用户名: 密码: 验证码:
钒酸盐化合物的水热合成及电化学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池由于具有高能量密度,高工作电压,长循环寿命,无环境污染等优点而被广泛的应用和研究。论文较为详细地阐述了锂一次电池和锂离子电池正极材料的研究现状,并着重阐述了钒酸盐化合物作为一类新型锂离子电池正极材料的优点、研究现况及应用前景。在此基础上,作者采用水热合成法制备了几种典型钒酸盐化合物,对其制备工艺、结构特征及电化学性质进行较为系统的研究。
     采用水热合成法成功制备了沿[010]方向择优生长的α′-NaV_2O_5单晶纳米棒。通过对纳米棒结构形成机理的分析,发现高电负性F-离子的参与对α′-NaV_2O_5纳米棒的形成起到决定性作用。通过电化学测试发现α′-NaV_2O_5具有稳定的电化学性能及优良的结构稳定性。
     采用水热合成法制备了沿[010]方向择优生长的α-CuV_2O_6纳米线。通过CV、PITT和EIS技术研究了材料的电化学反应机理及电极过程动力学性质。解释了α-CuV_2O_6容量衰减的主要原因可归结为Cu~(2+)/Cu~+和V~(4+)/V~(3+)氧化/还原反应的缺失、表面钝化膜的形成以及较低的离子扩散系数。
     采用水热合成法制备了层状Li_(0.86)V_(0.8)O_2材料。通过XRD、FTIR及磁化率测试,证实了在材料结构中存在Li/V离子的结构混排现象。电化学研究表明材料容量的衰减主要可归结为在Li~+离子插入/脱出过程中持续性的Li/V离子混排以及不可逆结构相变的产生。
     循环性能差一直是制约钒酸盐正极材料实际应用的主要瓶颈。通过本论文研究发现了导致该问题产生的一些主要因素,为钒酸盐正极材料的进一步改性及应用研究提供了理论支持。
Lithium ion batteries have been studied intensively due to their high energy density, high voltage, long cycle life and environmental advantages. In the first chapter of this thesis, we reviewed the development of the cathode materials for primary- and rechargeable lithium batteries. We realized that vanadate compounds are promising cathode materials due to their very high energy densities. Therefore, in this work we prepared some typical vanadate compounds using hydrothermal synthesis. The structural and electrochemical properties of the materials were investigated as cathode materials for rechargeable lithium batteries.
     Firstly, phase pure highly crystallizedα'-NaV_2O_5 nanorods were prepared by hydrothermal process. Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED) confirmed theseα'-NaV_2O_5 nanorods were single crystals, fabricating along the <010> axis with the width of 200 nm and the length of 10μm. ICP and EDX analysis showed that the Na:V molar ratio of the material was close to 1:2. X-ray photoelectron spectroscopy (XPS) showed that the oxidation state of vanadium inα'-NaV_2O_5 was +4.5. The structural properties of the material were also studied by Raman scattering. The formation mechanism of theα'-NaV_2O_5 nanorods was proposed. It is showed that the presence of F- ions was crucial for the formation ofα'-NaV_2O_5 nanorods. Without F- or in the presence of other haloid anions such as Cl- and Br-, onlyα'-NaV_2O_5 flakes could be obtained.
     α'-NaV_2O_5 nanorods exhibited a discharge capacity of 118 mAhg-1 in the potential window of 1.0-3.5 V.α'-NaV_2O_5 flakes had a smaller discharge capacity, but showed much better capacity retention ability. Comparing to those of transition metal vanadate materials, such as CuV_2O_6 and Ag_2V_4O_(11), the discharge capacity ofα'-NaV_2O_5 was much smaller because of its relatively higher vanadium oxidation state of +4.5. But, the material exhibited excellent capacity retention. This was attributed to its good strcutrural stability during charge/discharge cycling.
     α-CuV_2O_6 nanowires were prepared by hydrothermal process under 210oC. TEM showed that the material was in nanometer scale, with the width about 100 nm and the length of 5μm. HRTEM and FFT revealed that theα-CuV_2O_6 nanowires were highly crystallized, growing along the <020> axis. The local structural properties of the material were further investigated by Raman scattering and FTIR. In addition, the oxidation state of different elements in the material was confirmed by XPS.
     Electrochemical study showed that theα-CuV_2O_6 nanowires had a high discharge capacity of 425 mAhg-1 in the potential window of 1.5-4.0 V with the current density of 60mAg-1, corresponding to 4.2 mol of Li+ intercalated into the material lattice. However, the material exhibited poor capacity retention, which only showed a capacity of 150mAhg-1 after 20 cycles. CV analysis showed the Cu~(2+)/Cu~+, V~(5+)/V~(4+) and Cu~+/Cu, and V4+/V3+ redox couples in the first cycle. However, only V5+/V4+ redox couple was observed in the second cycle. The chemical diffusion coefficients of material were as small as 10-12 cm~2s~(-1) based on PITT and EIS analysis. In addition, EIS also showed the formation of SEI film on the material particle surface after the first cycle. Based on these studies, the poor capacity retention of theα-CuV_2O_6 nanowires was attributed to the following three reasons: the absence of Cu2+/Cu+ and V4+/V3+ redox couples with cycling; the formation of SEI film; and the low chemical diffusion coefficient of the material.
     In the last chapter, we prepared Li_(0.86)V_(0.8)O_2 crystals by hydrothermal synthesis at 200\oC. XRD analysis showed that the quenching process is necessary for the preparation of Li_(0.86)V_(0.8)O_2. SEM photograph showed that the material had an octahedral morphology with particle size about 300 nm. The material had an layered rock salt structure. However, the (003) diffraction of the material was very weak, due to the Li/V site disorder. The Li/V site disorder was also confirmed by FTIR and magnatic experiements. In addition, XPS analysis showed that most of the vanadium ions in Li_(0.86)V_(0.8)O_2 were V_4~+, only with a slight amount of V~(3+) ions.
     Li_(0.86)V_(0.8)O_2 showed a discharge capacity about 113 mAhg-1 in the first cycle, which is much better than that of previously reported LiVO2 and Li_(0.86)V_(0.8)O_2. But, the capacity retention of the material was still unsatisfying, which was only 80 mAhg-1 after 20 cycles. CV analysis showed irreversible electrochemical process in the intial stage of cycling. In addition, an irreversible phase transformation was observed by XRD after several cycles. Based on these observations, the bad cycling performance of Li_(0.86)V_(0.8)O_2 was attributed to the continuous Li/V site disorder and the irreversible phase transformation during charge/discharge cycling.
     The poor capacity retention ability is a major obstacle to the practical applications of vanadate cathode materials. The new findings presented in this thesis are useful for further applications of vanadate compounds in rechargeable lithium batteries.
引文
[1] N. Yoshio, Lithium Ion Secondary Batteries: Past 10 Years and Future [J]. J. Power Sources, 2001, 100: l0l-l06.
    [2]周恒辉,慈云航,刘昌炎.,锂离子电池电极材料研究进展[J].化学进展, 1998, 14(1): 85-94.
    [3]岳鸿飞,正极材料LiV3O8的合成与性能研究,青海:青海盐湖研究所, 2007.
    [4]吕鸣祥,黄长保,宋玉瑾,化学电源[M].天津:天津大学出版社, 1992.
    [5] K. Brandt, Historical Development of Secondary Lithium Batteries [J]. Solid State Ionics, 1994, 69: 173-181.
    [6] G. Eichinger, Safety aspects in Primary high-rate lithium cells [J]. J. Power Sources, l993, 43-44(1): 259-266.
    [7] M. B. Armand, in Materials for Advanced Batteries (Proc. NATO Symp. Materials Adv. Batteries) (eds D. W. Murphy, J. Broadhead, B. C. H. Steele) 145-161 (Plenum, New York, 1980)
    [8] K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, LixCoO2 (0    [9] M. G. S. R. Thomas, P. G. Bruce and J. B. Goodenough, Lithium Mobility in the Layered Oxide Li1?xCoO2 [J]. Solid State Ionics, 1985, 17: 13-19.
    [10] R. Yazami, Ph. Touzain, A Reversible Graphite-Lithium Negative Electrode for Electrochemical Generators [J]. J. Power Sources, 1983, 9: 365-371.
    [11] J. J. Auborn and Y. L. Barberio, Lithium Intercalation Cells without Metallic Lithium [J]. J. Electrochem. Soc., 1987, 134: 638-641.
    [12] B. Scrosati, Lithium rocking chair batteries: an old concept [J]. J. Electrochem. Soc., 1992, 139(10): 2776-2781.
    [13] D. Guyomard, J. M. Tarascon, The carbon Li1+xMn2O4 System [J]. Solid StateIonics, 1994, 69(3-4): 222-237.
    [14] J. M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithiumbattery [J]. Nature, 2001, 414:359-367.
    [15]任学佑,锂离子电池及其发展前景[J].电池, 1996, 26(1): 38-40.
    [16] T. Nagaura, K. Tozawa, Lithium Ion Rechargeable Battery [M]. Cleaveland: JEC Press, 1990: 66-75.
    [17] A. R. Armstrong, P. G. Bruce, Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries [J]. Nature, 1996, 381: 499-500.
    [18]李旭,锂离子电池正极材料LiNi1/3Mn1/3Co1/3O2和LiNiVO4的合成与表征[D].吉林:吉林大学, 2008.
    [19] J. M. Tarascon, M. Armand, Issues and Challenges Facing Rechargeable Lithium Batteries, Nature, 2001, 414: 359-367.
    [20]胡进,锂离子电池纳米结构负极材料储锂性能研究[D].北京:中国科学院物理研究所, 2005.
    [21]魏英进,锂离子电池锰基正极材料的合成与表征[D].吉林:吉林大学, 2004.
    [22] O. Bitsche, G. Gutmann, Systems for Hybrid Cars [J]. J. Power Sources, 2004, 127: 8-15.
    [23]陈军,张绍岩,李玮瑒,陶占良,马华,钒酸银电极材料和制备方法及其应用:中国,专利申请号: 200610013866[P].
    [24] P. G. Bruce, Solid-state Chemistry of Lithium Power Sources [J]. Chem. Commun., 1997, 1817-1824.
    [25] S. H. Yang, C. Laurence, D. Claude, E. C. Nelson, A. O. Michael, Atomic resolution of lithium ions in LiCoO2 [J]. Nature Materials, 2003, 2, 464-467.
    [26] M. G. S. R. Thomas, P. G. Bruce, J. B. Goodenough, AC Impedance of the Li1?xCoO2 Electrode [J]. Solid State Ionics, 1986, 18-19: 794-798.
    [27] W. Li, J. C. Currie, Morphology Effects on the Electrochemical Performance of LiNi1–xCoxO2 [J]. J. Electrochem. Soc., 1997, 144: 2773-2779.
    [28] R. Stoyanova, E. Zhecheva, L. Zarkova, Effect of Mn-substitution for Co on the Crystal Structure and Acid Delithiation of LiMnyCo1?yO2 Solid Solutions, [J]. Solid State Ionics, 1994, 73, 233-240.
    [29] H. Tukamato, A. R. West, Electronic Conductivity of LiCoO2 and Its Enhancement by Magnesium Doping [J]. J. Electrochem. Soc., 1997, 144: 3164-3168.
    [30] I. Uchida, H. Sato, Preparation of Binder-Free, Thin Film LiCoO2 and Its Electrochemical Responses in a Propylene Carbonate Solution [J]. J. Electrochem.Soc., 1995, 142: L139-L141.
    [31] J. Cho, C. S. Kim, S. I. Yoo, Improvement of Structural Stability of LiCoO2 Cathode during Electrochemical Cycling by Sol-Gel Coating of SnO2 [J]. Electrochemical and Solid-State Letters, 2000, 3: 362-365.
    [32] L. D. Deyer, B. S. Borie, G. P. Smith, Alkali Metal-Nickel Oxides of the Type MNiO2 [J]. J. Am. Chem. Soc., 1954, 76: 1499-1503.
    [33] J. B. Goodenough, D. G. Wickham, W. J. Croft, Some Magnetic and Crystallographic Properties of the System Li+xNi++1-2xNi+++xO [J]. J. Phys. Chem Solids, 1958, 5: 107-116.
    [34] A. Rougier, P. Gravereau, C. Delmas, Optimization of the Composition of the Li1–zNi1+zO2 Electrode Materials: Structural, Magnetic, and Electrochemical Studies [J]. J. Electrochem. Soc., 1996, 143: 1168-1175.
    [35] H. Arai, S. Okada, H. Ohtsuka, M. Ichimura, J. Yamaki, Characterization and Cathode Performance of Li1 ? xNi1 + xO2 Prepared with the Excess Lithium Method [J]. Solid State Ionics, 1995, 80: 261-269.
    [36] R. Kanno, H. Kubo, Y. Kawamoto, T. Kamiyama, F. Izumi, Y. Takeda, M.Takano, Phase Relationship and Lithium Deintercalation in Lithium Nickel Oxides [J]. J. Solid State Chem., 1994, 110: 216-225.
    [37] M. Broussely, F. Perton, P. Biensan, J. M. Bodet, J. Labat, A. Lecerf, C. Delmas, A. Rougier, J. P. Peres, LixNiO2, A Promising Cathode for Rechargeable Lithium Batteries [J]. J. Power Sources, 1995, 54: 109-114.
    [38] Q. Zhong, U. V. Sacken, Crystal Structures and Electrochemical Properties of LiAlyNi1?yO2 Solid Solution [J]. J. Power Sources, 1995, 54: 221-223.
    [39] C. Pouillerie, L. Croguennee, P. H. Biensan, P. Willmann, C. Delmas, Synthesis and Characterization of New LiNi1–yMgyO2 Positive Electrode Materials for Lithium-Ion Batteries [J]. J. Electrochem. Soc., 2000, 147: 2061-2069.
    [40] M. M. Thackeray, W. I. F. David, P. G. Bruce, J. B. Goodenough, Lithium Insertion into Manganese Spinels [J]. Mat. Res. Bull., 1983, 18: 461-472.
    [41] L. Chen, J. Schoonman, Polycrystalline, Glassy and Thin Tilms of LiMn2O4 [J]. Solid State Ionics, 1993, 67: 17-23.
    [42] J. M. Tarascon, E. Wang, F. K. Shokoohi, W. R. Mckinnon, S. Colson, The Spinel Phase of LiMn2O4 as a Cathode in Secondary Lithium Cells [J]. J. Electrochem.Soc., 1991, 138: 2859-2864.
    [43] M. M. Thackeray, Structural Considerations of Layered and Spinel Lithiated Oxides for Lithium Ion Batteries [J]. J. Electrochem. Soc., 1995, 142: 2558-2563.
    [44] R. J. Gummow, A. D. Kock, M. M. Thackeray, Improved Capacity Retention in Rechargeable 4 V Lithium/Lithium-Manganese Oxide (Spinel) Cells [J]. Solid State Ionics, 1994, 69: 59-65.
    [45] S. T. Myung, S. Komaba, N. Kumagai, Enhanced Structural Stability and Cyclability of Al-Doped LiMn2O4 Spinel Synthesized by the Emulsion Drying Method [J]. J. Electrochem. Soc., 2001, 148: A482-A489.
    [46] G. Li, H. Ikuta, T. Uchida, M. Wakihara, The Spinel Phases LiMyMn2–yO4 (M = Co, Cr, Ni) as the Cathode for Rechargeable Lithium Batteries [J]. J. Electrochem. Soc., 1996, 143: 178-182.
    [47] R. Alcantara, M. Jaraba, P. Lavela, J. L. Tirado, Optimizing Preparation Conditions for 5 V Electrode Performance, and Structural Changes in Li1?xNi0.5Mn1.5O4 Spinel [J]. Electrochimi. Acta., 2002, 47: 1892-1893.
    [48] A. Ito, D. Li, Y. Lee, et al. Influence of Co substitution for Ni and Mn on the structural and electrochemical characteristics of LiNi0.5Mn1.5O4, [J]. J. Power sources, 2008, 185: 1429-1433.
    [49] C. Tsang, A. Manthiram, Synthesis of nanocrystalline VO2 and its electrochemical behavior in lithium batteries [J]. J. Electrochem. Soc., 1997, 144(2): 520-524.
    [50]钟俊辉,锂离子电池正极材料. [J].电源技术, 1997, 21(4): 174-177.
    [51] S. Denis, E. Baudrin, F. Orsini, Synthesis and electrochemical properties of numerous classes of vanadates [J]. J. Power Sources, 1999, 81-82: 79-84.
    [52] J. L. Acosta, E. Morales, M. Paleo, J. R. Jurodo, Polymeric composites based on vanadium oxides as cathodes for rechargeable lithium batteries. I. Microstructural and electrical characterization [J]. J. Eur. Polym., 1996, 32(1): 13-18.
    [53] H. K. Park, W. H. Smyrl, V2O5 xerogel films as intercalation hosts for lithium [J]. J. Electrochem. Soc., 1994, 143(3): L25-L26.
    [54] D. Wang, Z. Liao, X. Feng, et al. A study of the incorporation reaction of lithium into V6O13 in a rechargeable lithium battery [J]. J. Power Sources, 1989, 26: 347-353.
    [55] N. H. Amsterdam, Solid solution Li1+xV3O8 as cathodes for high rate secondary Li batteries [J]. Solid State Ionics, 1984, 13: 311-318.
    [56] G. T. K. Fey, K. S. Wang, S. M. Yang, New inverse spinel cathode materials for rechageable lithium batteries [J]. J. Power Sources, 1997, 68(1): 159-165.
    [57]刘建睿,王猛,尹大川等.锂离子蓄电池正极材料锂钒氧化物研究进展[J].电源技术, 2001, 25(4): 308-311.
    [58] Y. Asami, K. Tsuchiya, H. Nose, et al. Development of coin-type lithium-ion rechargeable batteries [J]. J. Power Sources, 1995, 54: 146-150.
    [59] E. C. Almeida, M. Abbate, J. M. Rosolen, Improvement in electrochemical performance of LixV2O5 induced by Tb doping [J]. J. Power Sources., 2002, 112: 290-293.
    [60] F. Zhang, S. Passerini, B. B. Owens, et al. Nanocomposites of V2O5 aerogel and RuO2 as cathode materials for lithium intercalation [J]. Electrochem. Solid-State Lett., 2001, 4(12): A221-A223.
    [61] M. J. Parent, S. Passerini, B. B. Owens, et al. Composites of V2O5 aerogel and nickel fiber as high rate intercalation electrodes [J]. J. Electrochem. Soc., 1999, 146(4): 1346-1350.
    [62] F. Coustier, S. Passerini, W. H. Smyrl, A 400mAh/g aerogel-like V2O5 cathode for rechargeable lithium batteries [J]. J. Electrochem. Soc., 1998, 145(5): L73- L74.
    [63] W. Dong, J. S. Sakamota, B. Dunn, Electrochemical properties of vanadium oxide aerogels. [J]. Science and Technology of Advanced Materials, 2003, 4: 3-11.
    [64] D. B. Le, S. Passerini, J. Guo, et al., High surface area V2O5 aerogel intercalation electrodes [J]. J. Electrochem. Soc., 1996, 143(7): 2099-2104.
    [65] T. Coradin, D. Israel, J. C. Badot, et al., Alternative synthetic approach to large molecule intercalation in V2O5 xergels [J]. Mater. Res. Bull., 2000, 35: 1907-1913.
    [66] M. Giorgetti, S. Passerini, W. H. Smyrl, et al., In situ X-ray absorption spectroscopy characterization of V2O5 xerogel cathodes upon lithium intercalation [J]. J. Electrochem. Soc., 1999, 146(7): 2387-2392.
    [67] A. L. Tipton, S. Passerini, B. B. Owens, et al., Performance of lithium/V2O5 xerogel coin cells [J]. J. Electrochem. Soc., 1996, 143(11): 3473-3477.
    [68] H. K. Park, W. H. Smyrl, M. D. Ward, V2O5 xerogel films as intercalation hostsfor lithium Insertion stoichiometry, site concentration, and specific energy [J]. J. Electrochem. Soc., 1995, 142(4): 1068-1073.
    [69] F. Coustier, G. Jarero, S. Passerini, et al., Performance of copper-doped V2O5 xerogel in coin cell assembly [J]. J. Power Sources, 1999, 83: 9-14.
    [70] E. Andrukaitis, E. A. Bishenden, P. W. M. Jacobs, et al., Lithium insertion into oriented microcrystals and gels of anhydrous and hydrated vanadium pentoxide [J]. J. Power Sources, 1989, 26(3-4): 475-482.
    [71] D. Aurbach, B. Markovsky, G. Salitra, et al., Study of lithium insertion into electrochemically synthesized sodium-vanadium oxide [J]. J. Power Sources, 2001, 97-98: 486-490.
    [72] E. Shembel, R. Apostolova, V. Nagirny, et al., Interrelation between structural and electrochemical properties of the cathode based on vanadium oxide for rechargeable batteries [J]. J. Power Sources, 1999, 81-82: 480-486.
    [73] R. Xavier, B. Florent, G. Pascal, O. Guy, First-Principle Study of the Intercalation Process in the LixV2O5 System [J]. Chem. Mater., 2003, 15: 1812- 1819.
    [74] J. M. McGraw, J. D. Perkins, J. G. Zhang, et al., Next generation V2O5 cathode materials for Li rechargeable batteries [J]. Solid State Ionics, 1998, 113-115: 407-413.
    [75] A. Shimizu, T. Tsumura, M. Inagaki, Electrochemical intercalation of lithium into V2O5: effect of host materials [J]. Solid State Ionics, 1993, 63-65(9): 479-483.
    [76] P. Rozier, J. M. Savariault, J. Galy, A new interpretation of the LixV2O5 electrochemical behaviour for 1    [77] F. Coustier, J. Hill, B. B. Owens, et al., Doped vanadium oxides as host materials for lithiumintercalation [J]. J. Electrochem. Soc., 1999, 146(4): 1355-1360.
    [78] Y. Q. Chu, Q. Z. Qin, Fabrication and characterization of silver-V2O5 composite thin films as lithium-ion insertion materials [J]. Chem. Mater., 2002, 14: 3152-3157.
    [79] M. Giorgetti, S. Mukerjee, S. Passerini, et al., Evidence for reversible formation of metallic Cu in Cu0.1V2O5 xerogel cathode during intercalation cycling of Li+ ions as detected by X-ray absorption spectroscopy [J]. J. Electrochem. Soc., 2001,148(7): A768-A774.
    [80] A. D. Wadsley, Crystal chemistry of non-stoichiometric pentavalent vanadium oxide: crystal structure of Li1+xV3O8 [J]. Acta Crystal., 1957, 10: 261-267.
    [81] D. Matthieu, G. Joe, G. Dominique, et al., Sol Gel Synthesis of Li1+xV3O8 From Precursors to Xerogel [J]. Chem. Mater., 2005, 17: 2276-2283.
    [82] J. J. Feng, X. Z. Liu, X. M. Zhang, et al., Effects of Synthesis Methods on Li1+xV3O8 as Cathodes in Lithium-Ion Batteries [J]. J. Electrochem. Soc., 2009, 256: A768-771.
    [83] K. Jin, M. Tskashi, K. Tomiya, Charging characteristics of Li1+xV3O8 [J]. Solid State Ionics, 1999, 118: 141-147.
    [84] K. Jin, M. Tskashi, K. Tomiya, Structural properties of Li1+xV3O8 upon lithium insertion at ambient and high temperature [J]. Solid State Ionics, 1998, 107: 145-152.
    [85] K. Jin, M. Tskashi, K. Tomiya, Lithium insertion and extraction kinetics of Lil+xV3O8 [J]. J. Power Sources, 1999, 83: 79-83.
    [86] K. West, B. Z. Christiansen, S. Skaarup, et a1., Comparison of Li1+xV3O8 cathode materials prepared by different methods [J]. J. Electrochem. Soc., 1996, 143(3): 820-825.
    [87] X. Y. Cao, J. G. Xie, H. Zhan, Y. H. Zhou, Synthesis of CuV2O6 as a cathode material for rechargeable lithium batteries from V2O5 gel [J]. Mater. Chem. Phys., 2006, 98(1): 71-75.
    [88] Y. J. Wei, C. W. Ryu, G. Chen, K. B. Kim. X-Ray Diffraction and Raman scattering studies of electrochemically cycled CuV2O6 [J]. Electrochem. Solid-state Lett., 2006, 9(11): A487-A489.
    [89] H. Ma, S.Y Zhang, W. Q. Ji, Z.L. Tao, J. Chen,α'-CuV2O6 Nanowires: Hydrothermal Synthesis and Primary Lithium Battery Application [J]. J. Am. Chem. Soc. 2008, 130: 5361-5367.
    [90] Y. T. Kim, Gopukumar, K. B. Kim, et al., Novel synthesis of high-capacity cabalt vanadate for use in lithium secondary cells [J]. J. Power. Sources., 2002, 112: 504-508.
    [91] E. Andrukaitis, J. P. Cooper, J. H. Smit. Lithium intercalation in the divalent metal vanadates MeV2O6 (Me=Cu, Co, Ni, Mn or Zn) [J]. J. Power Sources, 1995,54: 465-469.
    [92] D. Hara, J. Shirakawa, H. Ikuta, et al., Charge–discharge reaction mechanism of manganese vanadium oxide as a high capacity anode material for lithium secondary battery [J]. J. Mater. Chem., 2002, 12: 3717-3722.
    [93] D. Hara, J. Shirakawa, H. Ikuta, et al., Charge–discharge reaction mechanism of manganese molybdenum vanadium oxide as a high capacity anode material for Li secondary battery [J]. J. Mater. Chem., 2003, 13: 897-903.
    [94] S.J. Lei, K.B. Tang, Y. Jin, C.H. Chen, Preparation of aligned MnV2O6 nanorods and their anodic performance for lithium secondary battery use [J]. Nanotechnology, 2007, 18:175605.
    [95] F. Leroux, Y. Piffard, G. Ouvrard, J. L. Mansot, D. Guyomard, New Amorphous Mixed Transition Metal Oxides and Their Li Derivatives: Synthesis, Characterization, and Electrochemical Behavior, [J]. Chem. Mater., 1999, 11: 2948-2959.
    [96] J. Kawakita, T. Miura, T. Kishi, Comparison of Na1+xV3O8 with Li1+xV3O8 as lithium insertion host [J]. Solid State Ionics, 1999, 124: 21-28.
    [97] J. Kawakita, T. Miura, T. Kishi, Effect of crystallinity on lithium insertion behaviour of Na1+xV3O8 [J]. Solid State Ionics, 1999, 124: 29-35.
    [98] P. Novak, W. Scheifele, F. Joho, O, Haas, Electrochemical insertion of magnesium into hydrated vanadium bronzes [J]. J. Electrochemical Soc., 1995, 142: 2544-2550.
    [99] S. Jouanneau, A. Verbaere, D. Guyomard. On a new calcium vanadate: synthesis, structure and Li insertion behavior [J]. Journal of Solid State Chemistry, 2003, 172: 116-122.
    [100] S. N. Ichikawa, M. Hibino, T. Yao, Electrode properties of amorphous material of Li–Co–V–O system prepared by chemical lithium insertion in CoV3O8 [J]. Solid State Ionics, 2008, 179: 1688-16920.
    [101] J. M. Cocciantelli, M. MtnCtrier, C. Delmas, J. P. Doumerc, M. Pouchard, P. Hagenmuller, Electrochemical and structural characterization of lithium intercalation and deintercalation in the y-LiV2O5 bronze [J]. Solid State Ionics, 1992, 50: 99-105.
    [102] Y. T. Kim, K. B. Kim, et al., Novel synthesis of high-capacity cobalt vanadatefor use in lithium secondary cells [J]. J. Power. Sources, 2002, 112: 504-508.
    [103] F. Zhang, P. Zavalij, M. S. Whittingham, Hydrothermal synthesis and electrochemistry of a manganese vanadium oxideγ-MnV2O5 [J]. Electrochem. Commun., 1999, 1: 564-567.
    [104] M. Kamiya, M. Eguchi, T. Miura, T. Kishi, Lithium insertion behaviour ofα-CuVO3 [J]. Solid State Ionics, 1998, 109: 321-326.
    [105] S. Y. Zhang, W. Y. Li, C.S. Li, J. Chen, Synthesis, characterization, and electrochemical properties of Ag2V4O11 and AgVO3 1-D nano/ microstructures [J]. J. Phys. Chem. B, 2006, 110(49): 24855-24863.
    [106] S. J. Bao, Q. L. Bao, C. M. Li, et al., Synthesis and electrical transport of novel channel-structured beta-AgVO3 [J]. SMALL, 2007, 3(7): 1174- 1177.
    [107] X. Y. Cao, H. Zhan, J. G. Xie, Y. H. Zhou, Synthesis of Ag2V4O11 as a cathode material for lithium battery via a rheological phase method [J]. Material. Lett., 2006, 60(4): 435-438.
    [108] M. Morcrette, P. Rozier, L. Dupont, E. Mugnier, L. Sannier, et al., A reversible copper extrusion–insertion electrode for rechargeable Li batteries [J]. Nature Materials, 2003, 2: 755-761.
    [109] M. Morcrette, P. Martin, P. Rozier, H. Vezin, et al., Cu1.1V4O11: A New Positive Electrode Material for Rechargeable Li Batteries [J]. Chem. Mater., 2005, 17: 418-426.
    [110] S. Frederic, B. Vincent, V. Herve, et al., Ag4V2O6F2 (SVOF): A High Silver Density Phase and Potential New Cathode Material for Implantable Cardioverter Defibrillators [J]. Inorg. Chem., 2008, 47: 8464-8472.
    [1]洪广言,无机固体化学[M].北京:科学出版社, 2002.
    [2] M. Isobe, C. Kagami, Y. Ueda, Crystal growth of new spin-Peierls compound NaV2O5 [J]. J. Crystal. Growth, 1997, 181: 314-317.
    [3]刘光华,现代材料化学[M].上海:上海科学技术出版社, 2000.
    [4] Y. J. Wei, C. W. Ryu, G. Chen, K. B. Kim, X-Ray Diffraction and Raman scattering studies of electrochemically cycled CuV2O6 [J]. Electrochemical and Solid-state letters, 2006, 9(11): A487-A489.
    [5]维卓,华素坤,纳米材料及其水热法制备(上) [J].上海化工, 1998, 23(11): 25-27.
    [6]键松,李海民,水热法制备无机粉体材料进展[J].海湖盐与化工, 2003, 33(4): 22-25.
    [7] K. Byrappa, M. Yoshimur, Hand book of Hydrothermal Technology: A Technology for Cyrstal Growth and Materials Processing, Willima Andrew Publishing, LLC Norwich, NewYork, 2001, P.1-43
    [8]徐如人,无机合成与制备化学[M].长春:高等教育出版社, 2001.
    [9]王秀峰,王永兰,金志浩,水热法制备纳米陶瓷粉体[J].稀有金属材料与工程, 1995, 24(4): 1-6.
    [10]李凤生,杨毅等著,纳米/微米复合技术及应用[M].北京:国防工业出版社, 2002.
    [11] M. Yoshimura, W. Suchanek, In situ fabrication of morphology- controlled advanced ceramic materials by Soft Solution Processing [J]. Solid State Ionics, 1997, 98(3-4): 197-208.
    [12]施尔畏,夏长泰,王步国,水热法的应用与发展[J].无机材料学报, 1996, 11(2):93-106.
    [13] A. A. Ballman, R. A. Luadies, The Art and Science of Growing crystals, NewYork, London, Syndey: JohnWileg & Sons.Inc., 1963.
    [14]仲维卓,华素坤,晶体生长形态学[M].北京:中国科技大学出版社, 1999.
    [15]仲维卓,人工晶体(第二版)[M].北京:科学出版社, 1994.
    [16]张立德,牟季美,纳米材料与纳米结构[M].北京:科学出版社, 2002.
    [17]徐如人,无机合成与制备化学[M].长春:高等教育出版社, 2001.
    [18]魏诠等,近代结构分析方法[M].长春:吉林大学出版社, 1989.
    [19]王祖陶,现代分子结构研究方法[M].北京:科学出版社, 1987.
    [20]吴刚,材料结构表征及应用[M].北京:化学工业出版社, 2002.
    [21]黄可龙,王兆翔,刘素琴,锂离子电池原理与关键技术[M].北京:化学工业出版社, 2008.
    [22]曹楚南,张鉴清,电化学阻抗谱导论[M].北京:科学出版社, 2004.
    [23]曲涛,田彦文,翟玉春,采用PITT与EIS技术测定锂离子电池正极材料LiFePO4中锂离子扩散系数[J].中国有色金属学报, 2007, 17: 1255-1259.
    [1] S. Y. Zhang, W. Y. Li, C.S. Li, J. Chen, Synthesis, characterization, and electro- chemical properties of Ag2V4O11 and AgVO3 1-D nano/ microstructures [J]. J. Phys. Chem. B, 2006, 110(49): 24855-24863.
    [2] X. Y. Cao, H. Zhan, J. G. Xie, Y. H. Zhou, Synthesis of Ag2V4O11 as a cathode material for lithium battery via a rheological phase method [J]. Material. Lett., 2006, 60(4): 435-438.
    [3] Y. J. Wei, C. W. Ryu, G. Chen, K. B. Kim. X-Ray Diffraction and Raman scattering studies of electrochemically cycled CuV2O6 [J]. Electrochemical and Solid-state letters, 2006, 9(11): A487-A489.
    [4] X. Y. Cao, J. G. Xie, H. Zhan, Y. H. Zhou, Synthesis of CuV2O6 as a cathode material for rechargeable lithium batteries from V2O5 gel [J]. Mater. Chem. Phys. 2006, 98(1): 71-75.
    [5] J. Kawakita, T. Miura, T. Kishi, Effect of crystallinity on lithium insertion behaviour of Na1+xV3O8 [J]. Solid State Ionics 1999, 124: 29-35.
    [6] M. Isobe, Y. Ueda, Magnetic Susceptibility of Quasi-One-Dimensional Compoundα'-NaV2O5: Possible Spin-Peierls Compound with high Critical Temperature of 34K [J]. J. Phys. Soc. Jpn., 1996, 65: 1178-1181.
    [7] K. Ohwada, Y. Fujii, J. Muraoka, H. Nakao, Y. Murakami, Y. Noda, H. Ohsumi, N. Ikeda, T. Shobu, M. Isobe, Y. Ueda, Structural relations between two ground states of NaV2O5 under high pressure: A synchrotron x-ray diffraction study [J]. Phys. Rev. B, 2007, 76: 094113.
    [8] J. Spitaler, E. Y. Sherman, C. A.Draxl, Zone-center phonons in NaV2O5: A comprehensive ab initio study including Raman spectra and electron-phonon interaction [J]. Phys. Rev. B, 2007, 75: 014302
    [9] X. Ming, H. G.Fan, Z. F. Huang, F. Hu, C. Z. Wang, G. Chen, Magnetic gap in Slater insulator alpha '-NaV2O5 [J]. J. Phys.: Condens. Matter, 2008, 15: 155203.
    [10] L. Bouhedja, S. C. Garcia, J. Livage, C. Julien, Lithium Intercalation inα′-NayV2O5 Synthesized via the Hydrothermal Route [J]. Ionics, 2008, 4: 227-233.
    [11] H. Smolinski, C. Gros, W. Weber, et.al., NaV2O5 as a Quarter-Filled Ladder Compound [J]. Phys. Rev. Lett., 1998, 80(23): 5164-5167.
    [12] Z. Gui, R. Fan, X. H. Chen, Y. Hu, Y. C. Wu, Hydrothermal synthesis and magnetic property of NaV2O5 nanorods [J]. Trans. Nonferrous Met. Soc. China, 2001, 11: 324-327.
    [13]刘曰利,一维纳米材料的直径可控制备及其生长机理与物性的研究[D].武汉:武汉大学, 2006.
    [14] J. Mendialdua, R. Casanova, Y. Barbaux, XPS studies of V2O5, V6O13, VO2 and V2O3 [J]. J. Electron Spectrosc. Relat. Phenom., 1995, 71: 249-261.
    [15] N. Ibris, A.M. Salvi, M. Liberatore, F. Decker, A. Surca, XPS study of the Li intercalation process in sol-gel-produced V2O5 thin film: influence of substrate and film synthesis modification [J]. Surf. Interface Anal, 2005, 37: 1092-1104.
    [16] M. Isobe, C. Kagami, Y. Ueda, Crystal growth of new spin-Peierls compound NaV2O5 [J]. J. Crystal Growth, 1997, 181: 314-317.
    [17] Z. V. Popovic, M. J. Konstantinovic, R. Gajic, V. Popov, Y. S. Raptis, A. N. Vasil’ev, M. Isobe, Y. Ueda, Lattice vibrations in spin-Peierls compound NaV2O5 [J]. Solid State Commun., 1999, 110: 381-386.
    [18] J. Livage, Synthesis of polyoxovanadates via“chimie douce”[J]. Coord. Chem. Rev., 1998, 178-180: 999-1018.
    [19] O. Durupthy, N. Steunou, T. Coradin, J. Maquet, C. Bonhomme, J. Livage, Influence of pH and ionic strength on vanadium(V) oxides formation. From V2O5·nH2O gels to crystalline NaV3O8·1.5H2O [J]. J. Mater. Chem., 2005, 15: 1090-1098.
    [20] M. Dubarry, J. Gaubicher, D. Guyomard, O. Durupthy, N. Steunou, J. Livage, N. Dupre′, C. P. Grey, Sol Gel Synthesis of Li1+αV3O8 From Precursors to Xerogel, [J]. Chem. Mater., 2005, 17: 2276-2283.
    [21] M. Inagaki, T. Morishita, M. Hirano, V. Gupta, T. Nakajima, Synthesis of MnV2O6 under autogenous hydrothermal conditions and its anodic performance [J]. Solid State Ionics, 2003, 156: 275-282.
    [1] S. Y. Zhang, W. Y. Li, C.S. Li, J. Chen, Synthesis, characterization, and electrochemical properties of Ag2V4O11 and AgVO3 1-D nano/ microstructures [J]. J. Phys. Chem. B, 2006, 110(49): 24855-24863.
    [2] X. Y. Cao, H. Zhan, J. G. Xie, Y. H. Zhou, Synthesis of Ag2V4O11 as a cathode material for lithium battery via a rheological phase method [J]. Material. Lett., 2006, 60(4): 435-438.
    [3] J.Q.Cao, X.Y.Wang, A. P. Tang, X. Wang, Y.Wang, W.Wu, Sol–gel synthesis and electrochemical properties of CuV2O6 cathode material [J]. J. Alloys Compounds, 2009, 479: 875-878.
    [4] X. Y. Cao, J. G. Xie, H. Zhan, Y. H. Zhou, Synthesis of CuV2O6 as a cathode material for rechargeable lithium batteries from V2O5 gel [J]. Mater. Chem. Phys., 2006, 98(1): 71-75.
    [5] H. Ma, S. Y. Zhang, W. Q. Ji, Z. L. Tao, J. Chen,α-CuV2O6 Nanowires: Hydrothermal Synthesis and Primary Lithium Battery Application [J]. J. Am. Chem. Soc., 2008, 130: 5361-5367.
    [6] Y. J. Wei, C. W. Ryu, G. Chen, K. B. Kim. X-Ray Diffraction and Raman scattering studies of electrochemically cycled CuV2O6 [J]. Electrochemical and Solid-state letters, 2006, 9(11): A487-A489.
    [7] A. V. Prokofiev, R. K. Kremer, W. Assmus, Crystal growth and magnetic properties ofα-CuV2O6 [J]. J. Cryst. Growth, 2001, 231: 498-505.
    [8] M. C. Wu, C. S. Lee, Field emission of vertically aligned V2O5 nanowires on an ITO surfac e prepared with gaseous transport [J]. J. Solid State Chem., 2009, 182: 2285-2289.
    [9] E. J. Baraa, C. I. Cabello, Raman Spectra of Some MIIV2O6 Brannerite-Type Metavanadates [J]. Raman Spectroscopy, 1987, 18: 405-407.
    [10] F. Leroux, Y. Piffard, G. Ouvrard, J. L. Mansot, D. Guyomard, New Amorphous Mixed Transition Metal Oxides and Their Li Derivatives: Synthesis, Characterization, and Electrochemical Behavior [J]. Chem. Mater., 1999, 11: 2948-2959.
    [11] A. Jagminas, J. kuzmarskyte, G. Niaura, Electrochemical formation andcharacterization of copper oxygenous compounds in alumina template from ethanolamine solutions [J]. Applied Surface Science, 2002, 201: 129-137.
    [12] http:// staff.ustc.edu.cn/~mams/escalab/Lect2.pdf
    [13]曲涛,田彦文,翟玉春,采用PITT与EIS技术测定锂离子电池正极材料LiFePO4中锂离子扩散系数[J].中国有色金属学报, 2007, 17(8): 1255-1259.
    [14]刘恩辉,锂离子电池正极材料钒氧基化合物的制备及电化学性能研究[D].长沙:中南大学, 2004.
    [15] J. J. Zhang, P. He, Y. Y. Xia, Electrochemical kinetics study of Li-ion in Cu6Sn5 electrode of lithium batteries by PITT and EIS [J]. J. Electroanal. Chem., 2008, 624(1-2): 161-166.
    [16] N. N. Bramnik, K. Nikolowski, C. Baehtz, K. G. Bramnik, H. Ehrenberg, Phase Transitions Occurring upon Lithium Insertion-Extraction of LiCoPO4 [J]. Chem. Mater., 2007, 19: 908-915.
    [17] M. Morcrette, G. Vaughan, Y. Chabre, J. M. Tarascon, www. biologic. info/Electrochemistry/Application note.
    [18] M. D. Levi, E. Lancry, H. Gizbar, Y. Gofer, E. Levi, D. Aurbach, Phase transitions and diffusion kinetics during Mg2+- and Li+-ion insertions into the Mo6S8 chevrel phase compound studied by PITT [J]. Electrochim. Acta, 2004, 49: 3201-3209.
    [19]黄可龙,杨赛,刘素琴,王海波,磷酸铁锂在饱和硝酸锂溶液中的电极过程动力学[J].物理化学学报, 2007, 23(1): 129-133.
    [20] J. Xie, K. Kohno, T. Matsumura, N. Imanishi, A. Hirano, Y. Takeda, O. Yamamoto, Li-ion diffusion kinetics in LiMn2O4 thin films prepared by pulsed laser deposition [J]. Electrochim. Acta, 2008, 54: 376-381.
    [21] F. Artuso, F. Bonino, F. Decker, A. Lourenco, E. Masetti, Study of lithium diffusion in RF sputtered Nickel-Vanadium mixed oxides thin films [J]. Electrochim. Acta, 2002, 47: 2231-2238.
    [22] Y.J. Wei, K. Nikolowski, S.Y. Zhan, H. Ehrenberg, S. Oswald, G. Chen, C.Z. Wang, H. Chen, Electrochemical kinetics and cycling performance of nano Li[Li0.23Co0.3Mn0.47]O2 cathode material for lithium ion batteries [J]. Electrochem. Commun., 2009, doi:10.1016/j.elecom.2009.08.040.
    [23] J. W. Lee, B. N. Popov, Electrochemical intercalation of lithium into poly- pyrrole/silver vanadium oxide composite used for lithium primary batteries [J]. J. Power Sources, 2006, 161: 565-572.
    [24] K. M. Shaju, G. V. S. Rao, B. V. R. Chowdari, EIS and GITT studies on oxide cathodes, O2-Li(2/3)+x(Co0.15Mn0.85)O2 (x=0 and 1/3), [J]. Electrochim. Acta, 2003, 48: 2691-2703.
    [25] T. Jiang, G. Chen, A. Li, C. Z. Wang, Y. J. Wei, Sol-gel preparation and electrochemical properties of Na3V2(PO4)2F3/C [J]. J. Alloys Compounds, 478: 604-607.
    [26] X. Z. Liao, Z. F. Ma, Q. Gong, Y. S. He, L. Pei, L. J. Zeng, Low-temperature performance of LiFePO4/C cathode in a quaternary carbonate-based electrolyte [J]. Electrochem. Commun., 2008, 10: 691- 694.
    [1] K. Ozawa, Y. Nakao, L. Z. Wang, Z. X. Cheng, H. Fujii, M. Hase, M. Eguchi, Structural modifications caused by electrochemical lithium extraction for two types of layered LiVO2 (R m) [J]. J. Power Sources, 2007, 174: 469-472. ?3
    [2] K. Ozawa, L. Z. Wang, H. Fujii, M. Eguchi, M. Hase, H. Yamaguchi, Preparation and Electrochemical Properties of the Layered Material of LixVyO2 (x = 0.86 and y = 0.8) [J]. J. Electrochem. Soc., 2006, 153(1): A117-A121.
    [3] K. M. Kim,S. H. Lee, S. Kim, Y. G. Lee, Electrochemical properties of mixed cathode consisting ofμm-sized LiCoO2 and nm-sized Li[Co0.1Ni0.15Li0.2Mn0.55]O2 in lithium rechargeable batteries [J]. J. Appl. Electrochem., 2009, 39:1487–1495
    [4] M. S. Bhuvaneswari, S. Selvasekarapandiana, O. Kamishima, J. Kawamura, T. Hattori, Vibrational analysis of lithium nickel vanadate [J]. J. Power Sources, 2005, 139: 279-283.
    [5] E. Baudrin, G. Sudant, D. Larcher, B. Dunn,J. M. Tarascon Preparation of Nanotextured VO2[B] from Vanadium Oxide Aerogels, [J]. Chem. Mater., 2006, 18: 4369-4374.
    [6] M. Holzapfel, C. Haak, A. Ott, Lithium-Ion Conductors of the System LiCo1-xFexO2 Preparation and Structural Investigation [J]. J. solid state chem., 2001, 156: 470-479.
    [7] D. Yin, N. Xu, J. Zhang, X. Zheng, Vanadium dioxide films with good electrical switching property [J]. J. Phys. D: Appl. Phys., 1996, 29: 1051-1057.
    [8] M. Demeter, M. Neumann, W. Reichelt, Mixed-valence vanadium oxides studiedby XPS [J]. Surface Science, 2000, 454-456: 41-44.
    [9] A. VanderVen, G. Ceder, Ordering in Lix(Ni0.5Mn0.5)O2 and its relation to charge capacity and electrochemical behavior in rechargeable lithium batteries [J]. Electrochem. Commun., 2004, 6: 1045-1050.
    [10] M.D. N. Regueiro, E. Chappel, G. Chouteau, C. Delmas, Magnetic structure of S=1/2 triangular Li1-xNi1+xO2 [J]. Physica B, 1999, 259-261: 1003-1004.
    [11] K. Hirakawa, R. Osborn, A. D. Taylor, K. Takeda, Neutron inelastic scattering study of LiNiO2: a candidate for the spin quantum liquid [J]. J. Phys. Soc. Jpn., 1990, 59:3081-3084.
    [12] J. N. Reimers, J. R. Dahn, J. E. Greedan, C. V. Stager, G. Liu, I. Davidson, U. V. Sacken, Spin Glass Behavior in the Frustrated Antiferromagnetic LiNiO2 [J]. J. Solid State Chem., 1993, 102: 542-552.
    [13] A. Bajpai, A. Banerjee, Low-field magnetic study on the LixNi1-xO system [J]. Phys. Rev. B, 1997, 55: 12439-12445.
    [14] C. J. Zhang, J. S. Kim, B. H. Kim, Y. W. Park Phase separation in La1.85?1.5xSr0.15+1.5xCu1?xMnxO4 [J]. Phys. Rev. B, 2004, 70, 024505

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700