用户名: 密码: 验证码:
多路光吸收式光纤耦合温度监测系统的设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工农业经济技术的飞速发展,各行各业对电力系统的可靠性提出了更
    高的要求。提高供电可靠性由多种方法,其中在运行中对高压设备的在线监测
    是一种重要的且行之有效的防范措施。本课题是针对电力系统中高压设备(如:
    高压、超高压变压器,大型电机、高压开关、大型发电机等)的运行状态监控
    而提出的。同时,温度监测对于高压设备的安全、经济运行和使用寿命有着决
    定性的作用,因此,为了使这些设备处于最佳运行状态,对其热点温度的测量
    是十分必要的。
     通过查阅近四十年来国际国内关于高压电气设备温度监控方面的文献资
    料,并深入分析研究之后,针对目前在这一领域内存在的测量精度低和长期工
    作稳定性差的难题,本课题提出了利用半导体光吸收原理实现对大型电力设备
    内部温度实时在线监测的方案。设计了系统光学部分结构和电气部分的实现电
    路。系统中光源波动和光探测器性能不稳定是影响系统精度和长期工作稳定性
    的主要原因,针对系统中光源波动问题,系统结构中增加了光反馈自适应模块,
    实现了对光源光功率的稳定;系统中增加了参考光源,并将测量信号和参考信
    号耦合到同一光纤,由同一探测器转换成电信号,这样由于探测器性能不稳定
    对测量信号和参考信号的影响程度相同,从而消除了由于探测器性能不稳定对
    系统精度的影响。本系统中设计了一种新型的信号分离电路,可以分别检出测
    量信号和参考信号,并滤除环境光和探测器暗电流噪声,提高了系统的信噪比。
    另外,本系统中还设计了看门狗电路和软件抗干扰措施,进一步增强了系统的
    稳定性。
     实验研究表明,系统精度可达到±1°c,分辨力为0.1°c,响应时间为1ms,
    基本上达到了绝大多数电力工程应用的要求。
Nowadays, with the development of industry and agriculture at high speed,
     higher and higher requirements of reliability and security for electric power system
     are put forward. There are many means to improve the reliability and security for
     electric power system, temperature supervise on line is a significant and efficient
     means for working condition supervise of large electric power equipment. This
     subject is aimed to achieve working condition supervise of high voltage equipment
     such as high voltage transformer, super generator, high voltage switch etc. At the
     same time, temperature supervise is crucial to the safe and economical operation and
     the work life-span of the high voltage equipment. So, it is necessary to supervise the
     hottest spot temperature of this equipment in order to ensure them to work at their
     best condition.
     The information about temperature supervise of high voltage equipment is
     consulted and analyzed at large near the last forty years. A novel scheme based on
     optic absorption of semiconductor is proposed, which can overcome the problem of
     low accuracy and bad reliability in this field. The system configuration of optical and
     electric portion is given. The major reasons, which cause the low accuracy and bad
     long-term stability, are the unsteadiness of the optical radiation of the light source
     and photodetector. An optic-feedback circuit is designed to adjust the drive current of
     the optic source according to the optic power radiating from the light source. And we
     get the more steady optic power then before. A reference light source is added in the
     system. The measurement optical signal and the reference optical signal are coupled
     into the same optical fiber, and transmitted into the electric signal by the same
     photodetector, therefore the effect of the photodetector drift to the measurement
     optical signal and the reference optical signal are coincident. A unique signal pick-up
     circuit is designed, which can automatic track the measurement signal and the
     reference signal respectfully, even they are submerged by the noise, and the noises
     caused by the background light and the photodetector are removed. A higher SNR is
     gotten. Furthermore, watchdog circuit and software anti-interference measures are
     designed also. The working steadiness of system is buildup further.
     The experimental result shows that the system we designed can achieve the
     following properties: the accuracy is approximately ? 0c over the range covered;
     the resolution 0.1 0c, respond time is about lms. Furthermore, this system is
     insensitive to fluctuation of the light source intensity, fiber losses, and photodetector
     drifts.
引文
1 王晋根.关于产品设备发展方向的调研总结.高压开关行业通讯。1996,(10):23
    2 雷颖.气体绝缘变电站状态监测技术的应用.华通技术.1995,(3):33
    3 Lundin L et al.Monitoring Primary Circuit Temperatures and Breakers Condition in MV Substation, ABB. Review, 1993, (3): 21
    4 张培铭.中压开关柜接头温度在线监测技术的研究.电工技术学报.1995,(2):49
    5 Greg McDonald. Toward Increased Reliability in the Electric Power Industry: Direct Temperature Measurement in Transformers Using Fiber Optic Sensors,SPIE 1986, 3414:107~111
    6 郭文元,高良玉.高电压技术.1997,23(2):22~25
    7 付桂翠,高泽溪.一种实用的64路温度测量系统,电子技术应用,1999,(2):23~26
    8 SiC 薄膜热敏电阻器及温度传感器.传感器技术.1987,(4):28~31
    9 镍薄膜温度传感器.传感器技术。1989,(2):22~24
    10 T. Yamamoto et al. Experimental Studies an Estimationmodel for Shunting Errors of Sheathed Thermocouples, TMCSI 7.1992, 6, part 1: 607~612
    11 R.L. Shepard and R. F. Hyland, Modeling Of Insulatorshunting in High Temp. Sheathed Thermocouples, TMCSI, 5.1972, Part3: 1841~1853
    12 A.N. Varava Temperature Measurement by Semiconductor Devices Thermal Engineering,1998, 45(8): 683~685
    13 YE L H.Journal of Infrared and Millimeter Waves, 1997,16(3): 221
    14 R.S,Keay Feigelson. Optical Engineering, 1985, 24:1102
    15 R R Dils, Geist J,Reilly M L.J.Appl. Phys.,1986,59(4):1
    16 Yang Wenku、Yang Tao. Measurement and Automatic Control Proceedings of the 3Asian/Pacific International Symposium on Instrumentation, 1996, 26(7):30~33
    17 A. Zur、A. Katzir. Applied Optics. 1987.2 6 (7):1201~1206
    18 A.wang et al.Sapphire-fiber based Intrinsic Fabry-Perot Interferometer. Fiber optic Sensor-Based Smart Materials and Structures Workshop: 103~106
    19 M.Naci Inci, Stephen R Kidd.High Temperature Miniature Fibre Optic Interferometer Thermal Sensors. Measurement Science & Technology.1993,(4): 382~387
    20 Samulski,T.,and Shrivastava, P.N.,Photoluminescence Thermometer Probe:
    
     Temperature measurements in Microwave Fields. Science 1980. (208) : 193-194
    21 V.C.Femicola and R.Galleano. Accuracy And Calibration Considerations For Fiber Optic Temperature Sensors. SPIE Vol.2839: 248-252
    22 K.A. Wickersheim. Application Of Fiber Optical Thermometry To The Monitoring Of Winding Temperatures In Medium And Large Power Transformers. SPIE Vol.1584 Fiber Optic and Laser Sensors IX 1991: 3-10
    23 Evaluation of a Fluoroptic Thermometer as a Hot Spot Sensor for Power Transformers. EPRI Report EL-2443, Vol.2. Research Project 1289-1,1981
    24 Rohy,D.,Duffy,T. and Compton,W. Radiation Pyrometer for Gas Turbine Blades. SAE 720159: 589-602
    25 Boulouchos, K.,Eberle,M.and Ineichen, B. New Insights into the Mechanisms of In-Cylinder Heat Transfer in Diesel Engines. SAE 890573:197-215
    26 Li,Z.,Tang,J.,Han,X.,and Zhang.M., Two-Color Ration Pyrometer With Optical Fiber for Over-Heating Gas. SPIE Vol.2070, Fiber Optic and Laser Sensor XI: 508-513
    27 Beletserkovsky. E..Zur,A. and Katzir. Nonuniform Temperature Distribution Monitoring With an IR Fiber-Optic Radiometer. Applied Optics. 1994,33(1) : 64-67
    28 Kyuma.K.Tai.S. Sawada,T..and Nunoshita.M. Fiber-Optic Instrument for Temperature Measurment. IEEE Journal of Quantum Electronics, 1982. QE-18,(4) :676-679
    29 Vaguine, V.A,Christensen,D.A..Lindley,J.,and Walston,T., Multiple Sensor Optical Thermometry System for Application in Clinical Hypothermia. IEEE Transactions on Biomedical Engineering .1984. BME-31(1) :168-172
    30 Salour,M.mSchoner.G..Kult.M..and Bechtel.J.. Semiconductor-Platelet Fiber-Optic Temperature Sensor. Electronics Letters 1985,21(4) : 135-136
    31 Hilgers.K.and kaufman,L. A fiberoptic Differential Temperature Probe, SPIE Vol.838. Fiber Optic and Laser Sensor V: 223-230
    32 Guedes Balentes,L., Camargo Jr..S.,and Soares.E., Temperature Measurement utilizing Hydrogenated Amorphous Silicon Films. SPIE . Fiber Optic and Laser Sensor Ⅶ. 1985,838:247-251
    33 Theocharous,E., Differential Absorption distributed Thermometer, IEE Conference Publication 1983, (221) : 10-12
    34 Dakin,J.P., Pratt, D.J., Distributed Optical Fiber Raman Temperature Sensor Using a Semiconductor Light Source and Detector. Electronics Letters, 1985. 21(13) : 569-570
    35 Hartog.A.H.and Leach.A.P, A Practical Optical-Fibre Distributed Temperature
    
     Science 1980. (208) : 193-194 Science 1980. (208) : 193-194
    36 Theocharous,E., Distributted Sensor Based on Differential absorption. Colloquium on distributed Optical Fiber Sensors. IEE.Savoy Place, London, England, 1986. 1126-1129
    37 Kingsley, S.A., Advances in Distributed FODAR, Proc. Of SPIE's Fiber/Laser'86. Fiber Optical and Laser Sensor IV 1986,(718) :236-239
    38 A.M. Scheggi, M. Bacci, and M.Brenci, Compact Temperature Measurement System for Medical Applications. SPIE. 1985. 586. Fiber Optic Sensors: 1985, 586:110-112
    39 Hartog A.H. Payne D.N. Fiber-Optic Temperature-Distribution Sensor. EEE Colloquim,Digest Number 1982, (60) :367-372
    40 P. Akhavan Leilabady, J.D.C. Jones, and D.A. Jackson, Combined Polarimetric-Polarimetric Fiber Optic Sensor Capable of Remote Operation. Opts. Comms. 1986, 57(2) : 143
    41 M.Corke, J.D.C. Jones, A.D. Kersey, and D.A. Jackson, Combined Michelson And Polarimetric Fiber Optic Interferometric Sensor. Electron. Letts.,1985, 21: 148
    42 M. Corke,A.D. Kersey, K.Liu, and D.A. Jackson. Remote Cemperature Sensing Using Polarization Preserbving Fiber, Electron. Letts. 1984,20: 67
    43 靳伟,廖延彪,张志鹏.导波光学传感器:原理与技术.北京:科学技术出版社. 1998. 90-91
    44 Lu H B,Zou D H,Qi X M.Approach for a Surface Roughness Measurement Equipment With Fiber Optic Sensor.Proceedings of The International Conference on Advaanced Mechatronics,May 21-24,Tokyo Japan,1989:463-466
    45 M.A.Khan, C.Allemand, and T. W. Eagar. Noncontact Temperature Measurement: Interpolation Based Techniques. Rev.Sci. Instrum., 1991,62(2) :392-402
    46 G.B. Hunter, and T.W. Eagar. Multiwavelength Pyrometer:An Improved Method. Opt. Eng., 1985, 24 (6) :1081-1085
    47 J.W. Hahn, C.Rhee. Reference Wavelength Method for A Two-Color Pyrometer. Appl.Opt.,1987,26(24) :5276-5279
    48 Y.Wang, M.Yao, Y.Liao. Selection of Optimal Working Wavelengths And Bandwidths For Dual-Wavelength Optical Fiber Pyrometer. Proc. SPIE. 1995, 2594:75--80
    49 Schoener G., Bechtel J.H., and Sallour M.M. Novel Fiber Coupler For Optical Temperature Sensor, Proc. 2~nd Optical Fiber Sensors Conference, Stuttgart
    
    Germany, 1984:203
    50Theocharous E. Differential Absorption Distributed Thermometer,Proc. 1st Optical Fiber Sensor Conference, London, England. 1983:10
    51刘瑞复,史锦珊.光纤传感器及其应用.北京:机械工业出版社.1987:20
    52西迟润.人民邮电出版社.1983:70
    53M. Beaudoin, A.J.G. Devries, S.R.Johoson, H.Laman, and T. Tiedje, Optical Absorption Edge of Semi-Insulating GaAs and InP at high temperatures. Appl. Phys.Leet.1997, 70(26): 3540~3542
    54吴兴惠,王彩君.传感器与信号处理.北京:电子工业出版社.1996:27
    55C.H.Gooch. Gallium Arsenide Laser, London.1987:236
    56C.S.Kang and P.E.Greene.Preparation and Properties of High-Parity Epitaxial GaAs Grown from Ga solution.Appl.Phys. Lett. 1967,11:171
    57陈治明,王建农.半导体器件的材料物理学基础.北京:科学出版社.1999:120
    58孙以才.半导体测试技术.北京:冶金工业出版社.1984:222
    59周一间.光电子器件手册.北京:电子工业出版社.1997:196
    60张明德.光纤通信原理与系统.南京:东南大学出版社.1996:120
    61吴运昌.模拟集成电路的原理与应用.武汉:华中理工大学出版社.1995:190
    62吕宝海,冯勤群,周卫红.强度型光纤传感检测中的强度补偿技术.激光技术.1999,2:1~7
    63郑宏军,黎昕,杨少卿.几种典型运算放大器的应用技术.电子技术应用.1998,8:56~58
    64朱达滨,张宝玉,张文骏.模拟集成电路的特性与应用.北京:航空工业出版社.1999:235~238
    65王珏,王玉田.集成检测电路原理与设计.北京:兵器工业出版社.1996:70
    66金篆芷,王明时.现代传感技术.电子工业出版社.1995,3:142~172.
    67余永权.Flash单片机原理与应用.北京:电子工业出版社.1997:196
    68张毅刚,修林成,胡振江.MCS-51单片机应用设计.哈尔滨:哈尔滨工业大学出版社.1990:262
    69何立民.单片机应用技术选编.北京:北京航空航天大学出版社.1998:120

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700