用户名: 密码: 验证码:
机械镀锌无结晶形层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机械镀锌层的形成过程,金属锌粉仅发生固—固变化,没有明显的结晶现象。传统的镀层形成结晶理论难以解释机械镀锌的形成过程,而国外的“冷焊”(cold welding)理论也不能从根本上解释机械镀锌层的形成过程。尤其是近几年来,随着欧盟在电子电器领域RoHS指令的执行,机械镀工艺在表面处理领域发展迅速,但因其形层机理发展缓慢,大大制约了机械镀工艺的发展及应用。本文以目前国内普遍应用的机械镀锌少锡盐沉积工艺为研究对象,制备了机械镀锌层、锌—铝层、锌——RE层、锌—镍层试样;以机械镀锌镀液环境、镀层结构及结合界面、镀层物理化学性能为主要研究内容;采用ICP-AES、XRD、体视显微镜等分析了镀层形成时锌粉的吸附、沉积过程,采用OM、SEM、EDS、XRD、XPS等分析了镀层的组织结构及镀层—基体界面间的结合机理,通过孔隙率实验、致密度计算、拉力实验、中性盐雾试验、电化学极化等方法分析了镀层的物化特征;结果表明:
     机械镀锌层形成过程不发生电沉积结晶和高温液态金属结晶,镀层是由锌粉颗粒、锡、金属M(如Mn、Fe、Cd等)、空隙构成的多相混合体系,镀层的结合强度为2-3MPa,镀层的结合机制主要为机械咬合。基层建立阶段所添加Sn2+参与的Zn+Sn2+→Zn2+Sn↓反应和镀层增厚时所添加Fe2+参与的Zn+Fe2+→Zn2+Fe↓反应是机械镀锌形层过程的主要反应;形层过程需要的能量较低,为电镀锌形层能耗的1/10-1/20,热浸镀锌形层能耗的1/2-1/5。锌粉形成镀层的致密化过程主要包括锌粉颗粒和空隙的位移及变形。致密化过程锌粉颗粒发生了位移、转动、变形,导致空隙发生位移、体积压缩、小尺寸锌粉颗粒在空隙的填充,致使镀层致密度提高,锌粉形层过程不产生固溶体或化合物,机械镀锌层的形成是有置换沉积存在下的无结晶过程。
     锡盐和铁盐可分别在基层建立阶段和镀层增厚阶段作为先导金属,它们的作用机制分别是置换反应Zn+Sn2+→Zn2+Sn↓和Zn+Fe2+→Zn2+Fe↓。镀层形成后,先导金属残留在镀层中,或分布在空隙中,或分布在锌粉颗粒的接触界面部位。
     机械镀锌基复合镀层的结构与机械镀锌层相似,复合镀层形成过程没有因结晶而产生固溶体、化合物等相,但锌—镍复合镀层中存在Ni3Sn4合金相。采用片状锌粉制备的机械镀锌层中锌粉颗粒呈片状层叠排列,镀层由片状锌粉、空隙和夹杂构成,形层过程锌粉颗粒没有发现明显塑性变形,也没有产生化合物或固溶体等新相。
     机械镀锌形层过程产生的锡和铁不影响镀层内锌粉颗粒之间的结合。机械镀锌过程添加非锌微粉、稀土等不影响镀层/基体间、镀层内锌粉颗粒间的结合机制。镀后加热至100℃-300℃不改变镀层/基体间、镀层内锌粉颗粒间的结合机制。强化0 min—60 min不改变镀层/基体间、镀层内锌粉颗粒间的结合机制,延长强化时间时镀层/基体界面及镀层内不会发生扩散、冶金反应等合金化现象。镀层的拉伸破坏发生在镀层/基体界面,镀层越厚,结合强度越低,镀层厚度由20μm增加至60μm时,镀层结合强度由2.68 MPa降至2.31 MPa。
     机械镀锌层的密度约为5.67g/cm3,厚度对镀层的致密度影响不明显。锌粉粒径越小,镀层的致密度越高,当锌粉粒径为-800目、-1000目和-1200目时,镀层的致密度分别为34.73%、60.08%和77.85%。强化时间越长,镀层的致密度越高,当强化时间由0 min延长至60min时,镀层的致密度由76%提高到94.5%。分别采用球状和片状锌粉制备的镀层中均不存在连通空隙。添加非锌微粉或其它金属盐制备锌基复合镀层(锌—铝、锌—镍、锌—RE等)对镀层的孔隙率没有影响。
     机械镀锌层对钢基体可提供牺牲阳极保护,在35g/L的NaCl溶液中呈活性溶解特征,当镀层厚度达到60 gm时可耐中性盐雾腐蚀600小时。强化时间长短(0 min至60min)和镀后干燥加热温度高低(100℃至300℃)对镀层的耐腐蚀性能没有影响。片状锌粉制备的镀层与球状锌粉制备的镀层相比自腐蚀电位正移2.9 mV,腐蚀电流密度前者不到后者的1/3,前者的耐电化学腐蚀性能优于后者。铝、镍、RE的添加均提高了镀层的耐盐雾腐蚀性能,使镀层的自腐蚀电位正移,极化电阻增大,腐蚀电流密度减小,提高了镀层的耐腐蚀性能。
In the formation process of zinc coating by mechanical plating, zinc powder remains solid state without obvious crystallization. It is difficult to explain zinc coating's formation either by traditional crystallization theory, or by foreign cold welding theory fundamentally. Especially in recent years, with the implement of ROHS order in European electronics industry, mechanical plating has undergone rapid development in surface technology field. However, the imperfect mechanism of coating formation has greatly restricted the growth and application of mechanical plating. Based on the technology of mechanical plating with little tin salt, which is widely used in China, the subject prepared samples of zinc coating, zinc-aluminum coating, zinc-RE coating, zinc-nickel coating by mechanical plating, did research on the bath environment, coating's structure, bonding interface and coating's physical and chemical properties. The thesis analyzed the adsorption and deposition of zinc powder in the formation process through testing methods like ICP-AES, XRD, and stereomicroscope, and studied the microstructure of zinc coating and the interface between the coating and steel substrate by OM, SEM, EDS, XRD and XPS. The physical and chemical properties of zinc coating were tested and analyzed by ferroxyl test, density calculation, tensile test, neutral salt spraying test(NSS), and electrochemical polarization. The results show that:
     In zinc coating's formation process, there is no electrocrystallization or liquid metal's crystallization under high temperature. Zinc coating is a multiphase composite, composed by zinc particles, tin, M metal(such as Mn, Fe, Cd) and interstices. Mechanical interlocking is the main adhesion mechanism of zinc coating, whose adhesion strength is 2-3 MPa. The reactions Zn+Sn2+→Zn2++Sn↓and Zn+Fe2+→Zn2++Fe↓are two main ones in zinc coating's formation. The former happens in seed coating building process, and the latter coating thickness increasing process. The energy consumption of zinc coating's formation in mechanical plating accounts for 1/10~1/20 of that in electroplating and 1/2~1/5 in hot-dip galvanizing. The densification process of zinc coating by mechanical plating mainly includes displacement and deformation of zinc particles and interstices. Displacement, rotation and deformation take place in densification process, which leads to the displacement of interstices, compact of volume, filling in interstices by small-sized zinc particles and the improvement of zinc coating's density. Without solid solutions or compounds, zinc coating's formation is a noncrystallization process under the existence of replacement deposition.
     Sn2+and Fe2+respectively play the role of "driving metal" in seed coating building process and coating thickness increasing process. The mechanisms of their actions reflect in the two displacement reactions Zn+Sn2+→Zn2++Sn↓and Zn+Fe2+→Zn2++Fe↓After the formation of zinc coating, the "driving metal" remains in interstices, or on the contact interface of zinc particles.
     In mechanical plating, the structures of zinc-based composite coatings are similar with that of zinc coating. There are no formation of new phases like solid solution and compounds caused by crystallization. But the alloy phase Ni3Sn4 exists in Zn-Ni composite coating. Zinc particles array in zinc coating, which is composed by lamellar zinc powder, interstices and inclusions. There is neither obvious plastic deformation of zinc particles found in coating formation process, nor new phases like solid solution or compounds.
     Sn and iron have on effects on the adhesion of zinc particles. The adhesion mechanism of zinc coating/steel substrates, and zinc particles cannot be influenced by the additions of non-zinc powder or RE. Moreover, neither the heating temperature 100℃-300℃nor the strengthening time 0 min—60 min can change the adhesion mechanism. There are no alloying phenomena like diffusion or metallurgy reaction in zinc coating and on the interface between zinc coating and the substrate caused by the extension of strengthening time. The tensile failure happens on the interface between zinc coating and the substrate. With the improvement of zinc coating's thickness, the adhesion strength reduces gradually. When the coating's thickness increases from 20μm to 60μm, the adhesion strength reduces from 2.68 MPa to 2.31 MPa.
     The density of zinc coating by mechanical plating is about 5.67 g/cm3. Its thickness has no obvious effect on the density. The decrease of zinc particle's diameter can cause the improvement of the coating's density. With the diameters of 800 mesh、1000 mesh and 1200 mesh, zinc coating's relative densities are 34.73%、60.08% and 77.85%. The extension of strengthening time improves the coating's density. When the strengthening time extends from 0 min to 60 min, the coating's relative density improves from 76% to 94.5%. No connected interspaces exist in coatings which are prepared with spherical and lamellar zinc powder. The additions of non-zinc powder or other metal salt to prepare zinc-based composite coatings(such as Zn-Al、Zn-Ni and Zn-RE) have no influence on the coating's porosity.
     Acting as the sacrificial anode that protects steel substrate, zinc coating by mechanical plating shows active dissolution property in NaCl solution with the concentration of 35 g/L. It can endure 600 hours in neutral spray corrosion test. The strengthening time(0 min—60 min) and heating temperature(100℃-300℃) have no effects on the coating's corrosion resistance performance. The electrochemical corrosion resistance of zinc coating prepared with lamellar zinc powder is slightly superior to that with spherical zinc powder. Compared with the latter, the former's free corrosion potential moves 2.9 mV to positive direction, and its corrosion current density is less than 1/3 of the latter. The additions of Al、Ni and RE can respectively improve the coating's salt spray corrosion resistance by making its free corrosion potential move to positive direction, increase the polarization resistance and reduce the corrosion current density.
引文
[1]Panossian Z, Mariaca L, Morcillo M, et al. Steel cathodic protection afforded by zinc, aluminium and zinc/aluminium alloy coatings in the atmosphere[J]. Surface & Coatings Technology,2005,190 (2-3):244-248.
    [2]林玉珍,杨德钧.腐蚀和腐蚀控制原理[M].北京:中国石化出版社,2007.
    [3]柯伟.中国腐蚀调查报告[M].北京:化学工业出版社,2003.
    [4]Cambel J W. ASM Handbook, Corrosion, vol.13, ASM, New York,1999.
    [5]Zhang X G. Corrosion and Electrochemistry of Zinc[M]. New York:Plenum Press, 1996.
    [6]Alkimov A P, Kosarev V F, Papyrin A N. A method of cold gas dynamic deposition [J]. Dokl. Akad. Nauk SSSR,1990,315 (5):1062-1065.
    [7]Anatolii Papyrin, Vladimir Kosarev, Sergey Klinkov, et al. Cold spray technology[M]. Amsterdam:Elsevier,2007
    [8]McCune R C, Donlon W T, Popoola O O, et, al.Characterization of copper layers produced by cold gas-dynamic spraying [J]. Journal of Thermal Spray Technology,2000, 9(1):73-82.
    [9]Gilmore D L, Dykhuizen R C, Neiser R A, et al. Particle velocity and deposition efficiency in the cold spray process [J]. Journal of Thermal Spray Technology,1999, 8(4):576-582.
    [10]李文亚,李长久.冷喷涂特性[J].中国表面工程,2002,54(1):12-16.
    [11]Dykhuizen R C, Smith M F, Gilmore D L, et al. Impact of high velocity cold spray particles [J].Journal of Thermal Spray Technology,1999,8(4):559-564.
    [12]丁丽,王晓放,孙涛,等.冷喷涂材料改性技术中粒子与基板结合过程的研究[J]。机械工程材料,2004,28(10):26-28.
    [13]Van Steenkiste T H, Smith J R, Teets R E. Aluminum coatings via kinetic spray with relatively large powder particles[J]. Surface and Coatings Technology,2002,154 (2-3): 237-252.
    [14]Van Steenkiste T H, Smith J R, Teets R E, et al. Kinetic spray coatings[J]. Surface and Coatings Technology,1999,111 (1):62-71.
    [15]Hamid Assadi, Frank Gartner, Thorsten Stoltenhoff, Heinrich Kreye. Bonding mechanism in cold gas spraying[J]. Acta Materialia,2003,51 (15):4379-4394.
    [16]李文亚,李长久,王豫跃,等.冷喷涂Cu粒子参量对其碰撞变形行为的影响[J].金属学报,2005,43(3):282-286.
    [17]Gartner F, Borchers C, Stoltenhoff T, et al. Numerical and microstructural investigations of the bonding mechanisms in cold spraying[C]. ITSC 2003:International Thermal Spray Conference 2003:Advancing the Science and Applying the Technology, Orlando FL,2003,3:1-8.
    [18]王佳杰,魏尊杰,霍树斌,等.超音速冷气动力喷涂Cu涂层的结合机理[J].焊接,2005(9):36-39.
    [19]Morgan R, Fox P, Pattison J, et al. Analysis of cold gas dynamically sprayed aluminium deposits[J]. Materials Letters,2004,58 (7-8):1317-1320.
    [20]Ajdelsztajn L, Zuniga A, Jodoin B, et al. Cold gas dynamic spraying of a high temperature Al alloy[J]. Surface & Coatings Technology,2006,201 (6):2109-2116.
    [21]Shukla V, Elliott G S, Kear B H. Nanopowder deposition by supersonic rectangular Jet impingement [J]. Journal of Thermal Spray Technology,2000,9(3):394-398.
    [22]Vourlias G, Pistofidis N, Chaliampalias D, et al. A Comparative Study of the Structure and the Corrosion Behavior of Zinc Coatings Deposited with Various Methods [J]. Surface & Coatings Technology,2006,200 (23):6594-6600.
    [23]孙勇,张署红,张代明,等.PPR法制备金属复合带材的组织结构分析[J].理化检验—物理分册,1997,11(33):8-8.
    [24]ZHANG Dai-ming, SUN Yong, et al. A Experiment of the New Technology of Metallic Composite Sheets. Proceedings of Asia-Pasifie Conference on Strength of Materials and Structures. BeiJing,1996.
    [25]张曙红,张代明,李世芸,等.双金属复合带材轧制压力的理论分析[J].昆明理工大学学报,2001,26(5):1-3.
    [26]张代明,张曙红,李世芸.PPR法制备表面复合金属板带轧制基本参数研究[J].轧钢,2002,19(2):12-14.
    [27]Sun Yong, Shi Qingnan, Zhang Shuhong, et al. The Microstructure of Composite Bands Formed by Powder Plating and Rolling(PPR)[J]. Journal of Materials Processing Technology,1997,63 (1-3):438-441.
    [28]刘清梅,吴振卿,关少康.双金属复合界面结合性能的研究[J].铸造工程·造型材料,2002,26(3):13-15.
    [29]于兴文,曹楚南.达克罗技术研究进展[J].腐蚀与防护,2001,22(1):1-4.
    [30]段述苍,余大兵,张立武,等.达克罗表面处理技术的应用[J].航天制造技术,2006(6):10-14.
    [31]张伟明.交美特——取代达克罗的表面处理新技术[J].材料保护,2003,36(4):15-16.
    [32]何明奕,刘丽,宋云芳,等.铝基金属微粉涂层[J].金属热处理,2003,28(8):13-16.
    [33]宋云芳,赵晓军,王胜民.铝基金属微粉涂层工艺初探[J].腐蚀与防,2003,24(7):290-292.
    [34]肖鑫,龙有前,郭贤烙,等.锌铬膜涂层技术研究[J].湖南工程学院学报,2002,12(2):65-67.
    [35]文光南,刘希柏.锌基涂层的电化学行为和防腐机理[J].材料保护,1998,31(12):8-10.
    [36]Clayton B T. Metal plating[P]. US:2689808,1954,9,21.
    [37]Yoshinobu Yashima, Chen zhen ha, Yahong Wang. Method of forming a metallic coating layer utilizing media having high energy[P]. US,5529237,1996,6,25
    [38]David S. Lashmore, Moshe P. Dariel, Christian E. Johnson, et al. Acid assisted cold welding and intermetallic formation[P]. US,6001289,1999,12,14
    [39]齐宝森,徐英,李木森,等.高能球磨法机械镀锌的试验研究[J].金属热处理,2002,27(8): 22-24.
    [40]Narusch M J. Dry Impact Plating Technology[J]. Metal Finishing,1990,88(7):15-18.
    [41]Omori S, Kieffer J M. Cold dry plating process for forming a polycrystalline structure film of Zinc-Iron by mechanical projection of a composite material[P]. US,6015586, 2000,1,18.
    [42]Omori S, Watanabe M, Oboshi F. Blast material for mechanical plating and continuous mechanical plating[P]. US:4714622,1987,12,22.
    [43]Watanabe M, Nagano Y, Shimoyama H, Osaka T. Method of making ejection powder for mechanical plating[P]. US:5547488,1996,8,20.
    [44]Nagasaki Takeaki; Shigetoshi Masashi. Shot material for mechanical plating,and high corrosion resision resistant coating using same[P]. JP:2006328434 (A),2006,12,07.
    [45]Coch L G., Satow A. Process for plating adherent co-deposit of aluminum, zinc, and tin onto metallic substrates, and apparatus[P]. US:4880132,1989,11,14.
    [46]Gordon M Allison. Mechanical Plating [J]. Metal Finishing Guidebook,2001, 99(1A):399-408.
    [47]LI Yun-tao, DU Ze-yu,TAO Yong-yin. Interfacial bonding state on different metals Ag, Ni in cold pressure welding[J]. Trans. Nonferrous Met.Soc.China,2003, 13(2):276-279.
    [49]Li Yuntao, Du Zeyu, Ma Chengyong. Interfacial energy and match of cold pressure welded Ag-Ni and Al-Cu[J]. Trans. Nonferrous Met.Soc. China.2002,12(5):814-817.
    [50]王胜民,刘丽,何明奕,等.机械镀锌过程中先导金属的研究[J].表面技术,2003,32(4):37-39,43.
    [51]王胜民,刘丽,赵晓军,等.机械镀锌工艺的清洁生产[J].环境污染治理技术与设备.2003,4(11):83-85.
    [52]Satow Arnold. Mechanical Plating. ASM HANDBOOK(?), Volume 5,Surface Engineering.1994.
    [53]Rochester T H. Process of mechanical plating[P]. US:5762942,1998,1,9.
    [54]刘丽,何明奕.机械镀锌快速活化工艺[J].金属热处理,2000,25(6):21-23.
    [55]何明奕,王胜民,刘丽.无结晶金属微粉形成镀层—机械镀[J].金属热处理,2006,31(2):16-19.
    [56]Marjorie H S, Kim B G. Composition and process for mechanical plating of nickel-containing coatings on metal substrates[P]. US:5587006,1996,12,24.
    [57]Bartlett I, Long E, Rowan A, et al. Mechanical plating of zinc alloys[P]. US:2002/0182337(A1),2002,12,5
    [58]Thomas H. Rochester. Mechanical plating process[P]. US:2004/0043143(A1),2004,3, 4
    [59]Ostapenko G, Khramova Y. On Mechanism of Mechanical Zinc Plating on Steel[C]. 207th meeting of the electrochemical society. Quebec, Canada,2005,5
    [60]任君合,王蕾蕾,刘兵,等.机械镀锌—镍合金工艺的研究[J].电镀与涂饰,2005,25(5):28-29.
    [61]于萍,主沉浮,魏云鹤,等.复合机械镀Al-Zn工艺及镀层耐蚀性能研究[J].电镀与环保,1998,4(18):23-26.
    [62]王胜民,何明奕,章全奎.机械镀锌—铝复合镀层的结构分析[J].电镀与涂饰,2005,24(11):5-7.
    [63]王胜民,何明奕,刘丽,等.机械镀锌沉积机理的研究[J].材料科学与工艺,2007,16(4):535-538.
    [64]朱侣尔.机械镀锌机理探讨[J].四川兵工学报,1997,18(3):36-38.
    [65]胡如南,官世杰,咸才军.机械镀锌层的性能及机理探讨[J].电镀与精饰,1996,18(1):12-15,20.
    [66]邓曦明,罗阳.机械镀主机设备的设计研究[J].有色设备,2007, (1):20-22.
    [67]何明奕,王胜民,赵晓军,等.一种箱体内表面机械镀的专用设备[P].CN:200520100055.6,2005,12,23.
    [68]汪瑾,许煜汾.超细粉体在液相中分散稳定性的研究[J].合肥工业大学学报,2002,25(1):123-126.
    [69]白新德.材料腐蚀与控制[M].北京:清华大学出版社,2005.
    [70]Sohn H Y, Wadsworth M E.郑蒂基译.提取冶金速率过程[M].北京:冶金工业出版社,1984.
    [71]Golben M. Process of plating metal objects[P]. US:3400012,1983,1,14.
    [72]傅崇说.有色冶金原理[M].北京:冶金工业出版社,2004.
    [73]Karavasteva M. The effect of certain surfactants on the cementation of cadmium by suspended zinc particles[J]. Hydrometallurgy,1997,47(1):91-98.
    [74]Karavasteva M. The effect of certain surfactants on the cementation of copper by suspended zinc particles[J]. Hydrometallurgy,1996,43(1-3):379-385.
    [75]Zelikman A, Voldman G, Beliaevskaia L. Theroy of Metallurgical Processes[M]. Moscow:Metallurgia Press,1983.
    [76]Clayton E T. Mechanical plating process[P]. US:4202915,1980,3,13.
    [77]Erismann D W. Process for mechanically depositing heavy metallic coatings[P]. US: 4389431,1983,6,21.
    [78]Coch L G, Satow A. Process for plating adherent co-deposit of aluminum, zinc, and tin onto metallic substrates, and apparatus[P]. US:4880132,1989,11,14.
    [79]何明奕,刘丽,王胜民,等.机械镀原理及应用[M].北京:机械工业出版社,2003.
    [80]张忠诚.水溶液沉积技术[M].北京:化学工业出版社,2005.
    [81]覃齐贤.电镀原理及应用[M].天津:天津科学技术出版社,1993.
    [82]丁立津.电沉积的基本原理[J].上海电镀,1989,2:19-22.
    [83]卢锦堂,许乔瑜,孔纲.热浸镀技术及应用[M].北京:机械工业出版社,2006.
    [84]Marder A R. The metallurgy of zinc-coated steel[J]. Progress in Materials Science,2000, 45(3):191-271.
    [85]Pistofidis N, Vourlias G, Konidaris S, et al. Microstructure of zinc hot-dip galvanized coatings used for corrosion protection [J]. Materials Letters,2006,60(6):786-789.
    [86]David J. Penney, James H. Sullivan, David A. Worsley. Investigation into the effects of metallic coating thickness on the corrosion properties of Zn-Al alloy galvanizing coatings[J]. Corrosion Science,2007,49(4):1321-1339.
    [87]Tselesh A S, Lee H K, Koo S B, Vorobyova T N. Deposition of protective tin coatings on zinc by cementation from citrate solution[J]. Transactions of the institute of metal finishing,2006,84 (4):211-217.
    [88]王胜民,何明奕,刘丽,等.机械镀锌镀层结合机理的研究[J].金属热处理,2004,29(2):28-30.
    [89]俞莹,张启运,李星国.Zn还原过渡金属化合物制备金属粉体的过程[J].物理化学学报,2003,19(5):436-440.
    [90]王胜民,刘丽,赵晓军,等.机械镀锌层的结构分析[J].材料保护,2003,36(10):24-26.
    [91]祁景玉.X射线结构分析[M].上海:同济大学出版社,2003.
    [92]任学平,康永林.粉末塑性加工原理及其应用[M].北京:冶金工业出版社,1998.
    [93]陈鹭滨,孙希泰.机械能助渗的基本规律及其发展前景[J].金属热处理,2004,29(2): 25-28.
    [94]韩彬,邹增大,李世春,等.粉末冶金锌铝合金的扩散行为[J].材料科学与工艺,2004,12(5):476-478.
    [95]Askeland D R, Phule P P. The science and engineering of materias[M].4th Edition.北京:清华大学出版社,2005.
    [96]李九龄,张世昭,梁改莲.热镀锌炉的设计与计算[C].第六届中国热浸(渗)镀学术技术交流会论文集,上海,2001,11:243-250.
    [97]Younesi S R, Alimadadi H, Keshavarz Alamdari E, et al. Kinetic mechanisms of cementation of cadmium ions by zinc powder from sulphate solutions [J]. Hydrometallurgy,2006,84(3-4):155-164.
    [98]Amadeh A, Pahlevani B, Heshmati-Manesh S. Effects of Rare Earth Metal Addition on Surface Morphology and Corrosion Resistance of Hot-dipped Zinc Coatings[J]. Corrosion Science,2002,44(10):2321-2331.
    [99]朱龙章,陈宇飞,俞江萍.稀土在电沉积锌—镍合金中的作用[J].化学研究与应用,2001,13(1):98-86.
    [100]陈阵,张英杰,杜重麟,等.稀土在硫酸盐体系电沉积锌铁合金中的应用[J].昆明理工大学学报,2005,30(2):115-117.
    [101]宣天鹏,章磊,黄芹华.稀土铈对化学沉积Co-Ni-B合金镀层结构和性能的影响[J].稀有金属,2003,27(3):399-402.
    [102]骆心怡,何建平,朱正吼,等.纳米氧化铈颗粒对电沉积锌层耐蚀性的影响[J].材料保护,2003,36(1):1-4.
    [103]李爱莲,郭忠诚,张广立.电沉积镍基合金及其复合镀层的研究现状[J].电镀与环保,2003,23(1):1-7.
    [104]费世东,张小华,许岩,等.碱性体系电镀锌镍合金工艺中配位剂对镀层的影响[J].材料保护,2005,38(4):48-50.
    [105]Ajdelsztajn L, Jodoin B, Schoenung J M. Synthesis and mechanical properties of nanocrystalline Ni coatings produced by cold gas dynamic spraying [J]. Surface & Coatings Technology,2006,201(3-4):1166-1172.
    [106]孟惠民.高电流密度下Zn-Ni合金电镀工艺[J].材料保护,1994,27(5):18-19.
    [107]许乔瑜,卢锦堂,陈锦虹,等.活性钢热浸锌镍合金镀层工艺与性能[J].材料导报,2001,15(8):23-25.
    [108]Shibli S M A, Manu R. Process and performance improvement of hot dip zinc coating by dispersed nickel in the under layer[J]. Surface & Coatings Technology,2005,197(1): 103-108.
    [109]Brooks A. Mechanical plating[J]. Metal Finishing,1983,81(8):53-57.
    [110]Grunwald J J, Klein I, Whitmore B. Mechanical plating with oxidation-prone metals[P]. US:4950504,1990,8,21.
    [111]任君合,王蕾蕾,刘兵,等.机械镀锌—镍合金工艺的研究[J].电镀与涂饰,2005,25(5):28-29.
    [112]Viramontes Gamboa G, Medina Noyola M, Lopez Valdivieso A.. The effect of cyanide and lead ions on the cementation rate, stoichiometry and morphology of silver in cementation from cyanide solutions with zinc powder[J]. Hydrometallurgy,2005, 76(3-4):193-205.
    [113]Viramontes Gamboa G, Medina Noyola M, Lopez Valdivieso A. Fundamental considerations on the mechanisms of silver cementation onto zinc particles in the Merril-Crowe process[J]. Journal of Colloid and Interface Science,2005,282(2): 408-414.
    [114]Bishop C V. Mechanical plating paste[P]. US:5156672,1992,10,20.
    [115]徐金富,张亚非,王亮,等.鳞片状超微锌粉制备工艺的研究[J].材料开发与应用,2005,20(3):28-31.
    [116]单国华.超细鳞片状锌粉的制备[J].有色矿冶,2000,16(6):40-42.
    [117]陈岁元,刘常升,刘海亚,等.锌铬膜涂料用微细Zn片的制备及研究[J],材料保护,2003,36(1):39-41.
    [118]蔡晓兰,林兴铭,王国富.用高能球磨制备超细鳞片状锌粉[J].世界有色金属,2004,4:48-49,45.
    [119]宁振立,蔡晓兰. 鳞片状锌粉的制备工艺研究[J].昆明理工大学学报(理工版),2004,29(3):33-35.
    [120]李铁龙,杨新歧,姜海龙,等.锌粉特性对机械镀锌层性能的影响[J].材料保护,2005,38(11):14-16.
    [121]Kalendova A. Effects of particle sizes and shapes of zinc metal on the properties of anticorrosive coatings[J]. Progress in Organic Coatings,2003,46(4):324-332.
    [122]Karavasteva M. The effect of certain surfactants on the cementation of nickel from zinc sulphate solution by suspended zinc particles in the presence of copper[J]. Canadian Metallurgical Quarterly,1999,38(3):207-210.
    [123]苏修梁, 张欣宇.表面涂层与基体间的界面结合强度及其测定[J].电镀与环保,2004,24(2):6-11.
    [124]Spaepen F. Interfaces and Stresses in Thin Films [J]. Acta Metal,2000,48(1):41-42.
    [125]Muktepavela F, Maniks J. Mechanical properties and accommodation processes on metallic interfaces[J]. Nanostructured materials,1998,10(3):479-484.
    [126]Maniks J. Methods of controllable internal rupture in solids and liquids for obtaining atomically-clean surfaces and investigating their adhesion[J]. Vacuum,1995,46(12): 1439-1444.
    [127]张永康,孔德军,冯爱新,等.涂层界面结合强度检测研究(Ⅰ):涂层结合界面应力的理论分析[J].物理学报,2006,55(6):2897-2900.
    [128]朱有利,徐滨士,马世宁.对一种涂层剪切结合强度测定方法的有限元评价[J].机械工程学报,1999,35(2):81-84.
    [129]周明,张永康,蔡兰.激光层裂法定量测定薄膜界面结合强度[J].中国科学:E辑,2002,32(1):28-36.
    [130]Berndt C C. Instrumented tensile adhesion tests on plasma sprayed thermal barrier coatings[J]. J. Mater. Eng.,1989,11(4):275-282.
    [131]Tronche A, Fauchais P. Hard coatings (Cr2O3, WC-Co) properties on aluminium or steel substrates[J]. Mater. Sci. Eng.,1987,92:133-144.
    [132]Nusair Khan A, Lu J, Liao H. Effect of residual stresses on air plasma sprayed thermal barrier coatings [J]. Surface and Coatings Technology,2003,168(2-3):291-299.
    [133]Chis M C, Cojocaru M O. Adhesion prediction on metal thermal spray coatings[J]. Surface Engineering,2005,21(1):72-75.
    [134]雷宏,肖业平.自结合层材料在热喷涂中的应用与比较[J].中国表面工程,2003,16(2):36-37.
    [135]Lesage J, Chicot D. Role of residual stresses on interface toughness of thermally sprayed coatings[J]. Thin Solid Films,2002,415(1-2):143-150.
    [136]Araujo P, Chicot D, Staia M, et al. Residual stresses and adhesion of thermal spray coatings. Surface Engineering,2005,21(1):35-40
    [137]Ye M, Delplancke J L, Berton G, et al. Characterization and adhesion strength study of Zn coatings electrodeposited on steel substrates [J]. Surface and Coatings Technology, 1998,105 (1-2):184-188.
    [138]Parks J M. Rekrystallization welding[J]. Welding jounal,1953,32(5):11-14.
    [139]杜则裕,李云涛,马成勇.金属冷压焊界面结合机理探讨[J].天津大学学报,2002,35(4):516-520.
    [140]LI Yun-tao, DU Ze-yu,YANG Jiang. Study on Interracial Bonding State of Ag-Cu in Cold Pressure Welding[J]. Transactions of Tianjin University,2003,9(3):219-222.
    [141]Clyne T W, Gill S C. Residual Stresses in Thermal Spray Coatings and Their Effect on Interfacial Adhesion:A Review of Recent Work[J]. Journal of Thermal Spray Technology,1996,5(4):401-418.
    [142]Younesi S R, Alimadadi H, Keshavarz Alamdari E, et al. Kinetic mechanisms of cementation of cadmium ions by zinc powder from sulphate solutions [J]. Hydrometallurgy,2006,84:155-164.
    [143]史长根,王耀华,蔡立艮,等.爆炸焊接界面的结合机理[J].焊接学报,2002,23(2): 55-58
    [144]Morrison S R.赵璧英,刘英骏,卜乃瑜等译.表面化学物理[M].北京:北京大学出版社,1984.
    [145]巴利新MЮ.韩凤麟译.粉末金属学[M].北京:中国工业出版社,1962.
    [146]Pullen J, Williamson J B P. On the plastic contact of rough surfaces[M]. London:Proc. R. Soc.,1972.
    [147]亢世江,吕玉申,陆军芳,等.金属冷压焊结合机理的试验研究[J].机械工程学报,1999,35(2):77-80.
    [148]Sziraki L, Szocs E, Pilbath Zs, et al. Study of the initial stage of white rest formation on zinc single crystal by EIS, STM/AFM and SEM/EDS techniques[J]. Electrochimica Acta,2001,46(24-25):3743-3754.
    [149]Mattsson E. The atmospheric corrosion properties of some common structural metals-a comparative study[J]. Mater. Perform.,1982,21(7):9-19.
    [150]孔纲,卢锦堂,车淳山,等.热浸锌钢白锈产生的原因分析及预防[J].腐蚀与防护,2005,26(10):450-452.
    [151]Churaiev N V. On the force of hydrophobic attraction in weting films of aqueous solutiom[J]. Colloids and surface A:Physicochemical and Engineering Aspects,1993, 79(1):25-31.
    [152]陈铮,周飞,王国凡.材料连接原理[M].哈尔滨:哈尔滨工业大学出版社,2001.
    [153]冯端.金属物理学,第一卷,结构与缺陷[M].北京:科学出版社,1998.
    [154]JB/T 8928—1999,钢铁制件机械镀锌[S]]
    [155]Brooks A. Mechanical plating[J]. Metal Finishing,1983,81(8):53-57.
    [156]陈鼎,严红革,黄培云.机械力化学研究进展[J].稀有金属,2003,27(2):293-298.
    [157]杨华明,欧阳静,张科,等.机械化学合成纳米材料的研究进展[J].化工进展,2005,24(3):239-244.
    [158]Molchanov V V, Buyanov R A. Scientific Grounds for the Application of Mechanochemistry to Catalyst Preparation[J]. Kinetics and Catalysis,2001,42(3): 366-374.
    [159]Kristoffersen H, Vomacka P. Influence of process parameters for induction hardening on residual stresses[J]. Materials & Design,2001,22(8):637-644.
    [160]王胜民,赵晓军,何明奕,等.机械镀锌层金相试样的制备技术[J].电镀与涂饰,2007,(26)12:21-24.
    [161]ASTM D907-2008, Standard terminology of adhesives[S].
    [162]张全成,马峰,郑文龙.耐候钢表面保护性锈层与基体结合强度的研究[J].机械工程材料,2004,28(6):30-32.
    [163]Weiss H. Adhesion of advanced overlay coatings:mechanisms and quantitative assessment[J]. Surf. Coat. Technol.,1995,71 (2):201-207.
    [164]Matos P P L, McMeeking R M, Charalambides P G, et al. A method for calculating stress intensities in bimaterial fracture[J]. International Journal of Fracture,1989,40(4): 235-254.
    [165]Charalambides P G, Lund J, Evans A G, et al. A test specimen for determining the fracture resistance of bimaterial interfaces[J]. J. Appl. Mach.,1989,56:77-82.
    [166]Rice J R, Sih G C. Plane problems of cracks in dissimilar media (Plane problems of cracks in dissimilar media solved by complex variables integrated with eigenfunction-expansion technique [J]. J. Appl. Mach.,1965,32:418-423.
    [167]Rice J R. Elastic Fracture Mechanics Concepts for Interfacial Cracks[J]. J. Appl. Mech., 1998,55(1):98-103.
    [168]韩凤麟.粉末冶金基础教程—基础原理及应用[M].广州:华南理工大学出版社,2005.
    [169]ISO 10308-2006, Metallic coatings-Review of porosity tests [S].
    [170]中国腐蚀与防护学会主编.腐蚀试验方法与防腐蚀检测技术[M],北京:化学工业出版社,1996.
    [171]崔忠圻.金属学及热处理[M].北京:机械工业出版社,1989.
    [172]饭田修一.张质贤译.物理学常用数表[M].北京:科学出版社,1979.
    [173]Nesterenko V F, Murr L E, Staudhammer K P, et al. In Metallurgical and Materials Applications of Shock-Wave and High-Strain-Rate Phenomena[M]. Amsterdam: Elsevier,1995.
    [174]Siegel R W, Fougere G E. Mechanical properties of nanophase metals[J]. Nanostructured Materials,1995,6(1):205-216.
    [175]Thomas G J, Siegel R W, Eastman J A. Grain boundaries in nanophase palladium:high resolution electron microscopy and image simulation[J]. Scripta Metallurgica et Materialia,1990,24(2):201-206.
    [176]Clayton E T. Metal plating[P]. US:3132043,1964,5,5.
    [177]ISO 1461-1999, Hot dip galvanized coatings on fabricated iron and steel articles[S].
    [178]GB/T 13912-2002,金属覆盖层钢铁制件热浸镀锌层技术要求及试验方法[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700