用户名: 密码: 验证码:
纳米Al_2O_3在磷化中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷化是一种常见的表面处理方法,由于磷化膜具有良好的耐蚀、耐磨、润滑等性能,被广泛应用于各个领域。基于环保、节能的要求,近年来,研究者在室温、低温磷化和磷化促进剂等方面开展了大量的研究工作,并取得了一些可喜的成果。但对于如齿轮、活塞环、阀门等很多运动承载件的磷化,因为对耐磨性有更高的要求,所以普通的磷化处理已经不能满足需求。因此,环保、低能耗、耐磨磷化的研制也是一个崭新的课题。
     采用纳米材料作为复合涂层是近年来研究较多的课题,但作为在磷化中的应用国内外报道甚少。本课题组前人已进行了将120nmAl_2O_3加入到磷化液中,从而改善了磷化膜耐磨性的研究。本论文是在前人研究的基础上,通过在磷化液中加入100nm的纳米Al_2O_3作进一步的相关研究。首先进行了前期探索性试验,确定所用基础磷化液配方、磷化时间、合适的单分散剂等,优选出了具有良好分散性能的复合分散剂;其次,研究了100nm Al_2O_3的不同添加量对磷化膜Al_2O_3复合量、硬度、微观形貌、磨损等性能的影响;最后通过正交试验优化出最佳配方及工艺条件;同时对形成复合磷化膜的反应规律作了初步的探索。
     前期的探索性实验,确定了耐蚀性较好的中温基础磷化液配方,优选出聚乙二醇20000和三乙醇胺组成的复合分散剂;磷化液中纳米Al_2O_3添加量为10g/L时,磷化膜硬度达到最大值HV167MPa,摩擦系数最低;最后通过正交实验优化出的最优条件为:纳米Al_2O_3 6.0g/L,振荡时间15min,磷化时间12-15min,酸比10,pH值2.22,最佳配方条件下得到的磷化膜颜色为浅灰色、结晶均匀、致密、连续,膜中有Al_2O_3的存在,Al元素分布较均匀。
     通过透射电镜、扫描电镜、电子探针等测试分析发现,加入的Al_2O_3在磷化液中分散状态良好,在磷化膜中分布基本均匀;通过显微硬度仪、粗糙度仪和多功能测试仪测试分析发现,加入适量的纳米Al_2O_3能提高磷化膜的硬度,降低其粗糙度,减小其摩擦系数,从而提高其耐磨性、润滑性,增强其抗磨性。
Phosphating is a kind of common surface finishing technology, which is widely used in every industrial field for its good corrosion resistance, wearability, lubricating. Based on environmental protection, energy saving requirements, in recent years, researcher have done a lot of research work at room temperature, low-temperature phosphating, phosphating accelerator and others, and done well. However, some phosphate coatings need better wearing resistance performance. Many locomotive bearing parts need high strength wearability to bear hardware, such as gear, wheel, piston ring, valve and others needed phosphating treatment. But ordinary phosphating treatment connot meet the demands. So it is a new topic to work at environmental protection, low-power, wearable phosphating.
     It is researched broadly that using nanometer as composite coating. But I find few reports about nanometer application in phosphating in domestic and overseas.In our group, somebody had done research which 120 nm Al_2O_3 was added to phosphating solution to strength wearing resistance of phosphate coating. This paper is base on his research. In this paper, I try to do further interrelated research through putting 100nm Al_2O_3 into the phosphating solution. First of all, I have done the prophase experiment to determine basal formular, phosphating time, suited single dispersant and so on. Composite dispersant which has better distributed performance was singled out. Secondly, Al_2O_3 compound quantity in phosphate coating, hardness, SEM, wearing performance for adding different Al_2O_3 content were studied. Finally, formular was optimized by orthogonal test to select the best formular factor. At the same time, the reaction law of composite phosphate coating had a preliminary exploration.
     The medium temperature basal phosphating solution which has better corrosion resistance was determined through exploratory experiences during early days. Composite dispersant which was made up by HO(CH_2CH_2O)_nH and N(C_2H_5)_3 was chosen. Hardness reached maximum value HV167MPa, while friction coefficient was least, when nano-Al_2O_3 content was 10g/L in phosphating solution.The best factors which were determined by orthogonal test are nano-Al_2O_3 6.0 g/L, vibration time 15min, phosphating time 12-15min, rate of total acid and free acid 10, pH 2.22. Phosphate coating formed under optimal fomular is light grey, uniform, fine and successive. Al_2O_3 exists on surface. Al element distributes uniform.
     Through the analysis with TEM, SEM, EMPA, I find that nano-Al_2O_3 is well dispersed, and well-proportioned distributing in phosphate coatings. Nano-Al_2O_3 composite phosphate coating crystallization is basically uniform. Through the tests with microhardness apparatus, roughness apparatus and multi-function apparatus, I find that when opportune quantity Al_2O_3 is added into phosphating solution, hardness, wear resistence, lubricating of phosphate coating is increased, and roughness and friction coefficient is decreased.
引文
[1] Ang K F, Trugoose S. Development of phosphate coatings on mild steel. Trans I M F, 1991, 69(2): 58-62.
    
    [2] Goereki G.Improved iorn Phosphate corrosion resistance by modification with metal ions. Metal Finishing, 1995,93(3):36-39.
    
    [3] 周漠银,方肖露.金属磷化技术.北京:中国标准出版社.1999.
    
    [4] 李新立,李安忠,万军.金属磷化技术的回顾与展望.材料保护.2000,33(1):71-73.
    
    [5] 李新立.磷化(I)-基本原理及分类.材料保护.1994,27(12:)38.
    
    [6] 姚寿山,李戈扬,胡文彬.表面科学与技术.北京:机械工业出版社.2004.
    
    [7] E. P. Banczek, P. R. P. Rodrigues, I. Costa. The effects of niobium and nickel on the corrosionresistance of the zinc phosphate layers. Surface and CoatingsTechnology. 2007,202(10):2008-2014.
    
    [8] E.P.Banczek, P. R. P. Rodrigues, I. Costa. Investigation on the effect of benzotriazole onthe phosphating of carbon steel. Surface and Coatings Technology. 2006, 201(6):3701-3708.
    
    [9] 邓岚,程康,李艳华.新型常温快速磷化液的研制.长沙航空职业技术学院学报.2007,7(2):68-71.
    
    [10] 肖先举,唐学红.室温锌系磷化液的研究.中国资源综合利用.2007,25(1):8-9
    
    [11] Ramco Equipment Corp.Hillside,N J. Surface Treating Phosphating System. MetalFinishing. 1998, 96(8):69-70.
    
    [12] Bdar Gurss. Cleaning and Surface Preparation. Metal finishing. 1993, 90(5A):15
    
    [13] Zima. viteszlva, Benes. Ludvik, Melnaova. Klaar. Glycine intercalated vanadly and nioblyphosphates.Solid State Ionics. 1998, 106(3-4) pp:28.
    
    [14] Larson, G.B. Phosphating Composition. Metal Finishing.1997, 95(4):106.
    
    [15] Bikulcius, G., Buorkas, V., Martusiene, A., Matulionis, E. Effects of magnetic fields on thephosphating process. Surface and Coatings Technology. 2003,173(2-3):139-143.
    
    [16] 陈春成.钢铁的磷化工艺技术(Ⅱ).电镀与精饰.2000,22(2):41.
    
    [17] 陈春成.钢铁的磷化工艺技术(Ⅰ).电镀与精饰.2000,22(1):36.
    
    [18] 陈春成.钢铁的磷化工艺技术(Ⅳ).电镀与精饰.2000,22(3):37.
    
    [19] Wittke W J.Phosphate Coatings.Meatl Finishing.1990,88(1A):448.
    
    [20] 张允诚等.电镀手册.北京:国防工业出版社,1997.
    
    [21] Narayanan, T. S. N, Snakara. Performance Evaluation of Phosphating Formulations inContinuious Operation. Metal Finishing. 1996,94(9):40, 42-43.
    
    [22] Pedrazzini,C. Phosphating Process. Metal Finishing. 1997, 95(11):110.
    
    [23] 李新立,李安忠,万军.金属磷化技术的回顾与展望.材料保护,2000,33()1:72.
    
    [24] 王章忠.钢铁材料表面猛磷化膜的耐磨性研究.新技术新工艺,2002,(7):42-44.
    
    [25] 李相国.复合磷化膜的耐磨性.研究探讨,2005,(2):76-77.
    
    [26] 刘治国,李金生,王锡义.锰系耐磨磷化工艺改进.电镀与精饰,2007,29(3):37-39.
    
    [27] 李金刚.耐磨复合磷化液的研究.沈阳工程学院学报(自然科学版).2005,1(4):79-81.
    
    [28] 吴德枫,迟长志,时海芳.耐磨复合磷化工艺研究.辽宁工程技术大学学报.2005,24(增刊):233-235.
    
    [29] John Donofrio. Zinc phosphating. Metal Finishing. 2000, 98(6): 57-73.
    
    [30] Andrzej Kozowski and Witold Czechowski. Wear resistance of manganese phosphate coatings.Electrodeposition and surface treatment.1975,3(1):55-63.
    
    [31] 雷霆,李淑英.纳米Al_2O_3增强磷化膜耐磨性的研究.材料保护,2006,16(5):16-20.
    
    [32] 任红轩.世界纳米科技发展趋势分析.新材料产业,2007,9(6):14-17.
    
    [33] Mohamed H. A. Hassan. Nanotechnology:Small Things and Big Changes in the Developing World Science, 2005,309(6):65-66.
    
    [34] 朱屯,王福明,王习东等.国外纳米材料技术进展与应用.北京:化工工业出版社,2001.
    
    [35] 徐滨士,欧忠文,马世宁等.纳米表面工程.中国机械工程,2000,11(6):707-711.
    
    [36] 梁志芳,李午申,王迎娜.热喷制备被纳米涂层的展望与研究.焊接学报,2003,(12):24-6.
    
    [37] 马亚军,朱张校,丁莲珍.镍基纳米Al_2O_3粉末复合电刷镀镀层的耐磨性.清华大学学报(自然科学版),2002,42(4):498-508.
    
    [38] 徐龙堂,徐滨士,马世宁等.电刷镀镍基Ni包纳米Al_2O_3,粉复合镀层的组织性能.兵器材料科学与工程,2000,23(4):8-11.
    
    [39] 孙米强.纳米复合镀技术研究.石油化工与应用,2006,24(2):3-5.
    
    [40] 刘爽,徐润生.纳米表面工程的应用与发展.内蒙古电力技术,2006,24(3):9-12.
    
    [41] 李慧楹,张天胜,杨南.纳米氧化铝的制备及应用.天津轻工业学院学报.2003,18(4):34-37.
    
    [42] 何巨龙,于栋力,刁利强.γ-Al_2O_3纳米粉对氧化铝-碳化硅陶瓷纤维烧结特性的影响.复合材料学报,2000,17(4):80-82.
    
    [43] 张振华,郭忠诚.复合镀中纳米粉体分散的研究.精细与专用化学品,2007,15(2):9-13.
    
    [44] 刘大成.粉体团聚及解决措施.中国陶瓷,2000,36(6):33-35.
    
    [45] 穆欣,凌国平.钢铁表面纳米Al_2O_3复合化学镀镍的研究.表面技术,2006,35(2):43-45.
    
    [46] 杨红梅,毛秋琼,赵政等.表面活性剂对纳米氧化物分散稳定性的影响.热处理技术与装备,2007,28(2):33-35.
    
    [47] 王旭东,周伟峰,孙冬柏等.Al_2O_3纳米粒子增强锌铝基耐蚀涂层的制备及性能研究.材料保护,2006,39(8):4-7.
    
    [48] 周琦,邵忠宝,贺春林,邵忠财,才庆魁,高维娜.表面活性剂对镍-磷-纳米氧化铝复合镀的影响.中国腐蚀与防护学报,2007,27(1):27-30.
    
    [49] 郑环宇,安茂忠,陈龙,卞军军.分散剂对(Zn-Ni)-Al_2O_3复合镀中纳米Al_2O_3分散性能的影响.电镀与环保,2006,26(2):11-14.
    
    [50] 张桂芳,沈强,张联盟.单分散氧化铝陶瓷粉体的制备及表征.航空材料学报,2006,26(4):96-99.
    
    [51] 顾峰,沈悦,徐超等.分散剂聚合度对纳米氧化铝粉体特性的影响.功能材??料,2005,36(2):318-320.
    
    [52] 吴庆利,吴蒙华,黄树涛等.超声-电沉积Ni-纳米Al_2O_3复合镀层耐蚀性能研究.表面技术,2007,36(1):1-4.
    
    [53] 郑瑞伦,张家树,刘荣泰.纳米微粒α-Al_2O_3化学复合镀层分形特性探讨.化学物理学报,1997,10(6):529-534.
    
    [54] Liang G. Quick organic phosphating at room temperature.Metal Finishing, 1997,95(9):54-56.
    
    [55] 高濂,孙静,刘阳桥.纳米粉体的分散及表面改性,北京:化学工业出版社,2003.
    
    [56] 李玲编著.表面活性剂与纳米技术.北京:化学工业出版社,2003.
    
    [57] 王绍明.新型表面调整剂.电镀与环保,2005,25(6):19-20.
    
    [58] 尹健,朱建培.注塑模电刷镀纳米复合涂层的耐磨性研究.电加工与模具,2002(3):25-27.
    
    [59] 王家安,赵振铎,王丽君.中温锌系磷化膜及皂化膜的组织结构研究.材料保护,2007,40(1):8-9.
    
    [60] 高玉周,李崇,张会臣,许晓磊,陈文刚.压缩机动涡旋表面磷化膜层的磨损性能.大连海事大学学报,2006,32(2):127-129.
    
    [61] 钟彬,苟伟,李国卿,胡远荣.氮气含量对CrNx薄膜相结构及摩擦磨损性能的影响.材料热处理学报,2007,28(3):134-137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700