用户名: 密码: 验证码:
海洋浪花飞溅区钢铁腐蚀过程和修复技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋浪花飞溅区由于干湿交替频率高、供氧充分、含盐粒子量高、来自太阳的紫外线等因素,是海洋腐蚀环境最苛刻的区带。另外浪溅区防腐也是防腐蚀技术的难题,解决该部位的腐蚀控制问题将会大大延长钢结构设施服役寿命。
     本文通过对海洋用钢浪溅区带锈试样的电化学极化试验和电化学阻抗试验,考察钢铁在浪溅区腐蚀过程,并采用电子扫描电镜、X射线衍射、激光拉曼光谱分析了试样的腐蚀形貌及成分,探讨了其在浪溅区的腐蚀机理。结果表明,浪花飞溅区之所以腐蚀严重,是因为在海洋浪花飞溅区钢铁表面干湿交替,不仅有溶解氧的还原反应,还存在着锈层自身氧化剂的作用。海洋浪花飞溅区锈层内层为Fe3O4和生长于其上的细小片状γ-FeOOH晶体组成,外锈层由鳞片状γ-FeOOH和少量钟乳石状α-FeOOH组成。γ-FeOOH为海洋环境中钢铁腐蚀的特征产物,其作为氧化剂参与了阴极过程加速了钢铁的腐蚀。在湿润的情况下,金属基体发生腐蚀并与γ-FeOOH发生阴极反应,生成Fe3O4。在干燥阶段末期,Fe3O4又被氧化为γ-FeOOH,形成化学氧化—电化学还原自循环过程,Fe3O4和γ-FeOOH起到催化剂作用。
     通过选择缓蚀剂、增稠剂和抗氧剂等,研制了一系列的防锈脂,通过电化学试验和盐雾试验研究了其防锈机理和防锈性能,并确定了各种缓蚀剂和增稠剂等的最佳配方,加工了一种防锈性能优异的防锈脂;选定了缓蚀油脂缠带的基础材料,利用设计的油脂浸胶机,加工了防锈缠带;使用加工的防锈脂和防锈缠带对钢样进行保护,在模拟海洋环境中进行挂片试验后发现施加保护后钢样腐蚀速率比未加保护钢样的腐蚀速率降低了2~4个数量级,说明其具有优异的耐海洋环境腐蚀能力,可以对海洋环境,尤其是浪溅区钢铁结构物进行更长时间的保护。
The splash zone is the most corrosive area in the marine environment due to higher frequency of alternation of wetting and drying, abundant oxygen supply, high amount of oxygen supply, large amount of salt deposition, high irradiation intensity of ultraviolet, etc. The materials exposed in this area would suffer from serious corrosion and it was very difficult to protect the materials exposed in this region. If appropriate protection methods were applied, it would greatly prolong the service lifetime of the whole offshore steel structures exposed in this area.
     In the present dissertation, the corrosion processes and mechanisms of steels in splash zone were studied using polarization curve, electrochemical impedance spectroscopy (EIS). The electrochemical results were obtained from the corroded steel samples exposed in splash zone, while, the corrosion morphologies and corrosion products of the steel samples exposed in splash zone were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman.
     The reason, which the steel samples suffered from serious corrosion in splash zone, was the alternation of wetting and drying. During the drying process, the electrolyte thickness decreased and chloride concentration increased. Oxygen would be much easier to diffuse into the interface of electrolyte/metal, which improved the cathodic reduction processes. Except for this, the rust itself took part in the reduction processes and hence increased the corrosion rate of the steel samples.
     The composition of the inner layer of the rust formed on the steel samples in splash zone were magnetite(Fe3O4), with tiny flaky lepidocrocite(γ-FeOOH) crystal growing on Fe3O4. The composition of the outer rust layer consisted of scaly sliceγ-FeOOH and small amount of stalactitic goethite(α-FeOOH).γ-FeOOH, which is the typical rust of steel in marine envirnment, took part in the cathodic processes as an oxidant and accelerated the corrosion processes of steel. The metal corroded and reacted withγ-FeOOH and Fe3O4 appeared in wet process, while Fe3O4 was oxidized toγ-FeOOH again during dry process. This consisted a self circulation of electrochemical reduction and chemical oxidization, and Fe3O4 andγ-FeOOH acted as catalysts.
     Corrosion inhibitors, thickening agents and antioxidants were chosen and series of anti-corrosion grease were produced in the present dissertation. Their anti-corrosion performances were studied using electrochemical methods and salt spray tests. The optimal formula was obtained and one of the anticorrosion greases with best anti-corrosion property was selected. The basic material of anticorrosion tape was selected, and anti-corrosion tape was prepared with the designed dipping machine. With the protection of the prepared grease and tape, the corrosion rate of steels exposed in marine environment was reduced 2~4 orders of magnitude. That is to say, using the anticorrosion grease with the anticorrosion tape could provide effective long term corrosion protection for the steel structure exposed in splash zone.
引文
[1]侯保荣.海洋腐蚀与防护[M].第一版.北京:科学出版社. 1997, 3-6.
    [2]侯保荣.海洋腐蚀环境理论及其应用[M].第一版.北京:科学出版社. 1999, 1-12.
    [3]侯保荣.腐蚀研究与防护技术[M].第一版.北京:海洋出版社. 1998, 1-6.
    [4] Laque F. L. Marine corrosion: causes and prevention[M]. Corrosion monograph series.United States: John Wiley and Sons, Inc.,New York.1975, 340.
    [5] Corvo F., Perez T., Dzib L.R., et al. Outdoor-indoor corrosion of metals in tropical coastal atmospheres[J]. Corrosion Science, 2008, 50(1): 220-230.
    [6] Syed S. Atmospheric corrosion of hot and cold rolled carbon steel under field exposure in Saudi Arabia[J]. Corrosion Science, 2008, 50(6): 1779-1784.
    [7] Rivero S., Chico B., De la Fuente D., et al. Atmospheric corrosion of low carbon steel in a polar marine environment. Study of the effect of wind regime[J]. Revista De Metalurgia, 2007, 43(5): 370-383.
    [8] Mikhailov A., Strekalov P., Panchenko Y. Atmospheric corrosion of metals in regions of cold and extremely cold climate (a review)[J]. Protection of Metals, 2008, 44(7): 644-659.
    [9] Voevodin N., Jeffcoate C., Simon L., et al. Characterization of pitting corrosion in bare and sol-gel coated aluminum 2024-T3 alloy[J]. Surface and Coatings Technology, 2001, 140(1): 29-34.
    [10] Kamimura T., Nasu S., Segi T., et al. Corrosion behavior of steel under wet and dry cycles containing Cr3+ ion[J]. Corrosion Science, 2003, 45(8): 1863-1879.
    [11] Fajardo G., Valdez P., Pacheco J. Corrosion of steel rebar embedded in natural pozzolan based mortars exposed to chlorides[J]. Construction and Building Materials, 2009, 23(2): 768-774.
    [12] Jeffrey R., Melchers R.E. Corrosion of vertical mild steel strips in seawater[J]. Corrosion Science, 2009, 51(10): 2291-2297.
    [13] J?nsson M., Persson D., Thierry D. Corrosion product formation during NaCl induced atmospheric corrosion of magnesium alloy AZ91D[J]. Corrosion Science, 2007, 49(3): 1540-1558.
    [14] Kuroda T., Takai R., Kobayasb Y., et al. Corrosion rate of shipwreck structural steelsunder the sea. International Conference OCEANS 2008 and MTS/IEEE Kobe Techno-Ocean '08. 2008. Kobe, JAPAN: Ieee.
    [15] Bruun P. North sea offshore structures[J]. Ocean Engineering, 1976, 3(5): 361-368.
    [16] Nunez L., Reguera E., Corvo F., et al. Corrosion of copper in seawater and its aerosols in a tropical island[J]. Corrosion Science, 2005, 47(2): 461-484.
    [17] Brouillette C.V., Hanna A.E. Corrosion survey of steel sheet piling: Defense Technical Information Center, 1960, 12-27, 74.
    [18]柯伟.中国工业与自然环境腐蚀调查的进展[J].腐蚀与防护, 2004, 25(1): 1-8.
    [19] 2009年中国海洋经济统计公报,国家海洋局, 2010.
    [20]李言涛,侯保荣.钢在不同海底沉积物中的腐蚀研究[J].海洋与湖沼, 1997, 28(2): 179-184.
    [21] Watts F.S. Splash zone corrosion of a piled structure in a marine environment evaluated by a statistical method[J]. Anti-Corrosion Methods and Materials, 1974, 21(3): 5-10.
    [22]黄桂桥,郁春娟.金属材料在海洋飞溅区的腐蚀[J].腐蚀研究, 1999, 32(2): 28-30.
    [23] Lye R.E. Splash zone protection on offshore platforms - A Norwegian operator's experience[J]. Materials Performance, 2001, 40(4): 40-45.
    [24]朱相荣,黄桂桥.钢在海洋飞溅带腐蚀行为探讨[J].腐蚀科学与防护技术, 1995, 7(3): 246-248.
    [25]朱相荣,王相润,黄桂桥.钢在海洋飞溅带的腐蚀与防护[J].海洋科学, 1995, (3): 23-26.
    [26] Zhu X.R., Huang G.Q., Ling C.F. Study on the corrosion peak of carbon steel in marine splash zone[J]. Chinese Journal of Oceanology and Limnology, 1997, 15(4): 378-380.
    [27]戴永寿.海洋钢结构物浪溅区和潮差区的腐蚀与防护[J].材料保护, 1981, (2): 2-14.
    [28]侯保荣,张经磊.电连接模拟法十年腐蚀试验研究[J].海洋科学, 1995, (4): 73-78.
    [29]李言涛,侯保荣.胜利油田浅海石油开发区钢铁腐蚀规律[J].海洋科学集刊, 2006, (47): 101-108.
    [30] Meng H., Hu X., Neville A. A systematic erosion-corrosion study of two stainless steels in marine conditions via experimental design[J]. Wear, 2007, 263(1-6): 355-362.
    [31] Anwar Hossain K.M., Easa S.M., Lachemi M. Evaluation of the effect of marine salts on urban built infrastructure[J]. Building and Environment, 2009, 44(4): 713-722.
    [32]朱相荣,黄桂桥.钢在海洋飞溅区的腐蚀行为探讨[J].腐蚀科学与防护技术, 1995, 7: 246-248.
    [33] Rolf E. Lye. Splash zone protection-a norwegian operator's view. Corrosion. 2001. Houston, Tx: Norsk Hydro Research Centre.
    [34]侯保荣,西方笃.钢材在海水—海气交换界面区的腐蚀行为[J].海洋与湖沼, 1995, 26(5): 514-519.
    [35]崔秀岭,马中华,张陆,等.实海飞溅区低合金钢锈层分析(摘要)[J].腐蚀科学与防护技术, 1995, 7(3): 253-254.
    [36]崔秀岭,王相润,马巾华,等.飞溅区15MnMoVN钢锈层的研究[J].钢铁研究学报, 1995, 7(4): 43-49.
    [37]朱相荣.海洋环境中铁锈的研究进展[J].全面腐蚀控制, 1998, 12(2): 4.
    [38]李言涛,李延旭.低合金钢在海洋各腐蚀区带的锈层研究[J].海洋与湖沼, 1998, 29(6): 651-655.
    [39] Ramana K.V.S., Kaliappan S., Ramanathan N., et al. Characterization of rust phases formed on low carbon steel exposed to natural marine environment of Chennai harbour - South India[J]. Materials and Corrosion-Werkstoffe Und Korrosion, 2007, 58(11): 873-880.
    [40] Ishikawa T., Takeuchi K., Kandori K., et al. Transformation ofγ-FeOOH toα-FeOOH in acidic solutions containing metal ions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 266(1-3): 155-159.
    [41] Ma Y.T., Li Y., Wang F.H. The effect ofβ-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment[J]. Materials Chemistry and Physics, 2008, 112(3): 844-852.
    [42] Ishikawa T., Miyamoto S., Kandori K., et al. Influence of anions on the formation ofβ-FeOOH rusts[J]. Corrosion Science, 2005, 47(10): 2510-2520.
    [43] Kamimura T., Nasu S., Segi T., et al. Influence of cations and anions on the formation ofβ-FeOOH[J]. Corrosion Science, 2005, 47(10): 2531-2542.
    [44]欧阳维真.沉于海底的铁器文物腐蚀机理与脱氯技术的基础研究[D].北京:北京化工大学, 2005, 47.
    [45]黄桂桥.合金元素对钢在海水飞溅区腐蚀的影响[J].腐蚀与防护, 2001, 22(12): 511-516.
    [46]黄桂桥.不锈钢在海水飞溅区的腐蚀行为[J].中国腐蚀与防护学报, 2002, 22(4): 211-216.
    [47] Wang X.T., Duan J.Z., Zhang J., et al. Alloy elements' effect on anti-corrosionperformance of low alloy steels in different sea zones[J]. Materials Letters, 2008, 62(8-9): 1291-1293.
    [48] Tinnea R., Ostbo B. Evaluating the corrosion protection of a nuclear submarine drydock[J]. Corrosion, 2008.
    [49] Szokolik A. Splash zone protection: a review of 20 years' experience in bass strait[J]. J. Protect. Coat. Linings, 1989, 6(12): 46-55.
    [50] Tadokoro Y., Nagatani T., Yoshida K., et al. Development of techniques for corrosion protection of steel structures for very long service using titanium, 1992, 17-26.
    [51] Kodama T. Enhanced durability of structural steels in marine environment[J]. NRIM Research Activities (Japan), 1999, 49-51.
    [52] Kain R.M. Evaluating material resistance to marine environments: some favorite experiments in review[A]. Corrosion nacexpo 2006 61st Annual Conference & Exposition[C]. 2006. San Diego, CA; USA: NACE International.
    [53] Szokolik A. Protecting splash zones of offshore platforms[J]. Protective Coatings Europe (USA), 2000, 5(12): 32-38.
    [54]刘毅,徐滨士,魏世丞,等.海洋钢结构防腐蚀技术在浪花飞溅区的应用[A].侯保荣.海洋工程结构浪花飞溅区腐蚀与控制研究[C]. 2009.青岛:科学技术文献出版社.
    [55]夏兰廷,黄桂桥,丁路平.碳钢及低合金钢的海水腐蚀性能[J].铸造设备与研究, 2002, 4: 14-17.
    [56] Hou B.R., Li Y.T., Li Y.X., et al. Effect of alloy elements on the anti-corrosion properties of low alloy steel[J]. Bulletin of Materials Science, 2000, 23(3): 189-192.
    [57] Harris G.M., Lorenz A. New coatings for the corrosion protection of steel pipelines and pilings in severely aggressive environments. International Conference to Mark the 20th Anniversary of the UMIST Corrosion-and-Protection-Centre: Advances in Corrosion and Protection. 1992. Manchester, United Kingdom: Pergamon-Elsevier Science Ltd.
    [58] John R.C., Van Hooff W. Improved corrosion control by coating in the splash zone and subsea[J]. Mater. Perform, 1989, 28(1): 41-43.
    [59] Peters D.T., Michels H.T., Powell C.A. Metallic Coatings for Corrosion Control of Marine Structures[A]. International Workshop on Corrosion Control for Marine Structures and Pipelines; 9-11 Feb. 1999, 189-220. 2000[C]. 2000. Galveston, TX; USA;:American Bureau of Shipping, 1.
    [60] Jones B.L., Sansum A.J. Review of protective coating systems for pipe and structures in splash zones in hostile environments[J]. Corrosion Management, 1996, (14): 9-14.
    [61] Anon. Protecting splash zones of offshore platforms[J]. Journal of Protective Coatings and Linings, 2000, 17(12): 32-38.
    [62] Aghajani A. In situ corrosion protection of oil risers and offshore piles[J]. Materials Performance, 2008, 47(4): 38-42.
    [63] Leng D.L. Zinc mesh cathodic protection systems[J]. Materials Performance, 2000, 39(8): 28-33.
    [64] NACE,海上钢质固定石油生产构筑物腐蚀控制的推荐做法, 2003, 28-29.
    [65]张立新.表面工程应用实例[例13]重腐蚀涂层防护技术在海洋设备及埋地管道上的应用[J].中国表面工程, 2009, 22(6): F0002-F0002.
    [66] Greenwood-Sole G., Watkinson C.J. New Glassflake Coating Technology For Offshore Applications[A]. CORROSION 2004, NACE International[C]. Houston.
    [67]姜秀杰,崔显林,王志超,等.海洋浪溅区钢结构超厚膜环氧涂料[J].上海涂料, 2010, 48(1): 12-14.
    [68]姜秀杰,崔显林,张卫国.海洋浪溅区钢结构的腐蚀防护[A].侯保荣.海洋工程结构浪花飞溅区腐蚀与控制研究[C]. 2009.青岛:科学技术文献出版社.
    [69]姜秀杰,崔显林,王同良,等.有机聚硅氧烷杂化涂料的研究进展[J].现代涂料与涂装, 2009, (10): 31-33,39.
    [70]张静,蒋建明,桂泰江,等.环氧聚硅氧烷重防腐涂料的研究[J].现代涂料与涂装, 2008, 11(12): 15-16,20.
    [71]黄彦良.一种浪花飞溅区钢铁设施腐蚀防护方法.中国专利. 2004-02-25.
    [72] Hou B.R., Zhang J., Duan J.Z., et al. Corrosion of thermally sprayed zinc and aluminium coatings in simulated splash and tidal zone conditions[J]. Corrosion Engineering Science and Technology, 2003, 38(2): 157-160.
    [73]邵怀启,韩文礼,王雪莹,等.海洋飞溅区钢结构的腐蚀规律与防护措施[J].腐蚀与防护, 2008, 29(11): 646-649.
    [74]侯保荣.海洋环境腐蚀规律及控制技术[J].科学与管理, 2004, 24(5): 7-8.
    [75] Suzuki Y., Doi K., Kyuno T., et al. Study of corrosion-protection technologies in splash and tidal zones. 1985. Tokyo, Jpn: Springer-Verlag.
    [76] Powell C., Michels D.H. Review of splash zone corrosion and biofouling of c70600sheathed steel during 20 years exposure[J].
    [77] Copper-Nickel Cladding for Offshore Structure. [cited 2010 4-1]; Available from: http://www.copperinfo.co.uk/alloys/copper-nickel/.
    [78]顾正贤,陈树深.海运码头钢管桩在潮差区和飞溅区的防护技术[J].腐蚀与防护, 2002, 23(3): 119-120,123.
    [79] Smith M., Bowley C., Williams L. In situ protection of splash zones - 30 years on[J]. Materials Performance, 2002, 41(10): 30-33.
    [80] Popov E.A. Modified anticorrosion composition based on gun grease[J]. Journal Chemistry and Technology of Fuels and Oils, 2002, 38(4): 257-259.
    [81] Sharma B.K. Soybean oil based greases: Influence of composition on thermo-oxidative and tribochemical behavior[J]. Journal of Agriculture and Food Chemistry, 2005, 53(8): 2961~2968.
    [82] Adhvaryu A. Preparation of soybean oil-based greases: Effect of composition and structure on physical properties[J]. Journal of Agriculture and Food Chemistry, 2004, 52(21): 6456~6459.
    [83]张康夫,余大南.防锈油脂与乳化切削油[M].国防工业出版社.1983, 1-370.
    [84]陈红星,祁庆琚,应白桦.防锈油的研究开发与应用[J].表面技术, 2005, (2): 74-77.
    [85]谭胜,付洪瑞.防锈油发展现状[J].河北化工, 2003, (5): 16-19.
    [86]武玉玲.防锈油脂发展现状[J].石油商技, 2001, 19(6): 1-5.
    [87]柴维智.防锈油脂的性能和应用[J].山西机械, 2001,增刊: 155-158.
    [88]储慧莉,黄远礼.新型油溶性缓蚀剂gac—968在常压蒸馏塔上的工业应用试验[J].石油化工腐蚀与防护, 1997, 14(4): 37-40.
    [89]陈学兵,刘洪锦.“Bl—928”油溶性缓蚀剂在长岭一套常减压装置的应用试验[J].石油化工腐蚀与防护, 1998, 15(2): 29-32.
    [90]叶仁爱,许慧佩.防锈油脂[M].北京:中国石化出版社.1993, 232.
    [91] Licata F.J. Aluminum stearate greases[J]. Industrial and Enginering Chemitry, 1938, 30(5): 550-553.
    [92] Sharma B.K. Biobased grease with improved oxidation performance for industrial application[J]. Journal of Agriculture and Food Chemistry, 2006, 54(20): 7594~7599.
    [93]赵庆和,方平权.长效防腐润滑脂及制造方法. 1988 1988-02-03.
    [94]吴荫顺,郑家燊.电化学保护和缓蚀剂应用技术[M].化学工业出版社.2006.
    [95] E.S.Bnatov. Influence of climatic condition on functional properties of lubricants[J].Chemistry and Technology of Fuels and Oils, 1996,, 32(6): 300-303.
    [96]黄桂芳,吴翠兰.防锈油防护性能的影响因素及油膜下金属腐蚀特征[J].中国腐蚀与防护学报, 1999, 19(3): 179-184.
    [97] Zhong Q. A novel electrochemical testing method and its use in the investigation of the self-repairing ability of temporarily protective oil coating[J]. Corrosion Science, 2002, 44: 1247-1256.
    [98]陈有业,姚素薇.用扩展循环伏安法测试防锈油性能[J].材料保护, 2001, (12): 16-18.
    [99] Nishikata A., Yamashita Y., Katayama H., et al. An electrochemical impedance study on atmospheric corrosion of steels in a cyclic wet-dry condition[J]. Corrosion Science, 1995, 37(12): 2059-2069.
    [100] Vera R., Rosales B.M., Tapia C. Effect of the exposure angle in the corrosion rate of plain carbon steel in a marine atmosphere[J]. Corrosion Science, 2003, 45(2): 321-337.
    [101] Antony H., Peulon S., Legrand L., et al. Electrochemical synthesis of lepidocrocite thin films on gold substrate--EQCM, IRRAS, SEM and XRD study[J]. Electrochimica Acta, 2004, 50(4): 1015-1021.
    [102] Xiao K., Dong C.F., Li X.G., et al. Corrosion Products and Formation Mechanism During Initial Stage of Atmospheric Corrosion of Carbon Steel[J]. Journal of Iron and Steel Research International, 2008, 15(5): 42-48.
    [103] Almeida E., Pereira D., Figueiredo M.O., et al. The influence of the interfacial conditions on rust conversion by phosphoric acid[J]. Corrosion Science, 1997, 39(9): 1561-1570.
    [104] Car S., Nguyen Q.T., L'Hostis V., et al. Mechanical properties of the rust layer induced by impressed current method in reinforced mortar[J]. Cement and Concrete Research, 2008, 38(8-9): 1079-1091.
    [105] Cindra Fonseca M.P., Bastos I.N., Caytuero A., et al. Rust formed on cannons of XVIII century under two environment conditions[J]. Corrosion Science, 2007, 49(4): 1949-1962.
    [106] Li Q.X., Wang Z.Y., Han W., et al. Characterization of the rust formed on weathering steel exposed to Qinghai salt lake atmosphere[J]. Corrosion Science, 2008, 50(2): 365-371.
    [107] Panda B., Balasubramaniam R., Dwivedi G. On the corrosion behaviour of novel highcarbon rail steels in simulated cyclic wet-dry salt fog conditions[J]. Corrosion Science, 2008, 50(6): 1684-1692.
    [108] Peulon S., Legrand L., Antony H., et al. Electrochemical deposition of thin films of green rusts 1 and 2 on inert gold substrate[J]. Electrochemistry Communications, 2003, 5(3): 208-213.
    [109] Purkayastha R.P., Pal A.K. SEM studies on a mangrove rust of Sundarbans, Eastern India[J]. Mycological Research, 1998, 102(6): 692-694.
    [110] Rodríguez J.J.S., Hernández F.J.S., González J.E.G. XRD and SEM studies of the layer of corrosion products for carbon steel in various different environments in the province of Las Palmas (The Canary Islands, Spain)[J]. Corrosion Science, 2002, 44(11): 2425-2438.
    [111] Wallinder I.O., He W., Augustsson P.E., et al. Characterization of black rust staining of unpassivated 55% Al-Zn alloy coatings. Effect of temperature, pH and wet storage[J]. Corrosion Science, 1999, 41(12): 2229-2249.
    [112] Wang S.t., Yang S.w., Gao K.w., et al. Corrosion behavior and corrosion products of a low-alloy weathering steel in Qingdao and Wanning[J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(1): 58-64.
    [113] Balasubramaniam R., Ramesh Kumar A.V. Characterization of Delhi iron pillar rust by X-ray diffraction, Fourier transform infrared spectroscopy and M?sbauer spectroscopy[J]. Corrosion Science, 2000, 42(12): 2085-2101.
    [114] Génin J.-M.R., Ruby C. Anion and cation distributions in Fe(II-III) hydroxysalt green rusts from XRD and M?sbauer analysis (carbonate, chloride, sulphate, ...); the "fougerite" mineral[J]. Solid State Sciences, 2004, 6(7): 705-718.
    [115] Génin J.-M.R., Ruby C., Géhin A., et al. Synthesis of green rusts by oxidation of Fe(OH)2, their products of oxidation and reduction of ferric oxyhydroxides; Eh-pH Pourbaix diagrams[J]. Comptes Rendus Geosciences, 2006, 338(6-7): 433-446.
    [116] Ishikawa T., Kumagai M., Yasukawa A., et al. Influences of metal ions on the formation ofγ-FeOOH and magnetite rusts[J]. Corrosion Science, 2002, 44(5): 1073-1086.
    [117] Kwon S.K., Kimijima K.i., Kanie K., et al. Influence of silicate ions on the formation of goethite from green rust in aqueous solution[J]. Corrosion Science, 2007, 49(7): 2946-2961.
    [118] Refait P., Drissi S.H., Pytkiewicz J., et al. The anionic species competition in ironaqueous corrosion: Role of various green rust compounds[J]. Corrosion Science, 1997, 39(9): 1699-1710.
    [119] Srinivasan R., Lin R., Spicer R.L., et al. Structural features in the formation of the green rust intermediate andγ-FeOOH[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 113(1-2): 97-105.
    [120] Gilberg Mark R., Seeley Nigel J. The identity of compounds containing chloride ions in marine iron corrosion products: a critical review[J]. Studies in conservation, 1981, 26: 50-56.
    [121] Hou B.R., Xiang B. Study on corrosion simulation device for marine structural steel[J]. Bull. Mater. Sci., 2003, 26(3): 307–310.
    [122]侯保荣,李言涛,黄彦良,等.模拟海洋环境腐蚀试验装置.中国, CN2421640, 2000-05-18.
    [123] Ma Y., Li Y., Wang F. Corrosion of low carbon steel in atmospheric environments of different chloride content[J]. Corrosion Science, 2009, 51(5): 997-1006.
    [124] Ma Y.T., Li Y., Wang F.H. Corrosion of low carbon steel in atmospheric environments of different chloride content[J]. Corrosion Science, 2009, 51(5): 997-1006.
    [125] Legrand L., Sagon G., Lecomte S., et al. A Raman and infrared study of a new carbonate green rust obtained by electrochemical way[J]. Corrosion Science, 2001, 43(9): 1739-1749.
    [126] Dubois F., Mendibide C., Pagnier T., et al. Raman mapping of corrosion products formed onto spring steels during salt spray experiments. A correlation between the scale composition and the corrosion resistance[J]. Corrosion Science, 2008, 50(12): 3401-3409.
    [127] Bourdoiseau J.A., Jeannin M., Sabot R., et al. Characterisation of mackinawite by Raman spectroscopy: Effects of crystallisation, drying and oxidation[J]. Corrosion Science, 2008, 50(11): 3247-3255.
    [128] Pineau S., Sabot R., Quillet L., et al. Formation of the Fe(II-III) hydroxysulphate green rust during marine corrosion of steel associated to molecular detection of dissimilatory sulphite-reductase[J]. Corrosion Science, 2008, 50(4): 1099-1111.
    [129] Yamashita M., Miyuki H., Matsuda Y., et al. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century[J]. Corrosion Science, 1994, 36(2): 283-299.
    [130] Dünnwald J., Otto A. An investigation of phase transitions in rust layers using raman spectroscopy[J]. Corrosion Science, 1989, 29(9): 1167-1176.
    [131] Pérez F.R., Barrero C.A., García K.E. Factors affecting the amount of corroded iron converted into adherent rust in steels submitted to immersion tests[J]. Corrosion Science, In Press, Accepted Manuscript.
    [132] Trolard F., Génin J.M.R., Abdelmoula M., et al. Identification of a green rust mineral in a reductomorphic soil by Mossbauer and Raman spectroscopies[J]. Geochimica et Cosmochimica Acta, 1997, 61(5): 1107-1111.
    [133] Pan J., Leygraf C., tersson R.F.A.J.-P., et al. Characterization of high-temperature oxide films on stainless steels by electrochemical-impedance spectroscopy[J]. Oxidation of Metals, 1998, 50: 431-455.
    [134] Mora-Mendoza J.L., Turgoose S. Fe3C influence on the corrosion rate of mild steel in aqueous CO2 systems under turbulent flow conditions[J]. Corrosion Science, 2002, 44(6): 1223-1246.
    [135] Tamura H. The role of rusts in corrosion and corrosion protection of iron and steel[J]. Corrosion Science, 2008, 50(7): 1872-1883.
    [136] Evans U.R., Taylor C.A.J. Mechanism of atmospheric rusting[J]. Corrosion Science, 1972, 12(3): 227-246.
    [137] Evans U.R. Mechanism of rusting[J]. Corrosion Science, 1969, 9(11): 813-821.
    [138]贾兴文,钱觉时.磁选粉煤灰砂浆的导电性研究[J].功能材料, 2010, 41(3): 508-511.
    [139]董杰,董俊华,韩恩厚,等.低碳钢带锈电极的腐蚀行为[J].腐蚀科学与防护技术, 2006, 18(6): 414-417.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700