用户名: 密码: 验证码:
双节距变节距齿形输送链的啮合机理与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车工业的发展,汽车装配线上用的传统链式输送机的性能已经无法满足汽车装配速度和装配质量提高。现有的汽车装配线上的链式输送机均采用双节距滚子输送链作为牵引件和承载件。由于双节距滚子输送链系统自身结构的限制,随着装配速度的提高,噪声大、磨损剧烈、稳定性差以及由于其内节内宽大于零件尺寸导致整线卡机等问题相继出现,严重影响了装配线的装配速度和装配质量。齿形链传动系统具有高速、低噪声、低磨损、高稳定性等诸多优点,被广泛的应用于传动领域,但是由于其自重过大,应用于输送机中时,会造成较大的冲击、噪声和振动,影响输送性能。因此,研究如何降低齿形链的自重,使其可以应用在链式输送机上,以满足链式输送机对输送速度、位置精度、稳定性和环境友好性等方面的要求,具有重要的理论研究价值和工程应用意义。
     本文首先介绍了链传动技术与链式输送机在各领域的应用情况以及它们的国内外发展现状,突出强调了输送链在链式输送机中的重要作用,以及链式输送机在国民经济中的重要作用,反映出本文对双节距变节距齿形输送链研究的学术价值和实际工程意义。通过分析齿形链无法应用于链式输送机中的原因,在国内外学者对齿形链研究的基础上,基于传统齿形链的结构,首次提出了适用于链式输送机的双节距变节距齿形输送链的结构。
     本文首次提出了双节距变节距齿形输送链的结构。该链条具有内-外复合啮合机制,采用对滚式铰链,围链节距是传统齿形链的两倍,工作链板具有三个齿,其中两侧齿为工作齿,中间齿为减磨齿;给出了工作链板、铰链、边板和导板的主要设计参数及其计算方法,且根据工程实际,设计了新型的齿形链连接接头;根据啮合和滚切原理,建立了双节距变节距齿形输送链—单节距齿形链—链轮滚刀—渐开线链轮的啮合设计体系,研究了双节距变节距齿形输送链与渐开线链轮的主要设计参数之间的耦合关系。以节距P=25.4mm,链轮齿数z=38为例,利用CAD软件绘制了二者的图纸,二者围啮良好;制造样链,进行称重试验和拉断试验,对数据整理后发现,在等抗拉载荷条件下,双节距变节距齿形输送链与传统齿形链相比,单位长度质量降低了30%以上。从而,验证了双节距变节距齿形输送链与链轮设计方法的合理性与正确性。
     成功将内-外复合啮合机制引入到双节距变节距齿形输送链中,深入分析了双节距变节距齿形输送链与渐开线链轮的内-外复合啮合过程,得出了其啮合周期为4z,且可以划分五个阶段:当前链节的内啮合阶段→前一链节的外啮合定位阶段→当前链节悬浮阶段→下一链节的内啮合阶段→当前链节的外啮合定位阶段;利用平面坐标变换原理,建立了双节距变节距齿形输送链系统的啮合数学模型,确定了双节距变节距齿形输送链与渐开线链轮的初始啮合位置、交变位置以及定位位置。
     在双节距变节距齿形输送链啮合机理研究的基础上,对其结构特性、运动不均匀性和啮合冲击特性进行了理论分析和仿真研究。结果表明:双节距变节距齿形输送链的内-外复合啮合机制、变节距特性和变节圆特性使其多边形效应、运动不均匀性和啮合冲击力与双节距滚子输送链相比均明显降低。在相同的仿真条件下,与双节距滚子输送链相比,其紧边横向波动量降低了24.18%,水平运动速度不均匀性降低了45.61%,从动轮转速不均匀性降低了23.13%,啮合冲击力降低了52.06%。可以推知:双节距变节距齿形输送链的输送位置准确度优于双节距滚子输送链。
     针对汽车装配线用水平式输送机,建立了双节距变节距齿形输送链的受力情况数学模型,对其运动过程中的静载荷和附加动载荷进行了理论分析,并与双节距滚子输送链进行了对比。结果显示:双节距变节距齿形输送链的静载荷除了包括传统系统的齿形链系统的静力,还包括链条与导轨之间的摩擦力;由于运动不均匀性引起的动载荷明显低于双节距滚子输送链。可以推知:双节距变节距齿形输送链的受力情况优于双节距滚子输送链。
     利用封闭力流式试验台对双节距变节距齿形输送链系统和双节距滚子输送链系统进行台架试验,对比分析了二者的噪声性能和磨损性能。结果表明:在转速为200r/min,加载2kN时,与双节距滚子输送链系统相比,双节距变节距齿形输送链系统的噪声降低了3.5dB,且随着转速提高,噪声降低量增大;相同转速条件下,双节距变节距齿形输送链系统的噪声波动量为双节距变节距齿形输送链系统的33%左右;经过250h的磨损试验后,双节距变节距齿形输送链的磨损伸长量仅为0.182%,与双节距滚子输送链相比,其磨损伸长率降低了的45.5%。可见:与双节距滚子输送链相比,双节距变节距齿形输送链的噪声低、耐磨损以及具有高稳定性和环境友好性。
     将双节距变节距齿形输送链安装在汽车装配线用链式输送机上,对其进行了为期40周的现场磨损试验,结构表明:双节距变节距齿形输送链在经过40周的现场磨损后,磨损状况良好,磨损伸长率仅为0.13%,链式输送机运行良好。可以证明其结构的合理性以及应用于链式输送机中的可行性。
     综上所述,本文研究的双节距变节距齿形输送链与传统齿形链相比,单位长度质量明显降低;与双节距滚子输送链相比,具有更高的位置精度、更高稳定性和环境友好性,适合应用在链式输送机中。
     本文得到了国家总装部项目“CDX01项目链传动系统降噪”的支持。
As the development of automobile industry, the performance of traditional chainconveyor for automobile assembly line has been unable to meet requires of automobile’sassembling speed and quality. In the automobile assembly line, the chain conveyors almostall adopt double-pitch roller conveyor chain as the traction and carrying components.Because of the constraints of the structure, as the increase of assembly speed, the highernoise, severe abrasion, the conveyor was locked since the dimensions of parts was smallerthan the width of inner-link and other problems appeared in succession, which affectsautomobile assembly line’s assembly speed and assembly quality. Traditional silent chainhas a lot of advantages such as high-speed, low noise, low wear, high stability, and so on,and has been widely used in various transmission fields. But when it is used in theconveyor chain, since its heavy self-weight, there will result in great impact, large noiseand severe vibration which seriously affect chain conveyor’s delivery performance. So, ithas important theoretical value and engineering application significance that research howto reduce traditional silent chain’s self-weight and make it can be applied in the chainconveyor to meet the chain conveyor’s new requirements about delivery speed, reliabilityand environmental friendliness.
     Firstly, this paper described application and research status of chain transmission andchain conveyor in various fields, emphasized the important role the conveyor chain playedin chain conveyor and the important role the chain conveyor played in the nationaleconomy, which reflects the academic value and practical significance of the research ofdouble-pitch variable-pitch silent conveyor chain (short for double-pitch silent chainbelow). By analyzing the cause of why silent chain can’t be applied in chain conveyor andbased on the research achievements home and aboard, this project proposed the structure ofdouble-pitch variable-pitch silent conveyor chain which is suitable for chain conveyor.
     A new type of double-pitch silent conveyor chain with inner-outer compound meshingmechanism and rocker-pin joint was proposed for the first time in this paper. The chainplate has three teeth, teeth on both sides are work teeth and middle tooth is used to decreasethe wear between the top toe of chain plate and the track. The main technical parametersand its calculation method were given. And a new type of silent chain connector wasdesigned for being easily assembled. Based on the meshing theory and generating method,the meshing design system of double-pitch silent chain—traditional silent chain—hob—involutes tooth profile sprocket was established, and studied on the coupling relationsbetween the main design parameters of double-pitch silent chain and involutes profilesprocket. Take the double-pitch silent chain system for an example whose pitch is25.4 millimeter and number of sprocket is38, the blueprints had been drawn using CAD soft,and found that the system mesh good. Though weighing test and pull off test, it was foundthat under the condition of equal tensile strength, compared with the traditional silent chain,the self-weight of double-pitch silent chain reduced more than30%. Thus, it verified thecorrect of the design method of double-pitch silent chain and sprocket.
     The inner-outer compound meshing mechanism was firstly introduced into thestructure of double-pitch silent chain. And then the meshing process of double-pitch silentchain and involutes tooth profile sprocket was deeply analyzed. The analysis results showthat the meshing cycle time was4z, and could be divided into five stages: the innermeshing stage of current chain link→the outer meshing and position stage of previouschain link→the floating stage of current chain link→the inner meshing stage of next chainlink→the outer meshing and position stage of current chain link. Using the planecoordinate transformation principle, the mathematical meshing model of double-pitchsilent chain and involutes tooth profile sprocket was created. And by calculating, the Initialmeshing position equation, the final location equation and the inner and outer meshingalternating position equation were all determined.
     Based on the research of meshing mechanism of double-pitch silent chain, Theoreticalanalysis and simulation studies on the structural feature, the motion unevenness andmeshing impact feature were implemented. The results showed that the double-pitch silentchain has variable pitch feature and variable pitch cycle feature, which make the Polygoneffect, motion unevenness and impact force significantly reduced. Under the samesimulation conditions, compared with double-pitch roller conveyor chain, the double-pitchsilent chain’s tension side lateral fluctuates reduced24.18%, the unevenness of horizontalvelocity reduced45.61%, the unevenness of driven sprocket’s angular velocity reduced23.13%and meshing impact force reduced52.06%. According to the results, it can bededuced that the double-pitch silent chain play a better conveying performance thandouble-pitch roller conveyor chain.
     Because of the chain conveyor in automobile assembly line is horizontal, the forcemathematical model of horizontal double-pitch silent chain system was build, and thentheoretical analysis about static load and dynamic load during movement were carried out.The analysis results show that the static load of double-pitch silent conveyor chain containsfriction between the chain and the guide rail besides centrifugal force、chain tension and soon; the additional dynamic load caused by motion unevenness is significantly lower thandouble-pitch roller conveyor chain’s. So it can be seen that the forces situation ofdouble-pitch silent conveyor chain is better than double-pitch roller conveyor chain.
     Compare tests were carried out to compare the noise feature and wear resistance feature between double-pitch silent conveyor chain system and double-pitch rollerconveyor chain system by closed power flow chain test bench. The test results show thatwhen the rotating speed is equal to200rpm, load is equal to2kN, compared todouble-pitch roller conveyor chain system, the noise of double-pitch silent conveyor chainsystem reduced3.5dB, and with the increase of rotating speed, the noise reduction amountincrease significantly, when the two system under the same rotating speed, and thedouble-pitch silent conveyor chain system’s noise fluctuations is only about double-pitchroller conveyor chain system’s33%; After250hours wear test, Wear elongation rate ofdouble-pitch silent chain is only0.182%, which is only54.5%of that of double-pitch rollerconveyor chain’s. therefore, it can be concluded that compared to double-pitch rollerconveyor chain, the double-pitch silent chain has the advantages of lower noise, higherwere resistance, better reliability and environmental friendliness.
     The double-pitch silent chain was assembly in the chain conveyor, which is used inthe automobile assembly line, and the40weeks filed wear test was made. The test resultshow that after40weeks filed wear test, the double-pitch silent chian weared slightly, wearelongation rate is only0.13%and the chain conveyor rans well. That can prove thereasonableness of its structure and the feasibility it is used in chain conveyors.
     In summary, the double-pitch silent chain proposed in this paper, compared withtraditional silent chain, has a lighter self-weight, compared with double-pitch rollerconveyor chain, and has more accuracy delivery position, better reliability andenvironmental friendliness. It is more suitable for application in chain conveyor.
     This project is supported by national general equipment department project “CDX01Project the noises reduce of chain drive system”.
引文
[1]中国汽车工程学会组编.世界汽车技术发展跟踪研究[M].北京理工大学出版社,2006.
    [2]国家信息中心中国经济信息网.CEI中国行业发展报告:汽车服务业[M].中国经济出版社,2005.
    [3]申佰强.中国汽车自主品牌的发展现状及对策研究[D].北京:首都经济贸易大学,2010
    [4]易双云.中日汽车产业政策比较研究[D].江西:江西财经大学,2008
    [5]李纪珍,贾永轩.汽车零部件整合[M],北京:机械工业出版社,2006.
    [6]陈家瑞.汽车构造[M],北京:机械工业出版社,2009.
    [7]郑志峰,王义行,柴邦衡.链传动[M].北京:机械工业出版社,1984.
    [8]郑志峰.链传动设计与应用手册[M].北京:机械工业出版社,1992.
    [9]孟繁忠.链条链轮产品设计与检验[M].北京:机械工业出版社,1996.
    [10]孟繁忠.齿形链啮合原理[M].北京:机械工业出版社,2008.
    [11]丁颂.双节距分时啮合齿形输送链的啮合机理及试验研究[D].长春:吉林大学,2013
    [12]朱国玉.双节距齿形输送链的啮合机理及仿真分析[D].长春:吉林大学,2013.
    [13]刘仙洲,中国机械工程发明史[M].科学出版社,1962.
    [14]K.W. Wang, S.P. Liu, and S.I. Hayek. On the Impact Intensity of Vibrating AxiallyMoving Roller Chains[J]. Journal of Vibration and Acoustics,1992:389-403.
    [15]S.P.Liu, K.W.Wang, S.I.Hayek, M.W.Trethewey and F.H.K.Chen. A Global-LocalIntegrated Study of Roller Chain Meshing Dynamics[J]. Journal of Sound andVibration,1992.203(1):41-46.
    [16]SINE L. PEDERSEN, JOHN M. HANSEN.A roller chain drive model includingcontact with guide bars[J]. Multibody System Dynamics,2004,12:285-301.
    [17]M. Chew. Inertia Effects of a Roller-Chain on Impact Intensity [J], Journal ofMechanisms, Transmissions, and Automation in Design, March1985, Vo1.107-126.
    [18]Lankarani, H.M.Nikravesh, P.E..Continuous Contact Force Models for Impact Anal-ysis in Multibody Systems[J]. Nonlinear Dynamics,1994,5(2):193-207.
    [19]刘晓论,荣长发,张格,郑志峰.高速滚子链传动动力学分析[J].农业机械学报,1998,29(增刊):177-181.
    [20]史文库,杨刚,孟繁忠,杨国欣.滚子链传动系统动力学分析[J].工程力学,1996,13(3):21-26.
    [21]史文库,杨刚,孟繁忠.农机滚子链传动系统动力学建模及分析[J].农业工程学报,1995,11(4):85-89.
    [22]杨玉虎,刘晓玲,张策,庄泓刚.套筒滚子链的动力学建模研究[J].中国机械工程,2005,16(16):1474-1477.
    [23]张家福.链传动的动载荷分析及其改善方法[J].安徽工学院学报,1995,14(3):65-68.
    [24]沈昱,安琦,孙林,赵书利.链传动受力分析及计算方法商榷[J].机械科学与技术,2002,21(2):220-221,233.
    [25]MOHAMMADR.NAJI, KURT M.MARSHEK.Analysis of sprocket loaddistribution[J].Mechanism and machine theory,1983,18(5):349-356.
    [26]S. L. Pedersen. Model of contact between rollers and sprockets in chain-drivesystems[J]. Archive of Applied Mechanics,2005,74:489-508
    [27]许树新,金昌,徐建民,柴邦衡.滚子链链板理论应力集中系数的研究[J].吉林工业大学学报,1997,27(2):23-27.
    [28]Uehara. K. and Nakajima, T. On the Noise of Roller Chain Drives[C]. ProceedingsMechanisms5th World Congress on the Theory of Machines, ASME,1979:906-909.
    [29]Stone, W.A., Trethewey, M.W., and Wang, K.W. Experimental Evaluation of ChainNoise[C].119th Meeting of the Acoustical Society of America, State College, PA.1990.
    [30]杨志刚,郑志峰,何文地.滚子链传动噪声的发生过程[J].机械设计,1994,11(3):22-24.
    [31]何文地,杨志刚,王殿学.滚子链链传动噪声的控制[J].机械工程师,1995,4:45-47.
    [32]Xiaolun Liu, Wei Sun, Song Ding,etc. Research on Noise Test of Chains withNon-Metallic Elastic Material Split Rollers[J]. Advanced Materials Research,2011,Vol.159:599-604.
    [33]Xiaolun Liu, Wei Sun, Song Ding, etc. Test and Analysis of Bush Roller Chains forNoise Reduction[J]. Applied Mechanics and Materials,2011, Vol.52-54:430-435.
    [34]兰宏,张榕南,金昌,杨建军,郭炽坚.滚子链低噪声试验与研究[J].噪声与振动控制,2005,4:61-63.
    [35]张榕南.低噪声滚子链的设计[D],长春:吉林大学,2005.
    [36]王淑坤,孟繁忠,李启海,孙淑红.汽车发动机滚子链的噪声测试与分析[J].兵工学报,2009,30(6):759-763.
    [37]H.Zheng, Y.Y.Wang, G.R.Liu,K.Y.Lam, K.P.Quek, T.Ito,Y.Noguchi. Efficent Modelingand Predication of Meshing Noise From Chain Drives[J]. Journal of Sound andVibration,2001,245(1):133-150.
    [38]荣长发,张明路.滚子链传动的振动特性分析[J].机械传动,2006,30(4):63-65.
    [39]吴晓,汪永琳,倪斌.滚子链传动振动特性研究[J].机械科学与技术,1997,16(1):122-125.
    [40]张广义,李欣欣,毛成斌.滚子链传动的横向振动[J].起重运输机械,2003,(7):40-43.
    [41]张广义,王义行.滚子链传动的横向振动[J].吉林工业大学学报,1983,27(1):157-163.
    [42]覃维献.滚子链传动横向振动稳定性分析[J].机械传动.2010,34(8):79-82,91.
    [43]覃维献.带弹性撑紧装置的滚子链传动横向振动分析[J].机械传动.2011,35(7):65-68.
    [44]张文祥,张克仁,丁守才.滚子链传动的横向振动[J].机械工程师.1994,1:42-45.
    [45]张伟.链传动中的横向振动问题的研究[J].天津理工学院学报,1997,13(1):44-49.
    [46]程岩,李宝林,张燕,等.链传动中纵向振动问题的研究[J].机械传动.2012,36(7):27-29.
    [47]张克仁,张文祥,丁守才.滚子链传动的纵向振动[J].淮南矿业学院学报.1995,15(1):56-59.
    [48]孟繁忠,李欣欣,徐建民.滚子链耐磨性能的研究[J].中国机械工程,1996,7(4),80-83.
    [49]孟繁忠,荣长发,孟繁忠,李欣欣,.提高农用行走机械传动滚子链耐磨性研究[J].农业工程学报,1996,12(2):72-75.
    [50]徐建民,孟繁忠,汪水林,高慧娟.农用新型滚子链磨损特性的研究[J].农业机械学报,1997,28(增刊):154-157.
    [51]黄梅、兰宏,刘晓论,张铁峰.摩托车传动用滚子链的磨损特性[J].中国机械工程,2001,12(增刊):14-15.
    [52]金昌,孟繁忠,兰宏.O形橡胶密封圈摩托车滚子链磨损特性的研究[J].摩擦学报,2002,22(4):286-289.
    [53]孟繁忠,李欣欣,胡建东,张延伸.摩托车传动用滚子链磨损特性的研究[J].摩擦学报,1996,16(3):230-234.
    [54]王淑坤,冯立,孟繁忠.汽车链滚子元件的高速多冲抗力研究[J],中国机械工程,2010,21(9)1009-1013.
    [55]孙拂晓,纪思国,王淑坤.汽车链磨损失效机理的试验研究[J].机械设计与制造,2011,11:101-103.
    [56]刘晓论,卢继光,迟春燕,张军,尹文夺.提高摩托车链条耐磨性的试验研究[J].小型柴油机与摩托车,2007,36(1):8-11.
    [57]卢继光.滚子链应用纳米技术的初步研究[D].长春:吉林大学,2005.
    [58]叶斌,卢继光,邵渭贤.表面强化销轴农用滚子链的磨损试验研究[J].机械传动,2012,36(1):54-56.
    [59]James C. Conwell and G.E. Johnson. Experimental Investigation of Link Tension andRoller-Sprocket Impact in Roller Chain Drives[J]. Mech. Mach Theory,1995,31(4):533-544.
    [60]James C. Conwell and G.E. Johnson. Design, Construction and Instrumentation of aMachine to Measure Tension and Impact Forces in20.Roller Chain Drives[J]. Mech.Mach. Theory,1996,31,(4):525-531.
    [61]刘晓论,兰宏,黄梅.数显链长测量仪[J].试验技术与试验机,1992,32(4),24-26.
    [62]刘晓论,王严兴,从永健,预拉跑合机:中国,97249905.9[P].1997-11-17.
    [63]张克仁,李景卫.链传动动态特性测试系统设计[J].机械工程师,1994,6:30-32.
    [64]韩向可,李军民.基于VB的链传动动态特性测试系统设计[J].机电技术,2009,4:32-33.
    [65]Meng Fanzhong,Feng Zengming, Chu YaXu.Meshing Theory and Design Method ofNew Silent Chain and Sprocket [J].Chinese journal of mechanicalengineering,2006,19(3):425-427.
    [66]张克仁.新型齿形链传动的链条设计[J].合肥工业大学学报(自然科学版),1996,19(2):105-111.
    [67]张克仁.新型齿形链的准共轭啮合[J].机械设计与研究,1996,3:31-33.
    [68]李绍青,张克仁.齿形链的改进设计与分析[J].安徽建筑工业学院学报(自然科学版),2011,19(4):25-29.
    [69]孟繁忠,李启海,冯增铭.新型Hy-Vo齿形链与链轮的啮合分析及其设计方法[J].机械工程学报,2007,43(1):116-11.
    [70]李启海.新型Hy-Vo齿形链的啮合分析及其设计方法[D].长春:吉林大学,2007.
    [71]程亚兵、孟繁忠、钱江.基于心形孔的Hy-Vo齿形链的啮合分析及其设计方法[J].机械工程学报,2012,48(13):8-12.
    [72]孟繁忠,曲绍鹏,宋婷婷.新型Hy-Vo齿形链异型导板的设计与实验研究[J].中国机械工程,2010,21(14):1660-1663.
    [73]付振明,金玉谟.一种变异啮合机制的新型齿形链的设计方法和试验研究[J].机械设计,2010,27(1):22-25.
    [74]付振明,金玉谟.发动机用内啮合机制齿形链的设计方法和试验研究[J].机械传动,2009,33(6):86-88.
    [75]薛云娜.双面啮合齿形链传动的啮合理论与应用研究[D].济南:山东大学,2006
    [76]薛云娜,王勇,王宪论.渐开线齿形链机构的啮合机理[J].江苏大学学报(自然科学版),2007,28(2):104-10
    [77]Yunna Xue,Yong Wang etal. Study on the New Tooth Profile of Silent Chain[J].Advances in Materials Manufacturing Seienee and Teeh nology. Materials ScienceForum,2006, V532-533:853-856.
    [78]张京正.复合齿廓齿形链链轮的啮合机理及动态分析[D].济南:山东大学,2007.
    [79]Su Wenyi,Wu Yuren.Design optimization of a rocker-joint silent chain and sprocketdrive based on the mesh performance indices[J] Applied Mechanics andMaterials,2012,197:104-109.
    [80]Xiaolun Liu, Song Ding. Design and test of silent chain including silicon fluorinerubber plate[J]. Advanced Materials Research.2011, Vols.291-294:2002-2005.
    [81]Song Ding, Xiaolun Liu. A Novel Roller Chain Sleeve Crevice Identification andOrientation Device Design and Test[J]. Advanced Materials Research.2013,Vols.605-607:175-178.
    [82]Xiaolun Liu, Wencheng Wang, Wei Sun, et al. Design and Experimental Analyse ofLow Noise Double-pitch Silent Chain for Conveyor, Procedia Engineering,2012,Vol.29:2146-2150.
    [83]Sun Wei,Liu Xiaolun, Liu Jianfang.Inside and outside flank alternate meshing silentchain and experimental evaluation of dynamic performance[J],Research Journal ofApplied Sciences, Engineering and Technology,2012,4(7):851-855.
    [84]Song Ding, Xiaolun Liu. Design and Experimental Research on Double-PitchTime-Sharing Meshing Silent Chain[J]. Applied Mechanics and Materials.2013,Vols.241-244:429-432.
    [85]王义行,郑志峰,张广义.Hy-Vo齿形链变节距原理分析[J].吉林工业大学学报,1983,1:42-46.
    [86]黄超俊.静音链的啮合分析[D].台南:国立成功大学,2003.
    [87]吴耿彰.圆柱销静音链条的受力分布与应力分析[D].台南:国立成功大学,2005.
    [88]林坤泉.静音链条传动误差之探讨[D].台南:国立成功大学,2005.
    [89]Meng fanzhong,li chun,cheng yabin. Proper conditions of meshing for Hy-Vo silentchain and sprocket[J].chinese journal of mechanical engineering(Englishedition),2007,20(4):57-59.
    [90]薛云娜,王勇,王宪伦.渐开线齿形链结构的啮合机理[J].江苏大学学报(自然科学版),2007,28(2):104-107.
    [91]李海玲,魏引焕.齿形链与渐开线齿形链轮啮合的研究[J].陕西科技大学学报,2009,27(1):90-93.
    [92]王吉民.齿形链和渐开线齿形链轮的啮合设计[J].机械设计,1996,7:25-27.
    [93]尹德兵,王怀宇,孟繁忠,冯增铭.齿形链链轮量柱测量距与其啮合特性[J].机械设计,2004,21(2):25-27.
    [94]孟繁忠,董成国,冯增铭.新型内-外复合啮合齿形链啮合迹线的求解[J].吉林大学学报(工学版),2009,39,(4):970-975.
    [95]冯增铭,孟繁忠,李纯涛.新型齿形链的啮合机制及仿真分析[J],上海交通大学学报,2005,39(9):1427-1430.
    [96]孟祥鑫,冯增铭.基于ADAMS的新型齿形链啮合仿真分析[J].机械设计与研究,2004,20(4):31-32.
    [97]薛云娜,王勇,王宪伦.齿形链传动啮合冲击机理[J].机械设计,2005,22(9):37-39.
    [98]Yunna Xue,Yong Wang,Zheng Wang.Meshing impact of dual meshing silent chaindrive[C].2010International Conference on Computer, Mechatronics, Control andElectronic Engineering (CMCE),2010:488-490.
    [99]Bucknor N.K.. Kinematic and Static Force Analysis of Silent Chain Drives[D]. Ph.D.Dissertation, New York: Columbia University,1991.
    [100]Bucknor N.K.,F. Freudenstein. Kinematic and Static Force Analysis of Rocker-PinJointed Silent Chains with Involute Sprockets[J]. Journal of MechanicalDesign,1994,116(9):842-848.
    [101]Huang Chintien,Lin KuenChuan,Kosasih Leo. Kinematic analysis of chordal actionand transmission errors of silent chains[C].2006SAE World Congress,2006.
    [102]Zhang Weiming. An analysis on vibration of moving silent chain by multi-bodydynamics[C] Proceedings of the ASME International Design Engineering TechnicalConferences and Computers and Information in Engineering Conference-DETC2005,2005,6:1707-1712.
    [103]岩田知也,白井俊彦. Application of ADAMS for Silent Chain MeshingSimulation[C]. MSC.ADAMS User conference,2002.
    [104]冯增铭,邓强,曹迪.Hy-Vo齿形链与链轮的刚柔耦合接触动力学特性研究[J].机械传动,2012,36(1):23-25.
    [105]邓强.新型Hy-Vo齿形链的刚柔耦合接触动力学分析与试验研究[D].长春:吉林大学,2012.
    [106]冯增铭,邓强,曹迪.Hy-Vo齿形链与链轮的刚柔耦合接触动力学特性研究[J].机械传动.2012,36(1):23-25.
    [107]Feng Zengming,Meng Fanzhong, Hanfeifei,Li Qihai. Nolinear contact dynamicanalysis of new Hy-Vo silent chain drive[C]. Proceedings of the2nd InternationalConference on Modeling and Simulation, ICMS2009,2009,2:427-431.
    [108]李俊龙.混合动力汽车用齿形链传动系统设计及动态特性分析[D].长春:吉林大学,2013.
    [109]Feng Zengming,Liu Junlong,Liu Guangwu. Dynamic Analysis of Silent Chain DriveSystem for Hybrid Car[J]. Advanced Materials Research.2013, Vols.694-697:84-89.
    [110]孔繁朝.基于刚柔混合动力学技术的齿形链接触特性研究[D].长春:吉林大学,2012.
    [111]王勇,朱东伟,薛云娜.齿形链传动的模态仿真分析[J].机械传动,2007,31(6):70-71.
    [112]温宝琴,高广娣,韩正晟,牛健文.基于ANSYS的齿形链式切割器刀片受力分析[J].农机化研究,2009,9:46-48.
    [113]孙威.齿形链传动系统振动声辐射研究[D].长春:吉林大学,2013.
    [114]李启海,孟繁忠,冯增铭.新型Hy-Vo齿形链的噪声试验研究[J],中国机械工程,2009,20(2):131-133.
    [115]Pan M, Shieh Eddy T.Silent chain noise of cab motorcycles[J]. American Society ofMechanical Engineers, Dynamic Systems and Control Division (Publication)DSC.2000,68,147-153.
    [116]Pan M, Shieh T. Design modification for reducing silent chain annoying noise[J].Journal of Mechanical Design,2002,124(12):822-827.
    [117]冯立.汽车链噪声特性与噪声控制技术的研究[D].长春:长春理工大学.2011.
    [118]孟繁忠,李春,叶斌。新型Hy-Vo齿形链磨损特性的研究[J]。润滑与密封,2007,32(10):33-35.
    [119]许树新,孟繁忠,冯增铭,叶斌.汽车变速箱Hy-Vo齿形链磨损特性的研究[J].摩擦学学报,2012,32(1):76-81.
    [120]金丽君,金玉谟,付振明.提高齿形链耐磨性能的措施和试验研究[J].机械传动,2012,36(1):57-59
    [121]金丽君,付振明.含介质油润滑条件下新型齿形链的耐磨性研究[J].2013,38(7):92-95.
    [122]刘治华,王秀,杨杰伟.变节距齿形链及其链轮研究[J].机械设计与制造,2009,11:107-109.
    [123]董成国.圆销式齿形链中心距计算方法与测试研究[D].长春:吉林大学,2007.
    [124]孟繁忠,李春,程亚兵.Hy-Vo齿形链链轮公法线长度的计算方法[J].中国机械工程,2007,18(23):2865-2867.
    [125]邢建恒.Hy-Vo齿形链中心距计算方法与测试技术[D].长春:吉林大学,2007.
    [126]张巍.齿形链传动机构中心距的变化对链轮齿廓的影响[D].长春:吉林大学,2007.
    [127]薛云娜,王勇,王宪伦.齿形链链轮齿形的修正与动力学仿真[J].工具技术,2006,40(2):41-44.
    [128]张建方.高速齿形链链轮的虚拟加工及动态分析[D].济南:山东大学,2008.
    [129]祝宇.摩托车齿形链链轮冷挤压成形工艺研究[D].重庆:重庆理工大学,2013.
    [130]王秀,王卫军,王成。齿形链链轮跨齿成形铣刀[J].金属加工,2008,11:36-37.
    [131]白志敏,于建群.齿形链链轮节距仪的设计[J].吉林工业大学学报,1998,28(1):88-92.
    [132]Haris Nur Ismalina,Wahab Md Saidin,Talip Amarul. Failure analysis of conveyorchain links: A case study[J]. Applied Mechanics and Materials,2014,v465-466:725-729.
    [133]M.Sujata, M.A.Venkataswamy, M.A.Parameswara, S.K.Bhaumik. Failure analysis ofconveyor chain links[J]. Engineering Failure Analysis,2006,13(6):914-924.
    [134]Hall William C. Improving the life expectancy of glass conveying chains[J].Glassinternational,2012,35(2):44-46.
    [135]Thornley Jim.Glass conveyor system installation and maintenance guidelines[J].Glassinternational,2003,26(1):36-37.
    [136]Barton.A.D,Lewin.P.L,Brown.D.J.High speed indexing of a chain based conveyor[C].IEE Conference Publication,1997,445:491-495.
    [137]Barton.A.D, Lewin.P.L, Brown.D.J. Analysis and control of a high speedindexing chain conveyor[C].IEE Conference Publication,1997,444:314-318.
    [138]Barton.A.D, Lewin.P.L. Experimental comparison of the performance of differentchain conveyor controllers[J]. Proceedings of the Institution of Mechanical Engineers.Part I, Journal of systems and control engineering,2000,214,(5):361-369.
    [139]Jayant P. Modak, Girish D. Mehta, Pramod N. Belkhode. Computer Aided DynamicAnalysis of the Drive of a Chain Conveyor[C]. American Society of MechanicalEngineers, Manufacturing Engineering Division, MED,2004,15:1035-1045.
    [140]Undeger.V.R,Cariapa.V,Wenzel.T.H,Moussa.B.chain pull force characteristics whenconveyoring cement clinker in a drag chain conveyor[J].Bulk SolidsHanding,2001,21(3):321-328.
    [141]Friedrich Krause,Katterfeld André. Functional Analysis of Tube Chain Conveyors[J].Particle and Particle Systems Characterization,2004,21(4):348-355.
    [142]金赫.拨梁式链式输送机的设计[J].林业机械,1985,3:12-14.
    [143]孟繁忠,金昌.链式裙板输送机的结构及设计要点[J].建筑机械,1988,4:13-17.
    [144]戴彤.板式输送机的设计与应用[J].雷达与对抗,1997,4:64-69.
    [145]黄骧洪,黄佳.增速输送链的设计原理[J].江南大学学报,1992,7(2):30-37.
    [146]庞美荣,王维春.提高埋刮板输送机链条速度的可行性分析[J].起重运输机械,1996,6:11-14.
    [147]王波,张延友.刮板输送机预张紧力及紧链力计算煤炭科学技术[J].1983,9:44-48.
    [148]余汪洋.埋刮板链条的张力计算公式[J].起重运输机械,1988,9:27-33.
    [149]徐广明,毛君.刮板输送机链条张力分析与计算研究[J]..煤矿机械,2007,28(7):1-2.
    [150]李惟慷,毛君,李建刚.刮板输送机预张力调节系统的研究[J].矿山机械,2009,37(7):11-14.
    [151]郭忠,龚晓燕,陈贺.刮板输送机链轮传动系统动力学仿真分析[J].煤矿机械,2010,31(9):68-71.
    [152]王爱民.重型刮板输送机负载特性与耦合系统仿真[D].太原:太原理工大学,2009.
    [153]焦宏章,杨兆建,王淑平刮板输送机链轮传动系统接触动力学仿真分析[D].煤矿机械,2012,37(增刊2):494-498.
    [154]毛君.刮板输送机动力学行为分析与控制理论研究[D].沈阳:辽宁工程技术大学,2006.
    [155]谢苗,毛君,许文馨.重型刮板输送机故障载荷工况与结构载荷工况的动力学仿真研究[J].中国机械工程,2012,23(10):1200-1204.
    [156]胡晓东,王巍.刮板输送机链轮失效分析[J].煤矿机械,2013,34(4):121-122.
    [157]姜红民.刮板输送机链轮轴组失效分析及改进[J].矿山机械,2010,38(9):120-121.
    [158]闵希春,杨广衍,周丽,张春阳.刮板输送机链轮有限元分析及优化[J],机械设计与制造,2011,3:21-22.
    [159]马树焕.刮板输送机圆环链有限元分析[J].水力采煤与管道运输,2010,4:75-77.
    [160]董积福,常宗旭,刘混举.刮板输送机圆环链的疲劳寿命有限元分析[J].煤矿机械,2013,34(4):107-109.
    [161]朱晓春,张鑫,张德林,李天适.刮板机输送机链轮的疲劳寿命计算及合理性验证分析[J].煤矿机械,34(1):21-23.
    [162]自强链条样本[M].杭州东华链条集团有限公司,2006.
    [163]王文成,刘晓论,孙威,何丽妍,等.双节距齿形输送链条设计与实验[J].农业机械学报,2013.44(2):243-247.
    [164]陈宇东.结构振动分析[M].吉林大学出版社,2008.
    [165]韩清凯,罗忠.机械系统多体动力学分析、控制与仿真[M].科学出版社,2010.
    [166]齐朝晖.多体系统动力学[M].科学出版社,2008.
    [167]陈文华,贺青川,张旦闻.ADAMS2007机构设计与分析范例[M].机械工业出版社,2011.
    [168]郭卫东.虚拟样机技术与ADAMS应用实例教程[M].北京航空航天大学出版社,2007.
    [169]王孚懋,任勇生,韩宝坤.机械振动与噪声分析基础[M].国防工业出版社,2006.
    [170]陈可安,曾向阳,李海英.声学测量[M].科学出版社,2005.
    [171]王佐民.噪声与真的测量[M].科学出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700