用户名: 密码: 验证码:
镁合金表面有机涂层和化学镀层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验研究了镁合金的有机涂层和化学镀层的制备和涂层性能。本研究取得了以下有价值的研究成果:
    1.锌系磷化膜具有微观多孔结构可使有机涂层嵌入其中。采用锌系磷化技术作为有机涂层的预处理技术可以确保镁合金和有机涂层之间具有良好的结合力。研究表明,有机涂层的性能与磷化膜中磷锌矿的结晶取向、耐蚀性和润湿性有关,复合磷化膜越致密、耐蚀性、耐酸碱腐蚀性和润湿性越好,则有机涂层的结合力和耐蚀性等性能就越好。
    2.提出了适合镁合金的有机涂层工艺。分别采用“钼酸盐复合磷化膜+电泳漆+面涂层工艺”和“钼酸盐复合磷化膜+粉末喷涂工艺”,在镁合金上制备了两种有机涂层,对涂层的全面质量检验结果表明它们能够国标的要求。3.镁合金试样在化学镀镍前首先在铬酸和硝酸溶液中进行铬化处理,然后将其浸在氟化氢溶液中使其表面生成氟化镁保护膜,采用硫酸镍为主盐的镀液在AZ91D镁合金上直接化学镀Ni-P合金,镀层致密无孔,具有一定耐蚀性。
    4.采用无铬的磷酸盐复合磷化膜对镁合金进行前处理,然后在硫酸盐中镀光亮镍磷合金。试验发现磷化液中的间硝基苯磺酸钠可使镁合金表面的微阴极区增加,使成膜速度加快,并使磷化膜的细致。在含有间硝基苯磺酸钠的磷化液中得到的磷化膜上可获得致密均匀,无孔隙的Ni-P镀层,Ni-P层表现出良好的结合力和耐腐蚀能力。
    5.采用含有钼酸盐的磷化膜作为化学镀Ni-P的底层,磷化液中钼酸盐添加剂可使磷化膜上的单质锌含量增加。在AZ91D镁合金磷化膜上化学镀Ni-P涂层其表现出很好的性能。盐雾实验结果显示其抵抗腐蚀的时间长达150小时。Ni-P涂层表面硬度大约为670Hv,当其在180°C加热两小时后硬度增加到大约935Hv。
    6.在镁合金上制备了Ni-P/Ni-W-P化学镀双层膜。镀层的极化曲线和盐
Magnesium alloy has low density, high strength-to-weight ratio and othergood physical and mechanical characteristics. However, the application ofmagnesium alloys has been limited due to their undesirable properties includingpoor corrosion and low wear resistance. Thus, the formation of anticorrosion andhigh wear-resistance coatings on the surface of Mg or Mg alloys is necessary inpractical applications. Since magnesium is one of the most electrochemicallyactive metal, ordinary coatings, such as nickel, copper and zinc coatings, can onlyprovide a physical barrier to corrosion attack of magnesium substrate. So, anycoatings on magnesium alloys should be as uniform, adherent and porosity free aspossible.
    The preparing technologies, characteristics and anticorrosion mechanismshave been investigated in the paper. In the paper zinc phosphating process wereused to replace chromate treatment for the pretreatment of magnesium alloy.The relations among the characteristics of organic coating and themicrostructure, composition, phase structure and wettability of phosphate filmwere studied. It is shown that molybdate complex zinc phosphate film exhibits theoptimal anticorrosion characteristics and can be used as the base for electro-coatand powder coating of magnesium alloy.
    The complex zinc phosphate film is also suitable to be the base film of theelectroless nickel deposit because there are nanocrystalline zinc particlesdispersed the phosphate film, which can provide the active particles for nickelnucleus. The anticorrosion characteristics of multilayer electroless deposit (Ni-P/Ni-W-P) are much better than single electroless nickel deposit.
    In the present work, the technology of organic coating and the electrolessNi-P deposition on AZ91D magnesium alloy was proposed. Several contributionsshoald be mentioned in the follows1. Characteristics of organic coating of magnesium alloy are related with phasestructure, anticorrosion characteristics and wettability of phosphate films.The denser of the phosphate film and the more content of (311) phases ofhopeite, the better of the anticorrosion and acid resistance and alkaliresistance and wettability of phosphate films;and the better of the adhesionand resist corrosion of the organic coating on magnesium alloy.2. The anticorrosion performance of the organic coatings based thenon-chromate phosphate coating was proved better by the salt spray test andadhesion and appearance performance. A new environment-friendly surfacetreatment method for magnesium alloy parts was provided in the study. Thetechnology of “ molybdenum modified zinc phosphate coating+electro-coat+paint” and “molybdenum modified zinc phosphate coating+powder paintof magnesium alloy were developed. They can satisfy many kinds ofinternational and national quality standards.3. Direct electroless Ni plating of magnesium alloy was obtained from nickelsulfate plating for the first time. The magnesium alloy samples were etchedfirst in a solution of chromate and nitric acid and than soaked in HF solutionto form a conversion film before electroless nickel deposition. But chromiumcompounds are carcinogenic substance, which should abstain to use.4. The non-chromium zinc phosphate coating was used as pretreatment coatingof electroless Ni–P deposits obtained from the acid bath containing nickelsulphate for the first time. The microstructure of the phosphate coatings wasobserved by using SEM and the phase compositions were analyzed by theusing XRD. Chemical compositions in the phosphating coating wereZn3(PO4)2·4H2O and Zn. Metal zinc in the phosphating coating becomes thecatalytic particles for the nickel deposition. The addition of sodium
    metanitrobenzene sulphonate greatly increased the micro cathode sites of thephosphate coating and made the coatings fine greatly. It was proved that theelectroless Ni–P deposits plus phosphating coating obtained from the bathcontaining sodium metanitrobenzene sulphonate exhibited good anticorrosionperformance.5. In this study, AZ91D magnesium alloy samples were pretreated in a zincphosphating bath to obtain a phosphate coating. Then, the electroless Ni-Pdeposition on the phosphate coating was undertaken by using the plating bathcontaining sulfate nickel. The phosphate coating on the AZ91D magnesiumalloy was obtained from the bath containing mainly phosphoric acid and zincoxide. There was zinc in the phosphate coatings and the addition of Na2MoO4in the phosphating bath resulted in the increase of zinc in the coating. Theexistence of metallic zinc in the phosphate coating makes it possible to be asthe pretreatment layer for further electroless Ni-P deposition. The Ni-Pcoatings with dense and fine microstructure were obtained on the phosphatecoatings on AZ91D alloy obtained from the phosphating bath with additionof 2.0~2.5g/L Na2MoO4.The Ni-P plus phosphate coatings on the AZ91Dmagnesium alloy exhibited good performance. Salt spray test showed thatthey could withstand about 150 hours without corrosion. The surfacehardness of the Ni-P coating is about 670Hv, and its hardness was increasedto about 915Hv through the heat treatment of 2 hours at temperature of180°C.6. An available method to obtain electrless Ni-P/Ni-W-P coatings on AZ91Dmagnesium alloy was discussed. The microstructure of the coating wasanalyzed by scanning electron microscope (SEM) and X-ray diffractmeter(XRD). The corrosion resistance of the coatings was estimated byelectrochemical polarization measurements and 10%HCl solutionimmergence test. The electrless Ni-P/Ni-W-P coatings can stand in 10%HClsolution for 170 minutes without corrosion. The hardness of the coating is
    622HKV, and the coating has good adhesions. With the proof of theexperiment, this technique can offer reliable protection for AZ91Dmagnesium alloy.
引文
[1] 刘正, 张奎, 曾小勤著. 镁基轻质合金理论基础及其应用. 北京:机械工业出版社, 2002, 1-12.
    [2] 曾荣昌, 柯伟, 徐永波等. Mg合金的最新发展及应用前景. 金属学报,2001, 37(7): 673-685.
    [3] 张鹏, 曾大本. 异军突起的镁合金压铸. 特种铸造及有色合金, 2000, 6: 55-57.
    [4] 陈晓阳, 曾大本. 镁合金铸件的应用现状及发展前景. 铸造, 1999, 11: 53-55.
    [5] 王渠东, 吕宜振, 曾小勒. 镁合金在电子器材壳体中的应用. 材料导报, 2000, 14(6): 22-24.
    [6] Brown R E. Application of magnesium alloy. Light Metal Age, 1991, 49(7-8): 6-9.
    [7] 蒋百灵, 张淑芬, 吴国建等. 镁合金微弧氧化陶瓷层显微缺陷与相组成及其耐蚀性. 中国有色金属学报, 2002, 12(3): 454-457.
    [8] 叶宏, 冯燕熹, 王希山. 镁合金化学镀镍工艺研究. 表面技术, 2002, 31(6): 32-36.
    [9] 张大顺. TL-2 化学镀 Ni-P 合金工艺研究. 表面技术, 1999, 4: 12-16.
    [10] 曾爱平, 薛颖, 钱宇峰等. 镁合金的化学表面处理. 腐蚀与防护, 2000, 21(2): 55-56.
    [11] Raymond F, Decker. The Renaissance in Magnesium. Advanced Materials & Processes, 1998, 9: 31-33.
    [12] B.L. Mordike, T. Ebert. Magnesium Properties-Applications-Potential. Materials Science & Engineering, 2001, A302: 37-45.
    [13] Benjamin Landkof. Magnesium Applications in the Electronic dustries Magnesium. Israeli, 2000, 50-56.
    [14] Robert L, Edgar. Global Overview on Demand and Applications for Magnesium Alloys. Magnesium Alloys and Their Applications, New York, 2000, 3-8.
    [15] H. Friedrieh, S. Schumann. The second Age of Magnesium Research Strategies to Bring the Automotive industry's vision to Reality. Magnesium Alloys and Their Applications. New York, 2000, 9-26.
    [16] H. WATANABE, T. MUKAI, K. ISHIKAWA. Differential speed rolling of an AZ31 magnesium alloy and the resulting mechanical properties, Journal of Materials Science, 2004, 39: 1477-1480.
    [17] 李玉兰, 刘江, 彭晓东. 镁合金压铸件在汽车上的应用. 特种铸造及有色合金, 1999, 1: 120-122.
    [18] 郭洪河,刘生发,黄尚宇等.镁合金在汽车中的应用与发展. 汽车工艺与材料, 2001, 10: 34-36.
    [19] Kaikun Wang, Yonglin Kang, Kui Zhang. Effects of rare earth elements on the microstructure and properties of magnesium alloy AZ91D. Journal of University of Science and Technology Beijing, 2002, 9(5): 363-366.
    [20] L. ???ek, M. Greger, L. Pawlica, et al. Study of selected properties of magnesium alloy AZ91 after heat treatment and forming. Journal of Materials Processing Technology, 2004, 157-158: 466-471.
    [21] M. Svoboda, M. Pahutová, K. Kucharová, et al. The role of matrix microstructure in the creep behaviour of discontinuous fiber-reinforced AZ91 magnesium alloy. Materials Science and Engineering A, 2002, 324(1-2): 151-156.
    [22] A. Lindemann, J. Schmidt, M. Todte, T. Zeuner. Thermal analytical investigations of the magnesium alloys AM60 and AZ91 including the melting range. Thermochimica Acta, 2002, 382(1-20): 269-275.
    [23] R.M. Wang, A. Eliezer, E.M. Gutman. An investigation on the microstructure of an AM50 magnesium alloy. Materials Science and Engineering, 2003, A355: 201-207.
    [24] S.G. Lee, G.R. Patel, A.M. Gokhale, et al. Variability in the tensile ductility of high-pressure die-cast AM50 Mg-alloy. Scripta Materialia, 2005, 3: 851-856.
    [25] Xi-shu Wang, Jing-hong Fan. An evaluation on the growth rate of small fatigue cracks in cast AM50 magnesium alloy at different temperatures in vacuum conditions. International Journal of Fatigue, 2006, 28: 79-86.
    [26] 杨晶, 蒋微明, 党惊知, 刘云. 现代机器铸件轻型化的发展趋势. 华北工学院学报, 2005, 26(3): 222-225.
    [27] 张同俊, 李星国. 镁合金的应用和中国镁工业. 材料导报, 2002, 16(7): 11-13.
    [28] 郭继东. 镁合金压铸件生产实现产业化. 中国有色金属报, 2003, 5: 4-8.
    [29] 吴秀铭. 中国镁工业的现状与展望. 北京: 2001年中国国际镁业研讨会论文集,2001.11: 1-4.
    [30] 王玉辉, 孔强玉. 柴达木镁资源的开发现状与前景. 北京: 2001年全国镁行业年会论文集, 2001.10: 12-15.
    [31] 龙思远, 曹建勇, 章宗和. 镁合金在中国摩托车上应用的可行性分析. 北京: 2001年全国镁行业年会论文集, 2001.10: 16-22.
    [32] Hanawalt J D, Nelson C E, Peloubet J A. Corrosion Studies of Magnesium and Its Alloys. Trans. Am. Inst. Mining. Met. Eng. 1942, 147: 273-278.
    [33] 朱祖芳. 有色金属的耐腐蚀性能及其应用. 北京: 化学工业出版社, 1995, 61-74.
    [34] James E H. The Effect of Heavy Metal Contamination on Magnesium Corrosion Perfermance. SEA Technical Paper, 830523, Detroit, 1983.
    [35] David S T. Protection of Magnesium Components in Military Applications. Lasvecas, 1990.
    [36] Nisancidglu K, LunderO, Aume T K. Corrosion Mechanism of AZ91 Magnesium Alloy. Proc. of 47th World Magnesium Association, Mcleen, Virginia, 1990: 43-50.
    [37] Song G L, Andrej A. Influence of Microstructure on the Corrosion of Die Cast AZ91D. Corrosion Science, 1999, 41(2): 249-273.
    [38] Gray J E, Luan B. Protective coatings on magnesium and its alloys-a critical review. Journal of Alloys and Compounds, 2002, 336: 88-113.
    [39] Li Ying, Yu Gang. Surface treatment and development of magnesium alloy. Surface Technology, 2003, 32: 1-5.
    [40] 肖卫华. 镁合金表面防蚀技术研究进展. 淮海工学院学报, 2005, 14(3): 53-56.
    [41] Sharma A K, Suresh M R. Electroless nickel plating on magnesium alloy. Metal finishing, 1998, 3: 56-58.
    [42] D. Battocchi, A.M. Sim?es, D.E. Tallman, G.P. Bierwagen. Electrochemical behaviour of a Mg-rich primer in the protection of Al alloys. Corrosion Science, 2006, 48(50): 1292-1306.
    [43] Alex J Z, Duane E B. Anodized Coatings for Magnesium Alloys. Metal Finishing. 1994, 92(3): 39-44.
    [44] Guangling Song, Birgir Johannesson, Sarath Hapugoda, David St John. Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc. Corrosion Science, 2004, 46: 955–977.
    [45] 卡恩 RW, 哈森 P, 克雷默 EJ,丁道云等译. 材料科学与技术丛书, 第 8 卷, 非铁合金的结构与性能. 北京: 科学出版社, 1999, 101~182.
    [46] Song Guangling, Atrens Andrej Atrenj, Wu Xian liang, et al. Corrosion Behaviour of AZ21, AZ50 and AZ91 in Sodium Chloride. Corr. Sci., 1998, 40(10): 1769-1791.
    [47] Lunder O, Aune T KR, Nisancioglu K. Effect of Mn Additions on the Corosion Behavior of Mould-Cast Magnesium ASRM AZ91. Corrosion, 1987, 43(5): 291-295.
    [48] Godard H P, Jepson W B. The Corrosion of Light Metals. NY: John Wiley & Sons, Inc, 1967, P259.
    [49] Guangling Song, David St John. Corrosion behaviour of magnesium in ethylene glycol. Corrosion Science, 2004, 46: 1381-1399.
    [50] Rakel Lindstr?m, Lars-Gunnar Johansson, George E. Thompson, et al. Corrosion of magnesium in humid air. Corrosion Science, 2004, 46: 1141-1158.
    [51] R. K. Singh Raman, N. Birbilis, J. Efthimiadis. Corrosion of Mg alloy AZ91 -the role of microstructure. Corrosion Engineering, Science and Technology, 2004, 39(4): 346-350.
    [52] Guangling Song, Amanda L. Bowles, David St John. Corrosion resistance of aged die cast magnesium alloy AZ91D. Materials Science and Engineering, 2004, A366: 74-86.
    [53] R. Udhayan, Devcndra Prakash Bhatt. On the corrosion behaviour of magnesium and its alloys using electrochemical techniques. Journal of Power Sources, 1996, 63: 103-107.
    [54] Frank Witte, Jens Fischer, Jens Nellesen, et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials, 2006, 27: 1013–1018.
    [55] LIN Gao-yong, Peng Da-shu, ZHANG Hui. Influence of chemical composition on corrosion resistance of AZ91D magnesium alloy ingots. The Chinese Journal of Nonferrous Metals, 2001, 11: 79-82.
    [56] MCINTYRE N S, CHEN C. Role of impuritie so Mg surfaces under ambient exposure conditions. Corrosion Science, 1998, 40(10): 1697-1709.
    [57] BARIL G, PEBERE N. The corrosion of pure Magnesium in aerated and deaerated sodium sulphate solutions. Corrosion Science, 2001, 43: 471-484.
    [58] 谢希文, 过梅丽. 材料工程基础. 北京: 北京航空航天大学出版社, 1999.
    [59] Makar G L, Kruger J. Corrosion of magnesium. International Material Reviews, 1993, 38(3): 138-153.
    [60] C.S. Lin, H.C. Lin, K.M. Lin, W.C. Lai. Formation and properties of stannate conversion coatings on AZ61 magnesium alloys. Corrosion Science, 2006, 48: 93-109.
    [61] A.H. Wang, H.B. Xia, W.Y. Wang, Z.K. et al. laser cladding of homogenous coating onto magnesium alloy. Materials Letters, 2006, 60: 850-853.
    [62] J. Dutta Majumdar, B. Ramesh Chandra, B.L. Mordike, et al. Laser surface engineering of a magnesium alloy with Al+Al2O3, Surface and Coatings Technology, 2004, 179: 297-305.
    [63] Sorin Ignat, Pierre Sallamand, Dominique Grevey, Michel Lambertin. Magnesium alloys laser (Nd YAG) cladding and alloying with side injection of aluminium powder. Applied Surface Science, 2004, 225: 124-134.
    [64] Frank Hollstein, Renate Wiedemann, Jana Scholz. Characteristics of PVD-coatings on AZ31hp magnesium alloys. Surface and Coatings Technology, 2003, 162: 261-268.
    [65] G. Garcés, M.C. Cristina, M. Torralba, P. Adeva. Texture of magnesium alloy films growth by physical vapour deposition (PVD). Journal of Alloys and Compounds, 2000, 309: 229-238.
    [66] Holger Hoche, Hans-Juergen Schroeder, Herbert Scheerer, et al. Tribological Studies of CrN coated Magnesium AZ91 at Temperatures up to 250°C. Advanced Engineering Materials, 2002, 4(1-2): 42-51.
    [67] I. SHIGEMATSU, M. NAKAMURA, N. SAITOU, K. SHIMOJIMA. Surface treatment of AZ91D magnesium alloy by aluminum diffusion coating, Journal of Materials Science Letters, 2000, 19: 473-475.
    [68] 吴清波, 刘培英, 周铁涛. 镁合金的耐腐蚀表面防护技术. 航空维修与工程, 2005, 1: 57-60.
    [69] 霍宏伟,李瑛,王福会. AZ91D 镁合金化学镀镍. 中国腐蚀与防护学报, 2002, 22(1): 14.
    [70] H. W. Huo, Y. Li, F. H. Wang. Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer. Corrosion Science, 2004, 46(6): 1467-1477.
    [71] 任晨星, 曹文博, 关绍康, 王利国, 张献军. Mg-8Zn-4Al 合金的化学镀镍. 郑州轻工业学院学报(自然科学版), 2003, 18(3): 24-26.
    [72] ASTM B879-97, Standard Practice for Applying Non-Electrolytic Conversion Coatings on Magnesium and Magnesium Alloys.
    [73] ASTM D1732-67 Standard Practices for Preparation of Magnesium Alloy Surfaces for Painting.
    [74] Hiroyuki Umehara. An Investigation of the Structure and Corrosion Resistance of a Permanganate Conversion Coating on AZ91D Magnesium Alloys. Journal of Japan Institute of Light Metals, 2000, 50(3): 109-115.
    [75] David Hawke, D.L.Albright. A Pbosphate-Permanganate Conversion Coating for Magnesium. Metal Finishing, 1995, 10: 34-38.
    [76] US Patent 5,683,522 Process for Applying a Coating to a Magnesium Alloy Product.
    [77] US Patent 6,316,115 BI Non-Chromate Chemical Treatments Used on Magnesium Alloys.
    [78] Nakatsugawa, Katsuyuki Araki, Kazunori Fukumura. Chemical Conversion Treatment for Magnesium Alloy "SHADAN" Series. J. JILM, 2001, 11: 51-55.
    [79] 福村和则, 白石隆彦. 镁系部件的表面处理剂和表面处理方法, 中国专利, CN1335896A.
    [80] CN 1288073A. 镁合金的表面处理方法(日本巴克莱新株式会社).
    [81] CN 1302341A. 镁或镁合金的表面处理制品, 表面预处理方法及涂装方法(松下电器产业株式会社).
    [82] Fumihiro S, Yoshihiko A, Takenori N. Corrosion Behavior of Magnesium Alloys with Different Surface Treatments. Journal of Japan Institute of Light Metals, 1992, 42(12): 752-758.
    [83] 郭洪飞, 安茂忠, 刘荣娟. 镁及其合金表面化学转化处理技术. 轻合金加工技术, 2003, 31(8): 35-38.
    [84] L.Y. Niu, Z.H. Jiang, G.Y. Li, C.D. Gu, J.S. Lian, A study and application of zinc phosphate coating on AZ91D magnesium alloy, Surface & Coatings Technology, 2006, 200, 3021-3026.
    [85] 杨宁, 龙晋明. 稀土钝化-金属防腐蚀表面处理新技术. 稀土, 2002, 23(2): 55-62.
    [86] 周婉秋, 单大勇, 韩恩厚等. 镁合金无铬化学转化膜的耐蚀性能研究. 材料保护, 2002, 35(2): 12-14.
    [87] Kwo Z C. Conversion-coating Treatment for Magnesium Alloys by a Permanganate-phosphate Solution. Materials Chemistry and Physics, 2003, 80: 191-200.
    [88] 赵明, 吴树森, 罗吉荣等. 镁合金无铬表面处理现状和前景. 铸造, 2003, 35(7): 462-465.
    [89] 尹延红, 佟国栋, 刘海峰. 压铸镁合金表面处理工艺研究. 特种铸造及有色合金, 2004, 1: 53-54.
    [90] 张永君, 严川伟. 压铸镁合金 AZ91D 环保型阳极氧化电解液配方研究. 腐蚀与防护, 2002, 23(4): 148-151.
    [91] G.Y. Li, J.S. Lian, L.Y. Niu, Z.H. Jiang, Influence of pH of phosphating bath on the zinc phosphate coating on AZ91D magnesium alloy, Advanced Engineering Materials, 2006, 8(1-2): 123-127.
    [92] Manuele Dabalá, Katya Brunelli, Enrico Napolitani, Maurizio Magrini. Cerium-based chemical conversion coating on AZ63 magnesium alloy. Surface and Coatings Technology, 2003, 172: 227-232.
    [93] L. YuanGang, Z. Wei, L. JiuQing. Microarc Electrodeposition of Ceramic Films on Double Electrodes of AZ91D Magnesium Alloy By Symmetrical AC Pulse Method. Surface Engineering, 2003, 19(5): 345-350.
    [94] Katya Brunelli, Manuele Dabala, Irene Calliari, Maurizio Magrini. Effect of HCl pre-treatment on corrosion resistance of cerium-based conversion coatings on magnesium and magnesium alloys. Corrosion Science, 2005, 47: 989-1000.
    [95] 张勇, 许越, 周德瑞等. 稀土铈对 AZ91 镁合金表面腐蚀性能的影响. 哈尔滨工业大学学报, 2002, 34(3): 376-378.
    [96] Amy L. Rudd, Carmel B. Breslin, Florian Mansfeld. The corrosion protection afforded by rare earth conversion coatings applied to Magnesium. Corrosion Science, 2000, 42(2): 275-288.
    [97] 张洪生. 植酸在金属表面防护处理中的应用. 材料保护, 2000, 33(3): 18-22.
    [98] 张洪生. 无毒植酸在金属防护中的应用. 电镀与精饰, 1999, 18(4): 38-41.
    [99] 陈洪希. 肌醇六磷酸酯在低温磷化液中的应用. 四川化工与腐蚀制, 2000, 3(4): 7-10.
    [100] 薛文彬, 来永春, 邓志威. 镁合金微等离子体氧化膜的特性. 材料科学与工艺, 1997, 5(2): 89-92.
    [101] Sachiko O. Oxide Films Formed on Magnesium and Magnesium Alloys by Anodizing and Chemical Conversion Coating. Corrosion Reviews, 1998, 16(1-2): 175-190.
    [102] 谭昌瑶, 王钧石. 实用表面工程技术. 北京:新时代出版社, 1998.
    [103] Wang C Y, Yao P, Bradhurst D H, et al. Surface modification of Mg-Ni alloy in an acid solution of copper sulfate and sulfuric acid. Journal of Alloys Compounds, 1999, 285: 267-271.
    [104] Wangner L. Mechanical surface treatment on titantium, aluminum and mag-nesium alloys. Materials Science and Engineering, 1999, A263: 210-216.
    [105] Jiang Y F, Guo X W. Corrosion protection of polypyrrole electrodeposion on AZ91 magnesium alloys in alkaline solutions. Synthetic Metals, 2003, 139: 335-339.
    [106] Truong V T, Lai P K, Moore B T, et al. Corrosion protection of magnesium by electroactive polypyrrole paint coatings. Synthetic Metals, 2000, 110: 7-15.
    [107] Scbralla L, Adlcr H J, Bram C, Method for treating metallic surfaccs. CA Pat, 2275729, 1998.
    [108] Jones L E, Wert M D, Rivcra J B, Method and composition for treating metal surfaces, US Pat, 5859106, 1999.
    [109] Yukio Y, Makoto F, Naoharu M, et al. Formation of highly corrosion resistant coating film on magnesium alloy material. JP Pat, 7204577, 1995.
    [110] Mori K, Hirahara H, Oishi Y, et al. Effect of triazine dithiols on the polymer plating of magnesium alloys. Materials Science Forum, 2000, 350: 223-234.
    [111] H. Umehara, M. Takaya, S. Terauchi. Chrome-free surface treatments for magnesium alloy. Surf. Coat. Technol, 2003, 169-170: 666-669.
    [112] E. H. Han, W.Q. Zhou, D.Y.Shan, W. Ke. Corrosion and Protection of Magnesium Alloy AZ31D by a New Conversion Coating. Mater. Sci. Forum., 2003, 419-422: 879-882.
    [113] L. Kouisni, M.azzi, M. Zertoubi, et al., Phosphate coatings on magnesium alloy AM60 part 1: study of the formation and the growth of zinc phosphate films. Surf. Coat. Technol., 2004, 185(1):58-67
    [114] L. Kouisni, M. azzi, F. Dalard, et al. Phosphate coatings on magnesium alloy AM60: Part 2: Electrochemical behaviour in borate buffer solution. Surf. Coat. Technol, 2005, 192:239-264.
    [115] 王赫男. 两种镁合金的化学处理. 沈阳航空工业学院学报, 2004, 21(2):5-7.
    [116] 金华兰, 危仁杰, 杨湘杰. 镁合金磷酸盐转化膜层生长过程及其腐蚀率. 特种铸造及有色合金, 2005, 25(11). 651-653.
    [117] 潘莹, 宋维. 表面润湿作用对涂膜形成过程的影响. 表面技术, 1997, 26(6): 22-23
    [118] R. Ambat, W. Zhou. Electroless nickel-plating on AZ91D magnesium alloy: effect of substrate microstructure and plating parameters. Surf. Coat. Technol., 2004, 179: 124-130.
    [119] A.K. Sharma, M.R. Suresh, H. Bhojraj, et al. Electroless nickel plating on magnesium alloy. Met. Finish., 1998, 96: 10-12.
    [120] 向阳辉,胡文彬,沈彬等. 镁合金直接化学镀镍的初始沉积机制. 上海交通大学学报, 2000, 34(12): 1638.
    [121] Wu F B, Tien S K, Chen W Y, et al. Microstructure evaluation and strengthening mechanism of Ni-P-W alloy coatings. Surface and Coatings Technology, 2004, 177-178: 312-316.
    [122] Gao Y, Zheng Z J, Zhu M, et al. Corrosion resistance of electrolessly deposited Ni-P and Ni-W-P alloys with various structures. Materials Science and Engineering A, 2004, 381: 98-103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700