节距分时啮合齿形输送链系统各部件参数的数学建模、啮合分析、可靠性和环境友好性的研究。
     以应用齿形链在链式输送机上为目标,提出了双节距分时啮合齿形输送链,双节距分时啮合齿形输送链链板的设计特点,双倍节距是在啮合节圆上双倍节距,每个链板上分布三个齿,中间齿廓和一、三齿廓的外齿廓为直线齿廓,一、三齿廓的内齿廓为外凸的曲线齿廓。双节距分时啮合齿形输送链与单倍节距相同的外啮合齿形链相比,以单倍节距为15.875mm,链轮齿数45为例,每节相同片数的链条,每米自重降低了24.6%,根据双节距分时啮合齿形输送链链条—链轮—链轮加工刀具的相关耦合参数,设计了直线齿廓双节距分时啮合齿形输送链链轮和负变位渐开线齿廓双节距分时啮合齿形输送链链轮,建立了渐开线齿廓双节距分时啮合齿形输送链链轮负变位系数的数学模型,对与负变位渐开线齿廓双节距分时啮合齿形输送链链轮相啮合的双节距分时啮合齿形输送链链条进行了参数修正。针对工程实际,设计了适用于双节距分时啮合齿形输送链链式输送机的张紧装置。
     对双节距分时啮合齿形输送链系统的啮合理论进行了系统的研究,双节距分时啮合齿形输送链紧边啮入过程在一个啮合周期内分为三个阶段:随着链轮的转动外凸的内齿廓与链轮接触啮合、转化为相邻链节的外齿廓啮合和中间齿廓啮合定位。对双节距分时啮合齿形链进行了假想坐标系的建立,利用坐标变换理论进行双节距分时啮合齿形输送链紧边啮入过程中一个啮合周期的数学建模。通过对双节距分时啮合齿形输送链系统的运动学和动力学分析,得出双节距分时啮合齿形输送链系统的速度、加速度的变化和双节距分时啮合齿形输送链链式输送机在不同输送方式下,链条承载的数学模型。把双节距分时啮合齿形输送链链条的紧边简化成无质量的弦线连接的一组离散质量系统,求出双节距分时啮合齿形输送链系统紧边的固有频率。
     根据双节距分时啮合齿形输送链链条和直线齿廓双节距分时啮合齿形输送链链轮的设计参数进行实体建模,以单倍节距为15.875mm,链轮齿数45为例,建立了双节距分时啮合齿形输送链系统的运动学模型和啮合冲击模型,动态的模拟了双节距分时啮合齿形输送链系统的啮合过程,对双节距分时啮合齿形输送链和双节距滚子输送链进行对比仿真,仿真结果显示,双节距分时啮合齿形输送链系统的紧边链条波动降低59%、瞬间接触力最大值只是双节距滚子输送链系统的51.9%。
     利用封闭力流链式试验台对双节距分时啮合齿形输送链系统和双节距滚子输送链系统进行噪声和磨损伸长的对比试验,以单倍节距为15.875mm,链轮齿数45为例。试验结果显示,与双节距滚子输送链系统相比,在转速为200rpm,载荷为2kN时,双节距分时啮合齿形输送链的噪声降低2dB,随着转速的增加,噪声差值明显增大;在转速为300rpm,载荷为2kN时,250小时的磨损伸长试验,试验结果显示磨损伸长率仅为双节距滚子输送链的46%,因此双节距分时啮合齿形输送链系统提高了链式输送机的可靠性和环境友好性。
     根据研究成果申请了发明专利“双节距分时啮合齿形链链板”,专利号:201110233079.9;授权公告号:CN102287483B。
     本文在总装备部“CDX01项目链传动系统降噪”的资助和支持下,对链式输送机进行研究,在深入分析双节距分时啮合齿形输送链的啮合理论的基础上,提出了双节距分时啮合齿形输送链系统的设计方法,并对单倍节距为15.875mm,链轮齿数为45的双节距分时啮合齿形输送链系统进行了设计计算、仿真分析及试验研究。
With the rapid industrial development of our country, the production and demand ofcar has greatly increased, and the output of one car is always completed by hundredsassembly lines through thousands working procedures. The chain conveyor is widelyapplied for the conveying of assembly line of car, and the conveying chain on currentconveyor is roller chain, with the increase of requirement for the reliability, synchronismand environmental friendliness of conveyor, the further development of chain conveyor islimited by the features of roller conveying chain, which requires to research new conveyorchain system urgently to improve the reliability, synchronism and environmentalfriendliness of chain conveyor on hundreds assembly lines. In this paper, double-pitchtime-sharing meshing silent conveyor chain is proposed by analyzing how the conveyorchain affects the performance of conveyor and the performance of silent chain, and theresearch on mathematical modeling of parameter of each part, meshing analysis, reliabilityand environmental friendliness of double-pitch time-sharing meshing silent conveyor chainsystem is carried out.
     The design features of double-pitch time-sharing meshing silent conveyor chain andchain plate of double-pitch time-sharing meshing silent conveyor is proposed on the basisof applying tooth chain on chain conveyor, and double-pitch is the double-pitch onmeshing pitch circle, each chain plate has three teeth, and the external tooth profile of themiddle tooth profile, the first tooth profile and the third tooth profile is straight toothprofile, and the internal tooth profile of the first and third tooth profile is convex curvetooth profile. Compared with external meshing silent conveyor chain with the same singlepitch, the self-weight of chain with same number of plate of each pitch is reduced24.6%,according to the relevant coupling parameters of double-pitch time-sharing meshing silentconveyor chain—chain wheel—cutting tool of chain wheel, the chain wheel with straighttooth profile of double-pitch time-sharing meshing silent conveyor chain and the chainwheel with negative addendum modification involute tooth profile is designed, themathematical modeling of negative addendum modification factor of chain wheel withinvolute tooth profile of double-pitch time-sharing meshing silent conveyor chain isestablished, and the parameters of chain of double-pitch time-sharing meshing silentconveyor chain which meshes with the chain wheel with negative addendum modification involute tooth profile of double-pitch time-sharing meshing silent conveyor chain arerectified. For actual situation of project, the tension device, which is applied fordouble-pitch time-sharing meshing silent conveyor, is designed.
     The meshing theory of double-pitch time-sharing meshing silent conveyor chainsystem is researched systematically, and the tension side meshing process of double-pitchtime-sharing meshing silent conveyor chain is divided into three stages: the mesh betweenconvex internal tooth profile and chain wheel as chain wheel rotates, the mesh externaltooth profile that is converted to adjacent chain link, and mesh positioning of middle toothprofile. The hypothetical coordinate system of double-pitch time-sharing meshing silentconveyor chain is established, which uses coordinate transformation theory to carry out themathematical modeling of one mesh cycle in the tension side meshing process ofdouble-pitch time-sharing meshing silent conveyor chain system. The change of speed andacceleration of double-pitch time-sharing meshing silent conveyor chain system andmathematical modeling of chain load of double-pitch time-sharing meshing silent conveyorunder different conveying mode through the analysis of kinematics and dynamics ofdouble-pitch time-sharing meshing silent conveyor chain system. The tension side ofdouble-pitch time-sharing meshing silent conveyor chain is simplified to a group ofdiscrete mass system connected by massless chord line to find the natural frequency oftension side of double-pitch time-sharing meshing silent conveyor chain system.
     Solid modeling is established according to the design parameters of chain ofdouble-pitch time-sharing meshing silent conveyor chain and the chain wheel with straighttooth profile of double-pitch time-sharing meshing silent conveyor chain, and kinematicalmodeling and meshing impact modeling of double-pitch time-sharing meshing silentconveyor chain system are established, which simulates the meshing process ofdouble-pitch time-sharing meshing silent conveyor chain system dynamically, andcompares the double-pitch time-sharing meshing silent conveyor chain with double-pitchroller conveyor chain, and the simulation result shows that the fluctuation of tension sidechain of double-pitch time-sharing meshing silent conveyor chain system is reduced59%,and the instant contact force is only51.9%of double-pitch roller conveyor chain system'sinstant contact force.
     Comparison experiment is carried out to compare the noise and wear elongation ofdouble-pitch time-sharing meshing silent conveyor chain system and double-pitch rollerconveyor chain system by using closed force flow chain experiment table. The experimental result shows that compared with double-pitch roller conveyor chain system,when rotating speed is200rpm and load is2kN, the noise of double-pitch time-sharingmeshing silent conveyor chain is reduced2dB, with the increase of rotating speed, thevalue of noise is obviously increased, and when rotating speed is300rpm and load is2kNin250hours wear elongation experiment, the result shows that the is only46%ofdouble-pitch roller conveyor chain system, therefore, the reliability and environmentalfriendliness of chain conveyor is increased by the double-pitch time-sharing meshing silentconveyor chain system.
     According to the research production to apply for a patent of invention,“double-pitchtime-sharing meshing silent chain”.patent No.:201110233079.9; notice of authorizationnumber: CN102287483B.
     In this paper, the research on chain conveyor is carried out with the fund and supportfrom chain drive system for reducing the noise, which is the subproject of CDX01projectof National General Equipment Department, and the design method of double-pitchtime-sharing meshing silent conveyor chain system is proposed on the basis of furtherresearching the meshing theory of double-pitch time-sharing meshing silent conveyor chain,and design, calculation, emulation analysis and experimental research are carried out inregard to double-pitch time-sharing meshing silent conveyor chain system with15.875mmsingle pitch and45teeth.
引文
[1]中国汽车工程学会组编.世界汽车技术发展跟踪研究[M].北京理工大学出版社,2006.
    [2]国家信息中心中国经济信息网.CEI中国行业发展报告:汽车服务业[M].中国经济出版社,2005.
    [3]国家信息中心中国经济信息网.CEI中国行业发展报告:汽车制造业[M].中国经济出版社,2005.
    [4]汽车工业发展综述[M].中国汽车工业:中英文版,2001.
    [5]李纪珍,贾永轩.汽车零部件整合[M],北京:机械工业出版社,2006.
    [6]陈家瑞.汽车构造[M],北京:机械工业出版社,2009.
    [7]郑志峰,王义行,柴邦衡.链传动[M].北京:机械工业出版社,1984.
    [8]郑志峰.链传动设计与应用手册[M].北京:机械工业出版社,1992.
    [9]孟繁忠.链条链轮产品设计与检验[M].北京:机械工业出版社,1996.
    [10]孟繁忠.齿形链啮合原理[M].北京:机械工业出版社,2008.
    [11]薛云娜.双面啮合齿形链传动的啮合理论与应用研究[D].山东大学博士学位论文,2006.
    [12]张进平.汽车链的多冲击磨损失效机理及系统试验研究[D].吉林大学博士学位论文,2008.
    [13]C-K Chen, F. Freudenstein. Toward a More Exact Kinematics of Roller ChainDrives[J]. Journal of Mechanisms, Transmissions and Automation in Design,1988,9:110-126.
    [14]兰兆辉.链传动的运动学实质及动力学特性改善[J].机械设计,1990,7(4):35-38.
    [15]李淑民.链传动的等效机构模型及速比计算[J].机械设计,1998,15(9):17-18.
    [16]荣长发,杨国欣.中心距对链传动性能的影响[J].吉林工学院学报,1996,17(6):19-22.
    [17]K.W. Wang, S.P. Liu, and S.I. Hayek. On the Impact Intensity of Vibrating AxiallyMoving Roller Chains[J]. Journal of Vibration and Acoustics,1992.389-403.
    [18]S.P.Liu, K.W.Wang, S.I.Hayek, M.W.Trethewey and F.H.K.Chen. A Global-LocalIntegrated Study of Roller Chain Meshing Dynamics[J]. Journal of Sound andVibration,1992.203(1),41-46.
    [19]N.M. Veikos and F., Freudenstein, On the Dynamic Analysis of Roller Chain Drives:Part1and2[J]. Mechanism Design and Synthesis, DE-vol46, ASME, NY,1992,431-450.
    [20]VeiKos, Nicholas M. Freudenstein, Ferdinand. American Society of MechanicalEngineers[J]. Mechanism Design and Synthesis,1992,46:441-450.
    [21]M. Chew. Inertia Effects of a Roller-Chain on Impact Intensity [J], Journal ofMechanisms, Transmissions, and Automation in Design, March1985, Vo1.107-126.
    [22]K.W. Wang. On the Stability of Chain Drive Systems Under Periodic SprocketOscillations [J], Journal of Vibration and Acoustics,1992,114-119.
    [23]Lankarani, H.M.Nikravesh, P.E..Continuous Contact Force Models for Impact Anal-ysis in Multibody Systems[J]. Nonlinear Dynamics,1994,5(2):193-207.
    [24]Shabana AA, Nakanishi, Toshikazu. Contact forces in the non-linear dynamic analysisof tracked vehicles[J]. International Journal for Numerical Methods in Engineering,1994,37(8):1251-1275.
    [25]丁海峰,任革学.链轮驱动系统的多刚体建模及分析[J].力学与实践,2005,27(4):14-17.
    [26]J.P.Peng, M.Carpino. Optional Design of the Path of Chain Link System[J]. Journal ofMechanical Design,1993:115.
    [27]Uehara. K. and Nakajima, T. On the Noise of Roller Chain Drives[C]. ProceedingsMechanisms5th World Congress on the Theory of Machines, ASME,1979,906-909.
    [28]Stone, W.A., Trethewey, M.W., and Wang, K.W. Experimental Evaluation of ChainNoise[C].119th Meeting of the Acoustical Society of America, State College, PA.1990.
    [29]荣长发,郑志峰.啮合冲击载荷对链传动的影响及其改善措施[J].石油矿场机械,1991,20(6)16-19.
    [30]杨志刚,郑志峰,何文地.滚子链传动噪声的发生过程[J].机械设计,1994,11(3):22-24.
    [31]Xiaolun Liu, Wei Sun, Song Ding,etc. Research on Noise Test of Chains withNon-Metallic Elastic Material Split Rollers[J]. Advanced Materials Research,2011,Vol.159, pp.599-604.
    [32]Xiaolun Liu, Wei Sun, Song Ding, etc. Test and Analysis of Bush Roller Chains forNoise Reduction[J]. Applied Mechanics and Materials,2011, Vol.52-54,430-435.
    [33]迟春燕.卷制螺旋滚子的机理及实验研究[D].吉林大学硕士学位论文,2006.
    [34]迟春燕,刘晓论等.卷制螺旋滚子结构尺寸的理论分析及验证.吉林大学学报(工学版),2007,37(2):377-381,
    [35]H.Zheng, Y.Y.Wang, G.R.Liu,K.Y.Lam, K.P.Quek, T.Ito,Y.Noguchi. Efficent Modelingand Predication of Meshing Noise From Chain Drives[J]. Journal of Sound andVibration,2001,245(1),133-150.
    [36]S.T.Ariaratnam and S.F.Asokanthan. Dynamic Stability of Chain Drives[C].Transactions of the ASME, September1987,Vol.109,402-412.
    [37]张文祥,张守仁,丁守才.滚子链传动的横向振动[J].机械工程师.1994,1:42-45.
    [38]张文祥,张守仁,丁守才.滚子链传动的纵向振动[J].淮南矿业学院学报.1995,15(1):56-59.
    [39]张伟.链传动中的横向振动问题的研究[J].天津理工学院学报,1997,13(1):44-49.
    [40]孙裕晶.链传动多边形效应分析[J].农业与技术.1996,3,78-81.
    [41]James C. Conwell and G.E. Johnson. Experimental Investigation of Link Tension andRoller-Sprocket Impact in Roller Chain Drives[J]. Mech. Mach Theory Vol.31, No.4,pp.533-544,1995.
    [42]James C. Conwell and G.E. Johnson. Design, Construction and Instrumentation of aMachine to Measure Tension and Impact Forces in20.Roller Chain Drives[J]. Mech.Mach. Theory Vol.31,No.4,pp.525-531,1996.
    [43]张克仁,李景卫.链传动动态特性测试系统设计[J].机械工程师,1994,6:30-32.
    [44]Bucknor N.K.. Kinematic and Static Force Analysis of Silent Chain Drives[D]. Ph.D.Dissertation, New York: Columbia University,1991.
    [45]Bucknor N.K.,F. Freudenstein. Kinematic and Static Force Analysis of Rocker-PinJointed Silent Chains with Involute Sprockets[J]. Journal of MechanicalDesign,1994,116(9):842-848.
    [46]C. Weber W, Herrmann and J. Stadtmann. Experimental Investigation into the DynamicEngine Timing Chain Behavioour[C].SAE paper980840.
    [47]Stephenson R., Glennie D., Fawcett J.N. Method of Measuring the Dynamic Loads inHigh-speed Timing Chains[J]. Journal of Automobile Engineering,2000,214(2):217-226.
    [48]Heinz Heisler. Advanced Engine Technology. London Edward Arnold,1995.
    [49]岩田知也,白井俊彦. Application of ADAMS for Silent Chain Meshing Simulation[J].MSC.ADAMS User conference,2002.
    [50]藤木章,前川幸広,马渕豊等.直喷汽油(DIG)汽车发动机无声链条系统用温压-高温烧结粉末冶金链轮的开发[J].粉末冶金技术,2003,21(2):86-91.
    [51]王义行.HV链在啮合过程中节距变化规律分析[J].吉林工业大学学报(增刊),1988,1:13-20.
    [52]颜景平.Hy-Vo链的运动分析[J].吉林工业大学学报(增刊),1988,1:21-32.
    [53]张克仁.新型齿形链传动的准共轭啮合[J].机械设计与研究,1996,12(3):31-33.
    [54]张克仁.新型齿形链传动的链条设计[J].合肥工业大学学报(自然科学版),1996,19(2):105-111.
    [55]张克仁.新型齿形链传动的链轮设计[J].淮南矿业学院学报,1990,16(2):52-56.
    [56]王吉民.齿形链和渐开线齿形链轮的啮合设计[J].机械设计,1996,13(7):25-27.
    [57] Meng Fanzhong, Feng Zengming, Chu Yaxu. Meshing Theory and Design Method ofNew Silent Chain and Sprocket[J]. Chinese Journal of Mechanical Engineering,2006,19(3):425-427.
    [58]冯增铭,孟繁忠,李纯涛.新型齿形链的啮合机制及仿真分析[J].上海交通大学学报,2005,39(9):1427-1430.
    [59]冯增铭.新型齿形链的啮合机理及动态特性分析[D].吉林大学博士学位论文,2006.
    [60]曲绍朋.新型齿形链的啮合机制与动力学建模及齿形链导板的设计研究[D].长春:吉林大学硕士学位论文,2007.
    [61]董成国.圆销式齿形链中心距计算方法与测试研究[D].吉林大学硕士学位论文,2007.
    [62]孟繁忠,李启海,冯增铭.新型Hy-Vo齿形链与链轮的啮合分析及其设计方法[D].机械工程学报,2007,43(1):116-119.
    [63]李启海.新型Hy-Vo齿形链的啮合分析及其设计方法[D].吉林大学博士学位论文,2007.
    [64]孟繁忠,冯增铭,李纯涛,尹德兵.新型齿形链磨损机制及其温度和速度特性的试验研究[J].摩擦学学报,2004.24(6):560-563.
    [65]孟繁忠,董成国等.新型内啮合齿形链啮合迹线及多边形效应研究[J].中国机械工程,2011.22(16):1891-1895.
    [66]Meng Fanzhong, Li chun, Cheng Yabing. Proper Conditions of Meshing for Hy-VoSilent Chain and Sprocket[J]. Chinese Journal of Mechanical Engineering,2007,20(4):57-59.
    [67]孟繁忠,李春,叶斌.新型Hy-Vo齿形链磨损特性的研究[J].润滑与密封,2007,32(10):33-35.
    [68]孟繁忠,李春,程亚兵.Hy-Vo齿形链链轮公法线长度的计算方法[J].中国机械工程,2007,18(23):2865-2867.
    [69]李春.新型Hy-Vo齿形链传动设计与动力学仿真研究[D].吉林大学博士学位论文,2008.
    [70]孟繁忠,董成国,冯增铭.新型内-外复合啮合齿形链啮合线的求解[J].吉林大学学报(工学版),2009,39(4):970-975.
    [71]董成国.汽车正时齿形链系统设计方法与仿真分析及试验研究[D].吉林大学博士学位论文,2010.
    [72]刘小光.圆形基准孔Hy-Vo齿形链啮合设计及其传动性能研究[D].吉林大学博士学位论文,2011.
    [73]Xiaolun Liu, Song Ding. Design and test of silent chain including silicon fluorinerubber plate[J]. Advanced Materials Research.2011, Vols.291-294:2002-2005.
    [74]Song Ding, Xiaolun Liu. A Novel Roller Chain Sleeve Crevice Identification andOrientation Device Design and Test[J]. Advanced Materials Research.2013,Vols.605-607:175-178.
    [75]Song Ding, Xiaolun Liu. Design and Experimental Research on Double-PitchTime-Sharing Meshing Silent Chain[J]. Applied Mechanics and Materials.2013,Vols.241-244:429-432.
    [76]张巍.齿形链传动机构中心距变化对链轮齿廓的影响[D].吉林大学硕士学位论文,2007.
    [77]薛云娜,王勇,王宪论.渐开线齿形链机构的啮合机理[J].江苏大学学报(自然科学版),2007,28(2):104-107.
    [78]薛云娜,王勇,王宪论.渐开线链轮CAD与加工仿真[J].武汉理工大学学报,2006,28(5):105-107.
    [79]张京正.复合齿廓齿形链链轮的啮合机理及动态分析[D].山东大学硕士学位论文,2007.
    [80]Yunna Xue,Yong Wang etal. Study on the New Tooth Profile of Silent Chain[J].Advances in Materials Manufacturing Seienee and Teeh nology. Materials ScienceForum,2006,532-533:853-856.
    [81]薛云娜,王勇,王宪论.齿形链传动啮合冲击机理[J].机械设计,2005,22(9):37-39.
    [82]张建芳.高速齿形链链轮的虚拟加工及动态分析[J].山东大学硕士学位论文,2008.
    [83]黄超俊.静音链的啮合分析[D].台南:国立成功大学机械工程研究所硕士学位论文,2003.
    [84]吴耿彰.圆柱销静音链条的受力分布与应力分析[D].台南:国立成功大学机械工程研究所硕士学位论文,2005.
    [85]林坤泉.静音链条传动误差之探讨[D].台南:国立成功大学机械工程研究所硕士学位论文,2005.
    [86]李光布.基于计算机仿真的带式输送机动态特性预测和控制[J].起重运输机械,2005(2):47-50.
    [87]蔡峨.粘弹性力学基础[M].北京航天航空大学出版社,1989.
    [88]Reducing Dynamic Loads in Belts Powered by Three Wound Rotor Motors[J]. BulkSolids Handling,December,1985.
    [89]Ludewijks G., On the Application of Beam Elements in Finite Element Model of BeltConveyors[J]. Bulk Solids Handling.1994, Vol.15No.4.
    [90]刘克勋,黄松元.起制动时输送带动态响应的计算机模拟[J].连续输送技术,1989,(3):2-9.
    [91]HOU You-fu, MENG Qing-rui. Dynamic characteristics of conveyor belts[J].Journal ofChina University of Mining&Technology.2008,18(4):629-633.
    [92]侯友夫.带式输送机动态特性及控制策略研究[D].中国矿业大学博士学位论文,2001.
    [93]王繁生.带式输送机柔性多体动力学分析方法研究[D].中国矿业大学博士学位论文,2010.
    [94]G.Lodewijks. Two Decades Dynamics of Belt Conveyor Systems[J]. Bulk SolidsHandling.2002,22(2):124-132.
    [95]L K Nordell, Z.P.Ciozda. Trisient Belt Stresses during Starting and Stopping: ElasticResponse Simulation in Long Conveyor Belts[J]. Bulk Solids Handling.1984,4(1):99-104.
    [96]A.Harrision. Belt Vibration and Its Influence on Conveyor Reliability[J]. Bulk SolidsHandling.1994,14(4):723-727.
    [97]G.Suweken, W.T.Van Horssen. On the Weakly Nonlinear, Transversal Vibrations of aConveyor Belt with a Low and Time-Varying Velocity[J]. Nonlinear Dynamics.2003,31.
    [98]Li Guangbu. Study on conveyor non-linear dynamics and its effect on dynamicbehavior[J]. Journal of Southeast University (English Edition).2004,20(1):70-74.197-223.
    [99]余汪洋.国外链式输送机的链条设计及标准[J].
    [100]洪致育,林良明.连续输送机[M].机械工业出版社,1982.
    [101]郭树立.LU型链式输送机系列[J].起重运输机械,1995(12):18-20.
    [102]杨八一.链式输送机(FU)常见故障以及引起的原因[J].科技视野,机械与电子,2012,08:135-136.
    [103]肖其中,唐根华.链式输送机的传动故障与排除[J].水泥CEMENT,2006. No.4.
    [104]余汪洋.链式输送机的张紧装置[J].起重运输机械,1995(6):4-8.
    [105]余汪洋.散料连续输送链式输送机的现状与发展方向[J].矿山机械,1996.11:26-29.
    [106]王川.散料连续输送链式输送机的安全保护装置[J].矿山机,2006,34(11):82-84.
    [107]屈庆飞.链式输送机代替螺旋输送机的效果与体会[J].机械装备,2000(4):26-27.
    [108]张革平.生产线输送机电气控制系统设计[D].合肥工业大学硕士学位论文,2007.
    [109]Hang Zhou Dong Hua Chain Group CO. LTD.DONGHUAN CHAIN.2005/2006.
    [110]F.L.李特文.齿轮几何学与应用理论[M].上海科学技术出版社,2008.
    [111]FAN Min, MA Zhenhua, CHEN Yue, MA Qinglin. Progress in Research onModification of Organic Silicon fluorine Polymers and Applications[J]. Journal ofMaterials Review Online2008,5.3(3)16-18.
    [112]濮良贵,纪名刚.机械设计[M].高等教育出版社,2006.
    [113]陈宇东.结构振动分析[M].吉林大学出版社,2008.
    [114]韩清凯,罗忠.机械系统多体动力学分析、控制与仿真[M].科学出版社,2010.
    [115]齐朝晖.多体系统动力学[M].科学出版社,2008.
    [116]陈文华,贺青川,张旦闻.ADAMS2007机构设计与分析范例[M].机械工业出版社,2011.
    [117]郭卫东.虚拟样机技术与ADAMS应用实例教程[M].北京航空航天大学出版社,2007.
    [118]M.S.Kim, G.E.Johnson. Advancing Power Transmission into the21St Centrury[J].1992, DE-vol.43-2, ASME, NY,689-696.
    [119]M.S.Kim, G.E.Johnson. Advances in Design Automation[J].1993DE-vol.65-1(B.J.Gilmoreet al.,eds), ASME, NY,257-268.
    [120]H.S.Ryu, D.S.Bae,J.H.Choi and A.Shabana. A Compliant Track Model For HighSpeed, High Mobility Tracked Vehicle. International Journal For Numerical Methodsin Engineering[J].2000, Vol.48,1481-1502.
    [121]王孚懋,任勇生,韩宝坤.机械振动与噪声分析基础[M].国防工业出版社,2006.
    [122]陈可安,曾向阳,李海英.声学测量[M].科学出版社,2005.
    [123]王佐民.噪声与真的测量[M].科学出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700