用户名: 密码: 验证码:
高精度水平锚索技术研究及在三峡工程中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水力建设随着经济的发展,各类工程建筑物的投资修建,岩土工程的稳定性问题越来越受到人们的重视。就水利水电工程而言,至二十世纪末,地球上已建大坝四万多座,它们在经济和社会发展中起了重要作用。我国水利水电工程中使用预应力锚索数量极大,工程耗资均在亿元左右。随着西部大开发的建设高潮,一大批水利水电工程还将投入这一使用预应力锚索的热潮中。随着坝高的增加、地质条件的复杂化,大坝的安全稳定性越来越显得重要。稳定性问题存在于水工建筑物、边坡、坝肩、坝基等。工程的稳定性直接决定着工程修建的可行性,影响着工程的建设投资和安全运行。
    本文提出通过计算分析,得出如下规律性认识:
    1)内锚头间轴向压应力分布及注浆体与岩体交界面的剪应力分布主要受交界面凝聚力的影响,交界面间的摩擦系数的影响作用不大;
    2)内锚头间距超过某一最小间距后,注浆体中的轴向压应力及剪应力叠加情况不明显,且其分布形式将趋于稳定;
    3)注浆体的弹性模量E和岩体变形模量E′的比值对内锚头间距的选取有较大的影响,E/ E′值越小,注浆体和岩体界面上的剪应力分布越均匀,内锚头间距的取值可适当的减小,反之亦然;
    4)注浆体和岩体界面上的剪应力和钻孔半径有密切的关系。钻孔半径较大时,内锚头间距的取值可适当的减小,反之亦然。
    5)内锚头摩擦段侧壁和注浆体间接触面上的剪应力分布特征表
    明,对于140型内锚头(摩擦段长180mm,摩擦段直径95mm),在600KN荷载作用下,内锚头摩擦段提供的抗剪力约为62KN,约占每个内锚头所受600KN荷载的10%。可见,压缩摩擦组合分散型内锚头设计中摩擦段的设计是合理的,可以有效分散内锚头承压板上所受的荷载,从而提高了内锚头的可靠性。6)内锚头间距的确定压缩摩擦组合分散型无粘结预应力锚索的内锚头间距在实际工程中如何设计确定,一直是锚索设计人员所关心的问题。通过前述此类型式锚索的三维有限元数值模拟分析,基本查明了影响内锚头间距的几项主要因素,即注浆体与基岩胶结面的凝聚力、围岩类别、锚索孔孔径大小等。本文对进行了认真研究。高精度锚索孔是指锚索孔孔斜率设计要求端头锚不大于孔深的2%,对穿锚不大于孔深的1%,其影响因素主要有地层岩性、机械设备、操作因素等。通过对水平孔和缓倾角孔导直工艺的力学分析从而利用支点纠偏原理进行保直,并提出了具体的措施。对潜孔锤钻进水平孔的弯曲特性与规律进行了研究,影响潜孔锤钻进水平孔弯曲的因素主要包括地质因素和工艺技术因素,通过水平锚索孔防斜生产试验摸索出较成熟的施工工艺,从而得出利用潜孔锤能钻进高直度水平锚索孔,满足大吨位预应力锚索的施工要求。本文详细介绍了针三峡工程研制的钻探设备、专用器具和工艺。为满足高精度锚索孔的技术要求研制开发了DKM-1型钻机,该钻机具有(1)体积小,重量轻,性能优越,适合陡坡洞内及狭小场地施工;(2)钻机具有良好的稳定性;(3)钻机移位轻便灵活,自带定位系统,
    定位精确方便;(4)与钻机配套的钻杆为双壁钻杆,结构合理特点。为配合DKM-1型钻机完成高精度锚索孔,配套开发研制了专利高强钻杆,通过与钻井高强钻杆的对比分析,专利高强钻杆具有适应水平孔锚索强度高、保直防斜等特点,通过设计的防斜钻具结构较好的实现高精度水平锚索孔的工艺要求。通过三峡工程实践检验,我们的研究成果更好的体现了工程技术为解决国家基本建设的重要作用,也很好的体现了该技术的经济性特点。基于上述的研究成果,对推动锚固技术特别是高精度水平锚索技术的发展有着非常积极的作用。
With the development of economy and the construction of structures,people pay more and more attention on the stability of geotechnicalengineering. As far as water conservancy hydropower engineering isconcerned, up to the end of 20th century, there are more than 40,000 dams arebuilt. They play important parts in development of economy and society. Ourcountry has rich resources of water conservancy and water power. In order todevelop economy, almost half dams in the world are constructed in our country.Very high dams are built in recent years, such as the height of dams of ThreeGorges and Longtan is about 200 meters, and the height of first level archdams of Xiaowan, Xiluodu, and Jinping is up to 300 meters. With the increaseof the height of dams and the complexity of geological conditions, the safetyand stability of dams are more and more important. The stability exists inhydraulic structures, slopes, dam foundation, and dam abutment etc. Thefeasibility of engineering construction is directly determined by the stability ofengineering and influences invest and safety of engineering.
    The number of prestressed anchor cables used in water conservancyhydropower engineering is very large in our country. The costs of manyprojects are about 100 million yuan. Along with the high tide of exploitationin the west, large numbers of prestressed cables will be used in waterconservancy hydropower projects. For example, more than 1,000 prestressedanchor cables of 2,000 KN and 3,000KN will be used on the high slope ofwater conveyance system of right bank of the water conservancy engineeringin Zipingpu. Moreover, the number of prestressed cables used in Xiaowan andLongtan hydroelectric power station probably exceeds 10,000. It needs 4,000and 1,500 cables respectively for cable crane platform slope reinforcement offirst level hydroelectric power station in Jinping and underground factoryworkshops and aqueduct tunnels of the right bank of the Three Gorges Project.
    The technology of reinforcement with prestressed cables has become one ofthe most economical and effective methods to increase the stability andresolve complicated problems of geotechnical engineering.There are a lot of kinds of cables used in geotechnical engineering.According to different methods, cables can be divided into several types. Forexample, according to the structural types of the anchorage, cables can bedivided into OVM cables, QM cables, XM cables, and Feishi cables etc;According to the types of bodies of cables, cables can be divided into steelline cable, wire bundle cables with high strength, reinforcing steel cables;According to the service life, cables can be divided into temporary cables andpermanent cables;According to the bearing state of bond length, cables can beclassified into tensile force type, compressive force type and load dispersiontype. Meanwhile, anchor cables of load dispersion types can be divided intotensile dispersion type, compressive dispersion type, tension compression type,and shearing force type. In addition, there are observation anchor cables andremovable anchor cables. According to the current situation of technologydevelopment at home and abroad, it is not difficult for technologicalparameters of anchorage and body of the cable to meet the needs ofreinforcement technology. So for definite aims and practicability,classification according to the bearing state of bond length is widely used athome and abroad. There are two different theories of operating principle ofshotcrete-bolt supporting. One is based on the conception of structuralengineering. The basic characteristic of it is the “load-structure” mode. Ittakes the weight of probably collapsed parts from rock matrix and soil mass asload that is borne by shotcrete plus rockbolt support. The most typical theoryis hanging principle of anchor bolt supporting. The requirement of this theoryis that the length of anchor rod cut across the height of collapsed arch so as to
    hang collapsed rocks. Another is based on the conception of rock massengineering. The basic feature is fully utilizing self-stability and preventingdamage of rock. The main function of supporting and timely rationalconstruction steps is timely controlling deformation and displacement andimproving stress state. The major application fields of anchoring areprestressed anchoring of rock mass in underground excavation, slopereinforcement, prestressed sluice and side pier, and reinforcement of damfoundation and dam abutment.Because anchoring technology develops continuously, constructionmethods are improved and developed unceasingly. Anchor construction isvery covert and professional and the experience of builders directly influencesthe quality of construction, so the anchor construction should be undertakenby specialized contingents. The main technological processes includeconstruction organization design, drilling, making anchor, storage, set up,grouting, compressed water test, tension, and record. The technology ofdrilling, tension, and grouting is key factor of construction, so it should bepaid attention in construction.New type anchor structure refers to series of compressive force type andload dispersion type. They have more rational action mechanism, moreeffective anchoring result, better economical performance, and more extensiveapplication fields. In order to obtain anchoring mechanism of new dispersiontype anchor of compressive friction combination, simulation has been donefor compressive dispersion type anchor firstly, and then dispersion typeanchor of compressive friction combination is studied in this dissertation.Numerical calculation and analysis of compressive force dispersion typeanchor use large-scale international general software ANSYS. Deformation andmechanical condition of anchoring system are researched in this dissertation.
    ANSYS is based on finite element method. It transforms continuous solutionzone into a group of discrete infinite combined mutually elements, and then usesapproximate function in each unit to express fragmentary field functions thatshould be solved in the whole solving domain. Design tonnage of anchor cable is180t, and the body of cable is made up of 12 unbonded steel lines. Each anchorcable has 3 internal anchorages. The numerical simulation models ofanchoring system of unbonded prestressed anchor cable of compressivedispersion type and dispersion type anchor of compressive frictioncombination are built in the dissertation. Through the test of simulation bycomputer, for one cable under the action of anchoring force, axial stress ofmortar along the hole and the distribution rule of shear stress on the interfacebetween mortar and rock mass are obtained.Based on calculation and analysis, we get the following rules:( ⅰ ) Axial compressive stress distribution between internal anchorages andshear stress distribution on the interface between mortar and rock mass aremainly influenced by the cohesive force on the interface, but frictioncoefficient of the interface has less influence on it.(ⅱ) When the distance between two internal anchorages exceeds theminimal value, superimposition of axial stress and shear stress in the grout isnot serious, so the distribution towards be stable.(ⅲ) The ratio between elastic modulus E of grout and deformation modulus E′of rock mass has important influence on selection of distance between internalanchorages. The more E/ E′is small, the more shear distribution on theinterface between grout and rock mass is even, so the distance between twointernal anchorages can be reduced, vice versa.(ⅳ) Shear stress on the interface between grout and rock mass has a closerelation to the radius of the hole. When the radius is big, the distance between
    two internal anchorages can be reduced, vice versa.(ⅴ)The characteristics of shear distribution at the side of friction of internalanchorage and on the contact surface between two grouts show that shearresistance force is about 62KN for 140 type internal anchorage (length of frictionsegment is 180mm, diameter of friction segment is 95mm ) that is loaded with600KN. It is about 10% of 600KN load of each internal anchorage, so design forfriction of dispersion type internal anchorage of compressive frictioncombination is reasonable. Because it can effectively disperse the load onbearing board of internal anchorage, the reliability has been enhanced.(ⅵ) Determination of distance between two internal anchoragesHow to decide distance between two internal anchorages of unbondedprestressed anchor cable of compressive friction combination dispersion typeis a concerned question of cable designers. Through the numerical simulationand analysis method of three dimensional finite elements mentioned above,several major factors of influencing the distance between two anchorages hasbeen found out. They are cohesive force of grout and cemented interfacebetween concrete and bedrock, types of rocks, and the diameters of cableholes etc.Cable hole with high accuracy refers to the slope deviation of the end anchorhole and two-ended cable hole is respectively less than 2% and 1% according tothe design requirements. The main influencing factors of slope deviation arelithology of earth layer, mechanical equipment, and operations etc. To keep thehole straight by using fulcrum deviation correction principle through mechanicalanalysis of straight guide technology for horizontal hole and gentle inclined hole.Moreover, Specific measures have been represented in this paper. Then researchon flexural property and rules of horizontal holes in down-hole hammer drillingis performed. The conclusion is that the main influencing factors on hole bending
    in down-hole hammer horizontal drilling are geological factors and technologicalfactors. Construction technology is found out by the productive tests ofpreventing slope of holes. Horizontal cable holes with high straightness can bedrilled by down-hole hammer so as to meet the construction requirements of theprestressed anchor cable with huge tonnages.Roof bolter is very important equipment in anchor rod construction. DKM-1borer is developed in order to meet the technical requirements of high accuracyanchor cable hole. This borer has the following characteristics:( ⅰ ) Small volume and weight, excellent property, suitable for steep slope,cavity, and narrow and small fields.(ⅱ) High stability(ⅲ) Flexible to move the borer, having locating system, conveniently andaccurately locating(ⅳ) Drilling rod is dual wall rod in borerPatent drilling rod with high strength is developed in order to drill the holeswith high accuracy with DKM-1 borer. Patent drilling rod with high strength issuitable for horizontal anchor hole with high strength and it can keep the holestraight and prevent the hole slope by contrast to well drilling rod with highstrength. It meets the technological requirements of horizontal anchor hole withhigh accuracy by using preventing inclination structure in drilling tool.The performance parameters of borer are:Performance parameters of DKM-1borerdepth of drilling 100m stroke 1700mmfeed force 0~20KN diameter of hole 59~180mmangle of drilling 0~±15° diameter of spindle 93mmdrawing force 0~40 rotating speed 30r/min
    mass 960kg profile size 2750×1250×1200mmThe engineering characteristics of horizontal anchor cables with high accuracyin Three Gorges Water Conservancy Engineering are:( ⅰ) Advanced structural design(ⅱ) complicated geological conditions(ⅲ) High requirements of rock mass quality and deformation control(ⅳ) Anchoring engineering is the basic conditions and main measures toassure safety of construction and structureThe technical characteristics are:( ⅰ ) Horizontal hole(ⅱ) Deep hole and long anchor cable(ⅲ) High accuracy of the hole(ⅳ) Projects in a large amount and with many types(ⅴ) Design in pace with machine(ⅵ) Hard working conditions(ⅶ) Many contradictions and big disturbanceIt assured the successful completion of Three Gorges WaterConservancy Engineering by using new techniques and a series ofconstruction measures, such as utilizing DKM-1 roof bolter developedby ourselves for horizontal anchor cable engineering with highaccuracy. The main measures include:( ⅰ) Improvement of drilling technology(ⅱ) Deviation measuring technology(ⅲ) Technology improvement of braiding bundle(ⅳ) Methods of anchor cable passing through(ⅴ) Grouting technology
    (ⅵ) Tension technologyIn view of a series of problems in construction, test is done and technicalconstruction technology of prestressed anchor cable is improved. Construction ofmore than 4,000 cables is finished on time. Engineering operation and dataanalysis show that excellent anchoring quality and good results are obtained.Through theoretical analysis and engineering practice of Three Gorges WaterConservancy, Basic theory is established for technique of horizontalanchor cable hole drilling with high accuracy, and a set of typicaltechniques are groped. They will offer reference to similarengineering.
引文
[1] 陆士良等著,锚杆锚固力与锚固技术.北京:煤炭工业出版社,1998
    [2] 熊厚金主编,国际岩土锚固与灌浆新进展.北京:中国建筑工业出版社,1996
    [3] 胡定等译,锚固技术在岩土工程中的应用.北京:中国建筑工业出版社,1987
    [4] 梁炯均主编,锚固与注浆技术手册.北京:中国电力出版社,1999.9
    [5] 程良奎等,岩土加固实用技术.北京:地震出版社,1994
    [6] 中国岩土锚固工程协会,岩土锚固工程技术北京:人民交通出版社 1998
    [7] 郑重远等著,树脂锚杆及锚固剂.北京:煤炭工业出版社,1983
    [8] 程良奎等,著岩土锚固.北京:中国建筑工业出版社,2003
    [9] 王冲编,预应力锚固的施工. 北京:水利水电出版社,1987
    [10] 中国煤田地质总局编著,钻探工艺,北京:煤炭工业出版社,1995
    [11] 陈谱主编,钻井技术手册(四)-钻具,北京:石油工业出版社,1992
    [12] 中国水利水电科学研究院,“948”韩国压缩分散型预应力锚索技术和生产线引进项目科研工作报告, 2005.8
    [13] 铁道部第一勘测设计院编,地质钻探常用计算.北京:中国铁道出版社,1985
    [14] 蒋鹤,锚杆锚索加固坡作用机理分析研究,重庆交通学院硕士论文,1999.12
    [15] 刘智,锚固技术与高边坡病害整治过程研究,辽宁工程技术大学硕士论.2004.5
    [16] 徐年丰,三峡工程岩体预应力锚索的试验研究及锚索几个关键问题的探讨,武汉水利电力大学硕士论文,2000.4
    [17] 水利部水利水电规划设计总院编,预应力锚固技术,1999.9
    [18] 梁炯均,我国岩土工程预应力锚索的发展与问题,国际岩土锚固与灌浆新进展,中国建筑工业出版社,1996.5
    [19] 刘俊柏,中国水电建设中预应力技术的应用与发展,预应力混凝土现状与发展(文集),中国土木工程学会混凝土及预应力混凝土学会后张预应力混凝土结构委员会编印,1992.5
    [20] 王经五,我国水电工程预应力锚固技术的应用与发展,北京国际岩土锚固技术交流会论文集,1993
    [21] 长江三峡工程永久船闸高边坡岩锚锚固预应力锚索腐蚀性能分析,长江科学院(院编号99-141), 1999.11
    [22] 盛宏光,压力分散型锚索锚固性能与设计方法研究,成都理工大学硕士论文,2003,6
    [23] 程良奎,《我国岩土锚固技术的现状与发展》,《岩土工程中的锚固技术》,地震出版社,1991
    [24] 徐祯祥.岩土锚固工程技术的发展与回顾.徐祯祥等主编.岩土锚固技术与西部开发北京:人民交通出版社,2002 年 10 月.1~18
    [25] 田裕甲.压力分散型锚索与拉力型锚索的比较,OVM 通讯,2002 年第 3期,32~40
    [26] 燕立群等.压力分散型锚索与拉力型锚索的比较.徐祯祥等主编.岩土锚固技术与西部开发.北京:人民交通出版社,2002 年 10 月.19~26
    [27] 沈强喜,预应力锚索抗滑桩设计和加固机理及加固效果研究,河海大学硕士论文,2005.3
    [28] 何思明,预应力锚索作用机理研究,西南交通大学博士论文,2004.3
    [29] 邓梦春,樊腊生.潜孔锤钻进水平锚索孔的防斜技术,探矿工程,1999 年增刊
    [30] 姚宁平等,42CrMo G105 高强度钻杆摩擦焊接性能分析,探矿工程(岩土钻掘工程),2004.2:42
    [31] 郭玉芳,压力分散型锚索与普通拉力型锚索的对比,探矿工程(岩土钻掘工程),2004.5:39~40
    [32] 齐元龙,姜艳玲,压力分散型预应力锚索的施工与应用,广西水利水电, 2004(增刊)
    [33] 汪敏华, 澳大利亚长孔水平钻机在淮南煤矿井下的应用,探矿工程,2000.1:27~28
    [34] 田野,长江三峡水利枢纽永久船闸高精度锚索孔施工工艺,探矿工程,1999. 2:22~24
    [35] 田野,田伟, 长江三峡永久船闸高精度锚索孔导直理论,西部探矿工程,2000.1:36~38
    [37] 张福贤,垂线孔和水平孔施工技术,水文地质工程地质,1994.1:57~59
    [38] 邓学军,赵伟,高精度预应力对穿锚索保直工艺初,地质灾害与环境保护,2000.3:83~85
    [39] 邹俊, 三峡船闸高边坡预应力锚固施工技术,中国地质灾害与防治学报,2004.6:98~103
    [40] 胡建林,张培文,张智浩, 三峡永久船闸对穿锚索施工关键技术及加固效果,岩石力学与工程学报,2005.11:3847~3851
    [41] Barley, A.D., Chris R. Windsor. Recent advances in ground anchor and ground reinforcement technology with reference to the development of the art. proc. International Conference on Geotechnical and Geotechnical Engineering. Melbourne, Nov 2000
    [42] Barley, A.D., Payne, W.D., McBarron, P.L.. Six rows of high capacity removable anchors support deep soil mix coferdam.12th European conference in soil mechanics and geotechnical engineering. Amsterdam, June 1999
    [43] Wang Jianyu. Performance of fixed anchor in ground anchorage. Proceedings of international conference on anchoring&grouting towards the new century. Oct.1999, Guangzhou, China, 119~123
    [44] Robert Y. Liang, Y. Feng. Development and application of anchor-soil interface models. Soils and Foundations. Vol. 42 No. 2, Apr. 2002, 59~70
    [45] 中国工程建设标准化协会标准《土层锚杆设计与施工规范》(CECS22: 90).北京:中国计划出版社,1990 年 9
    [46] 朱杰兵,韩 军,程良奎,等. 三峡永久船闸预应力锚索加固对周边岩体力学性状影响的研究[J]. 岩石力学与工程学报,2002
    [47] 中冶集团建筑研究总院,长江科学院,东北岩土工程公司. 三峡永久船闸高边坡预应力锚固技术的研究与应用[R]:中冶集团建筑研究总院,长江科学院,东北岩土工程公司.
    [48] 高大水,曾 勇. 三峡永久船闸高边坡锚索预应力状态监测分析[J]. 岩石力学与工程学报,2001.20(5):653~656.
    [49] 余太金. 特大预应力对穿锚索施工技术[J]. 岩土工程技术,2002.(2):119–122. [50] 陈孝英.三峡永久船闸锚固工程中的几项技术创新[J].中国三峡建设, 2001. 8 (1):18–20.
    [51] 徐长义,吴海斌. 三峡永久船闸高边坡工程研究[J]. 华北水利水电学 院学报,1999.20(2):9–13.
    [52] 郑守仁,刘宁.水利枢纽工程质量标准及监控[S],北京:中国水利水电出版社,2000.
    [53] 梅锦煜,党立本.水利水电工程施工手册——土石方工程(第二卷)[M].北京:中国电力出版社,2002
    [53] Dublin Port weighs anchors. European Foundations, Winter 2001
    [54] Stop Press Information. Single Bore Multiple Anchor LTD
    [55] Barley, A.D., Payne, WD., McBarron, P.L.. a Reinforced Soil Mix Wall coferdam Supported by High capacity Removable Soil Anchors.
    [56] Barley, A.D., Payne, W.D., McBarron, P.L.. Six rows of high capacity removable anchors support deep soil mix coferdam.12th European conference in soil mechanics and geotechnical engineering. Amsterdam, June 1999
    [57] Wang Jianyu. Performance of fixed anchor in ground anchorage. Proceedings of international conference on anchoring&grouting towards the new century. Oct.1999, Guangzhou, China, 119-123
    [58] Barley, A.D.. Theory and practice of the single bore multiple anchor system. Proc. Int. Symp.on Anchors in Theory and Practice. A. A. Balkema: Roterdam, 1995
    [59] Barley A. D. Properties of anchor grouts in confined state. Proc.anchorages and anchored structures. London, Mar 1997
    [60] Heavy loads ahead. Ground Engineering, 199730/2, 14~15
    [61] Multiple choice. New Civil Engineering (NCE), Dec 16`s, 2001
    [62] Stroud M.A. The standard penetration test in insensitive clays and soft rocks. Proc. European seminar on pentration testing. Stockholm, 1974
    [63] B. Benmokrane, M. Chekired, H. Xu et al. Behavior of grouted anchors subjected to repeated loadings in field. Journal of Goetechnical Engineering, May 1995, 413~419
    [64] Zienkiewicz,().C.(1971)'The Finite Element Method in Engineering Science London/New Yock:McGraw-Hill
    [65] Zienkiewicz, 0. C. and Cormeau, l. C. (1972)'Visco-Plasticity Solution by the finite element process', Arch. Mech. 24, 873-888
    [66] JunKanda,HareshShah. Engineering role in failure lost evaluation for building (J).Structral safety, 1997, 19(1): 79~90;
    [67] Spang.K, Lngenierubij Bung, Heidelbery. Stabilization of rock Slope by anchoring(J).Germany, TSRM, 1991;
    [68] Lymon C.Reese. Laterally Loaded Piles: Program Documentation [J].Journal of the Geotechnical Engineering Division, Proceedings of the ASCE, 1977, Vol.103: 290-297;
    [69] Guo WD, Lee FH. Load transfer approach for laterally loaded piles[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2001,25 (I1):1101~1129;
    [70] Reese L. C.,Cox W. R.,Koop F. D.. Analysis of Laterally Loaded Piles in Sand [J].Houston, Paper OTC2312, 1975: 671~690;
    [71] Reese L. C.,Welch R. C. Lateral loadings of Deep Foundations in Stiff Clay [J] Div, ASCE, 1975, 101(7):633~649;
    [72] Ito.T,Matsui.T. Methods to estimate lateral force acting on stabilizing piles[J].Soils and Foundations, 1975.15(4):43~59;
    [73] 中国力学学会办公室,中国科学院力学研究所LNM开放实验室.材料和结构的不稳定性仁[M].科学出版社,1993;
    [74] I to. T., Matsui. T.,Hong. W. P. . Design method for stabilizing piles against landslide-one row of piles[J].Soils and Foundations, 1981, 21(1):21~37;
    [75] Ito.T.,Matsui.T.,Hong. W. P. Extended design method for multi-row stabilizing piles against landslide [J]. Soils and Foundations, 1982, 22(1):1~13;
    [76] 龚晓南,叶黔元等.工程材料的本构方程[M].中国建筑工业出版社,1995。
    [77] 吕西林,金国芳等.钢筋混凝土结构非线性有限元理论与应用[M].同济大学出版社,1997;
    [78] 陈进杰,贾金青.土钉支护工作性能参数分析[J].岩土工程学报,2001, (5):618~6220
    [79] 铁道部科学研究院西北研究所.预应力锚索抗滑桩试验研究仁[M]兰州:铁道部科学研究院西北研究所,1989;
    [80] 余振锡.预应力锚索抗滑桩在滑坡治理中的应用「J].金属矿山,1998 (4): 10~12;
    [80] K·金布格,B·依申柯.锚杆抗滑桩组合结构的计算[J].王世才,俞邦瑞译.滑坡文集.第5集.北京:中国铁道出版社,1986: 117-120;
    [81] 薄长顺.拉杆锚固桩墙的设计与施工[J].路基工程.1987, Vol.3: 54~58;
    [82] 田景贵,范草原预应力锚索抗滑桩的机理初步分析及设计[J].重庆交 通学院学报,1998, Vol.17 (4). 59~64;
    [83] 刘小丽,周德培,杨涛.预应力锚索抗滑桩设计中确定锚索预应力值的 一种方法[T].工程地质学报,2002, Vo110 (3): 317~320;
    [84] 曾德荣,李霖.抗滑桩锚索联合体系特性研究〔J1.重庆交通学院学报,2001,Vo1.20 (2): 78~82;
    [85] 陈占.预应力锚索桩设计与计算[J].地球科学,2001, Vol.26 (4): 352 ~356;
    [86] 励国良.锚索抗滑桩的设计计算及其试验验证[J].滑坡文集,第10集.北京:中国铁道出版社,1993: 121~131;[87」 杨佑发,刘光华预应力锚索抗滑桩内力计算的有限差分“m-k”法[J7.中国地质灾害与防治学报,2002, Vol. 13 (3): 78~81;
    [88] 吴向阳,毛由田,余振锡.预应力锚索抗滑桩在山体滑坡加固工程中的应用[J]煤炭科学技术,2000, Vol. 28 (3): 7~10;
    [89] 胡志毅.预应力锚索抗滑桩在失稳斜坡治理中的应用[J].江西有色金属,1999,Vol.13 (2): 2~4;
    [90] 林鲁生,刘祖德.滑坡治理的发展概况以及加固方案的选择[J].广东水利水电,2001,(2) :3~5;[911 邹金锋,李亮,阮波.预应力锚索在加固滑坡中的优化设计[J].矿业工程,2003,(12):18一20;
    [92] 张晗旭.关于预应力锚索加固效应研究的几点看法[J].河海大学学报,1999, 7,Vol.27 (4): 93~96;
    [93] 胡敏云.深基坑桩排式支护桩侧土压力及设计方法研究[Ml.成都:西南交通大学研究生博士学位论文.1998: 45~83;
    [94] 吴子树土拱的形成机理及存在条件的探讨[J].成都科技大学学报.1995, (2):15~19;
    [95] 任青文,罗军锚杆应用及加固机理研究综述[J].水利水电科技进展,1997, (1):29~33;
    [95] 毕思文,尤逢仕.煤矿地下工程的岩土地质力学与锚固技术研究[M].北京:地震出版社,1992: 166~171;
    [96] 王卫国.加锚岩体的计算模型及数值仿真分析仁[M].南京:河海大学研究生硕士学位论文.2003: 9一l0;
    [97] 钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,1996.
    [98] 张天宝.土坡稳定分析和上工建筑物的边坡设计[M].成都:成都科技大学出版社,1987:81~126;
    [99] 钱家欢,土力学「M].南京:河海大学出版社,1995
    [100]周资斌,章青,吴锋.弹塑性有限元和刚体极限平衡法混合分析土坡稳定[J] 安徽建筑工业学院学报(自然科学版),2003, Vo1.11 (3): 5~8;
    [101] 卓家寿.弹塑性力学中的广义变分原理[M].河海大学出版社,1999;
    [102] 华东水利学院.弹性力学问题的有限单元法[M].水利电力出版社,1978;
    [103] 姜弘道,陈和群.有限单元法的程序设计[M].水利电力出版社,1989;[104〕任青文.非线性有限单元法[M].河海大学出版社,1997;
    [105] 任青文等,300米级高拱坝工作及破坏机理和现代设计理论与方法的研究[D]国家自然科学基金委员会,1997: 59~61;
    [106] 任青文等.岩质高边坡的失稳和治理分析[J]..岩石力学和工程学报,1991, 10(1):33~42;
    [107] 陆晓敏,任青文.重力坝沿建基面抗滑稳定安全系数的研究[J].河海大学学报,1999, 27(力学专辑):134-138;
    [108] 任青文,余天堂,马良箔.三峡大坝左厂3号坝段稳定性的数值分析和试验研究[J].中国工程科学,1999, 1 (3): 41~45;
    [109] 唐家祥,王仕统等.结构稳定理论[M].中国铁道出版社,1989;
    [110] Ito.T.,Matsui. T.,Hong. W. P.. Design method for the stability analysis of the slope with landing pier[J]. Soils and Foundations, 1979, 19(4):43~57;
    [111] Hassiotis. S.,Chameau. J. L.,Gunaratne.M.. Design method for stabilization of slope with piles [J]. Journal of Geotechnical and Geoenvironmental Engineering,1997, 123(4):314~323.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700