用户名: 密码: 验证码:
大兴安岭中南段喷流—沉积成矿特征与成矿预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国大兴安岭中南段位于东西向古生代古亚洲构造-成矿域与北北东向中新生代滨西太平洋构造成矿域强烈叠加复合-转换的部位。从而使大兴安岭地区的成矿地质条件优越、成矿期次多、成矿强度大、矿床类型多样。大兴安岭中南段铜多金属矿床的前期研究工作多注重花岗岩成矿理论及模式的建立,认为区内矿床大都是与燕山期岩浆活动有关的热液矿床。笔者经过近五年的野外和室内工作,通过区城地质、地层地球化学、岩石学、岩石化学、微量元素,同位素和流体包裹体等方面综合研究了区内古生代喷流-沉积成矿作用特征,结合成矿理论和数学地质理论进行成矿预测,取得如下一些新的认识:
     (1)首次对大兴安岭中南段在二叠纪沉积盆地演化过程中的水下喷流-沉积成矿作用特征进行深入系统的研究,从而厘定了一个新的成矿时代和成矿系列,尽管历来被人们所忽视,但其重要性可能并不亚于燕山期的岩浆热液成矿作用。
     (2)热水沉积岩和热水沉积成矿作用是当前地学界前缘的研究热点之一,主要集中在深海盆地中,但是对于很浅的海水/湖水的浅水环境研究较少,国内也仅仅对湖相成因的喷流岩做过一些分析研究。作者首次对浅水环境下形成的喷流-沉积矿床进行系统分析,这对矿床学的研究无疑是认识上的新突破。
     (3)首次将喷流-沉积成矿划分为如下2种类型:海底喷流-沉积成矿和湖相喷流-沉积成矿。研究区海底喷流-沉积成矿以小坝梁VMS型铜、金矿床和黄岗梁层控夕卡岩型锡、铁多金属矿床为代表;湖相喷流-沉积成矿以大井SEDEX型锡、铜多金属矿床为代表。
     (4)首次将研究区喷流-沉积成矿的环境厘定为裂陷槽盆地,并对其做了深入翔实的分析。
     (5)以成矿理论和数学地质理论为指导,研究地质、物探、化探和遥感信息之间的关联,并首次运用证据权重法(Weights of Evidence Model)建立该区的证据权重成矿预测模型,圈定喷流-沉积成矿的找矿远景区。这一研究对该区的矿产资源预测与评价具有重要的参考价值。
The middle-southern segment of the Da Hinggan Mountains is located at the supperimposed, composite and transformed portion where the Mesozoic NNE-stretching tectonic domain of the global Circum-Pacific belt strongly overprints the Paleozoic E-W-stretching tectonic domain of the Paleo-Asian Ocean. The early-stage research of copper-polymetallic deposits has been largely focused on magmatic metallogenic theory and model. Based on this fact, most of the ore deposits were regarded as epigenetic hydrothermal deposits in genetic connection with the Mesozoic magmatism. Based on the previous studies, this work is mainly aimed at the genesis and evolution of subaqueous exhalative mineralization by the study on the regional geology, strata geochemistry, petrology, mineralogy, petrochemistry, trace elements, isotopes and fluid inclusion, and some scientific results are obtained as follows:
     (1) It is a new opinion that the subaqueous exhalative mineralization has occured during the basin evolution at the Permian time in the study area, which is ignored and poorly understood, but might be as important as the hydrothermal mineralization connected with the Mesozoic magmatism.
     (2) Exhalites and the exhalative sedimentary mineralization has been the research hotspot in recent years among the geologists, which were largely focused on deep-sea basin, but scarcely on the shallow subaqueous environment. Especially in China, this research is limited to shallow subaqueous exhalites, but scarcely to mineral deposits. A new type shallow water exhalative mineralization is put forward to in this paper for the fist time. What’s more, it is an innovative breakthrough to mineral deposits.
     (3) In the study area, the exhalative sedimentary deposits are divided into the Xiaobaliang VMS type deposit related to the deep-sea basin environment, and the Dajing SEDEX type deposit related to the lacustrine basin environment for the first time.
     (4) The geological setting of subaqueous exhalative mineralization was regarded as“Dashizhai Rift Basin”(DRB) for the first time, between the“Siberia Plate”(SP) and the“North China Plate”(NCP).
     (5) Guided by the mineralization theory and the theory of mathematieal geology, from the perspective of geological evolution, we studied the relationship of geology, physical exploration and geochemical exploration. The GIS-based weights of evidence modeling has been constructed, and forecast prospects have been delineated by using GIS techniques on the basis of the geological data. The results of research will provide a scientific basis for the further exploration and development of the mineral resources in the study area.
引文
Agterberg, F. P. Computer program for minearal expolation[J]. Science, 1989, 245:76-81.
    Agterberg, F. P., Bonham-Carter, G.. F. and Wrigth, D. F. Statistical pattern integration for minearal expolation[A]. In: Gaal, G. and Merriam, D. F., eds, Computer application in resources exploration and assessment for mineral and petroleum[C]. Oxford: Pergermon, 1990, 1-21.
    Alldrick, D. J. Subaqueous Hot Spring Au-Ag (G07) [A]. In: Lefebure, D. V. and Ray, G. E. (Editors), Selected British Columbia Mineral Deposit Profiles, volume 1–Metallics and Coal[C]. British Columbia Ministry of Employment and Investment, 1995, 55-58.
    Andrews, T. E. and Fallick, A. E. Stable isotope in sedimentary geology[J]. GBR, 1989, 146(4): 721-732.
    Araujo, C. C. D. and Macedo, A. B. Multicriteria Geologic Data Analysis for Mineral Favorability Mapping: Application to a Metal Sulphide Mineralized Area, Ribeira Valley Metallogenic Province, Brazil [J]. Natural Resources Research, 2002, 11(1): 29-43.
    Augustithis, S. S. Atlas of the sphaeroidal textures and structures and their genetic significance[M]. Athens: Theophrastus Publication, 1982, 38-42.
    Bonham-Carter, G.. F., Agterberg, F. P., and Wrigth, D. F. Integration of geological datasets for gold exploration in Nova Scotia [J]. Photogrammetry and Remote Sensing, 1988, 54: 1585-1592.
    Bonham-Carter, G.. F. Geographic information systems for geoscientists: modelling with GIS[M]. Oxford: Pergermon, 1994, 1-10.
    Barrett, T. J. and Sherlock, R. L., Geology, lithogeochemistry and volcanic setting of the Eskay Creek Au- Ag-Cu-Zn deposit, Northwestern British Columbia[J]. Exploration and Mining Geology, 1996, volume 5: 339-368.
    Berg, L. R. Tungsten skarn mineralization in a regional metamorphic terrain in northern Norway: a possible metamorphic ore deposit[J]. Mineral Deposits, 1991, 26: 281-289.
    Bernstein, S. and Knudsen, C. Epithermal gold and massive sulphide mineralisation in oil impregnated Palaeogene volcanic rocks of Ubekendt Ejland, West Greenland[A]. In: Sonderholm Martin and Higgins A K eds. Review of Survey activities 2003[C]. Copenhagen: Danmarks and Gronlands Geologiske Undersogelse, 2004, 77- 80.
    Best, M. G.Igneous and Metamorphic petrology[M].New York: Freeman, 1982, 1-279.
    Bird, D. K., Schiffman, P., Elders, W. A., Williams, A. E. and McDowell, S. D. Calc-Silicate mineralization in active geothermal systems[J]. Econ. Geol., 1984, 79: 671-695.
    Bischoff, J. S. and Manheim, F. T. Economic potential of Red Sea heavy metal deposits[A]. In: hot brines and recent heavy metal deposits of the Red Sea[C]. Degens, E. T. and Ross, D. A. eds. New York, Springer-Verlag, 1969, 535-541.
    Bonin, B. From orogenic to anorogenic setting: evolution of granitoid suites after a major orogenesis[J]. Geol. J, 1990, 25: 261-270.
    Chen, D. F., Chen, G. Q., Pan, J. M., et al. Characteristics of hydrothermal sedimentation of the Dajiangping giant pyrite deposit in Yunfu, Guangdong [J]. Geochimica, 1998, 27(1): 12-19.
    Craig, H. Isotopic composition and origin of the Red Sea and Salton Sca geothermal brines[J]. Scicnce, 1966, 154:15-44.
    Deng, J., Yang, L. Q., Sun, Z. S., et al. Late Paleozoic fluid systems and their ore-forming effects in the Yuebei Basin, Northern Guangdong, China[J]. Acta Geologica Sinica, 2005, 79 (5): 673-815.
    Duncan, R. M., Stewart, A., Pearson, P. N., Ditchfield, P. W. and Singano, J. M. Miocene tropical Indian Ocean temperatures: Evidences from three exceptionally preserved foraminiferall assemblages from Tanzania[J]. J. Afr. Earth Sci., 2004, 40: 173-190.
    Durga, P., Rao, N. V. N., Behairy, A. K. A. and AI-Imam, O. A. O. Mineral phases and facies characterization in metalliferous sediments of Atlantis II deep,red sea[J]. Marine Geology, 59: 1-12.
    Einaudietal, M. T., Meinert, L. and Newberry, R. J. Skarn deposits[J]. Econ. Geol. 75th Anniv., 1981, 317-391.
    Fleet, A. J. Hydrothermal and hydrgeneos ferro-mangan deposits: Do they form a continuum?The rare earth element evidence in hydrothermal processes at sea floor spreading center [A]. in: Rona, P. A. eds., Hydrothermal processes at sea floor spreading centers[C]. New York: Plenum Press, 1983, 533-555.
    Goodfellow, W. D. Edimentary basinal fluid compositions, anoxic oceans and the origin of sedex Zn-Pb deposits[A]. In: Geological Survey of Canada eds, GeoCanada 2000; the millennium geoscience summit[C]. Waterloo: Geological Association of Canada, 2000, 25.
    Gross, C. A. and Moleod, C. R. Metallic minerals on the deep seabed[J]. Canada Geological Survey, 1987, 86(21): 65. Guidry, S. A. and Chafetz, H. S. Anatomy of siliceous hot springs: examples from Yellowstone National Park, Wyoming, USA[J]. Sedimentary Geology, 2003, 157: 71-106.
    Hannington, M. D. Shallow Submarine Hot Spring Deposits[J]. MDRU Short Course #20 Cordilleran Mineral Deposit Models, Vancouver, 1998, 28-29.
    Hekinian, R. F. Sulfur deposits from the East Pacific Rise 21°N [J]. Science, 1980,207.
    Hirano, M., Hamuro, K. and Onuma, N. Sr/Ca-Ba/Ca systematics in Higashi-Izumonogenetic volcanic group, Izu peninsula, Japan[J]. Geochemical J, 1982, 16: 311-320.
    Hutchinson, R. W. Massive base metal sulfide deposits in sedimentary rocks and their metallogenic relationship during Proterozoic time[A]. In: Paper presented at joint meeting of AIME-SEG, Chicago [C]. Abstract in Econ Geol, 1973, 68-138.
    Hutchison, R. W. Evidence of exhalative origin for Tasmanian tin deposits[A]. Trans,Canadian Ins. Min, Metall[C]. 1979, 82: 116-130.
    James, C. Z., Lowell, D. S. and Lohmann, K. C. Evolution of Early Cenozoic marine temperatures. Paleoceangraphy, 1994, 9: 353-387.
    Kekelia, S., Kekelia, M., Otkhmezuri, Z., et al. Ore-forming systems in volcanogenic-sedimentary sequences by the example of base metal deposits of the Caucasus and East Pontic metallotect [J]. Bulletin of the Mineral Research and Exploration Institute of Turkey, 2004, 129: 1-16.
    Keith, M. L. and Weber, Y. N. Carbon and oxygen isotopic composition selected limestones and fossils. Geochem. Cosm. Acta., 1964, 28: 1787-1816.
    Large, D. E. The evolution of sedimentary basins for massive sulfide mineralization[A]. Friedrich, G.. H , Herzig P M. eds. Base metal sulfide deposits[C]. Berlin: Springer Verlag, 1988, 32.
    Lear, C. H., Elderfield, P. A. and Wilson, P. A., Cenozoic deep–sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite[J]. Science, 2000, 287, 269-272.
    Lehmann, B., Schneider, H. J. Strata-bound tin deposits[A]. In: Wolf K H ed. Handbook of strata-bound and stratiform ore deposits Vol 9[C]. Amsterdam: Elsevier, 1981, 743-768.
    Li, J. H., Kusky, T. M., Niu, X. L., et al. Neoarchean massive sulfide of Wutai Mountain, North China; a black smoker chimney and mound complex within 2.50 Ga-old oceanic crust[J]. Developments in Precambrian Geology, 2004, 13: 339-362.
    Liu, J. M., Ye, J., Li, Y., et al. A preliminary study on exhalative mineralization in Permian basins, the southern Segment of the Da Hinggan Mountains, China-Case studies of Huanggang and Dajing deposits[J]. Resource Geology, 2001, 51: 345-358.
    Liu, J. M., Ye, J., Zhang, A. L., et al. A new exhalite–type Siderite sericite chert formed infault–controlled lacustrine basin[J]. Science in China(SeriesD), 2001, 44: 408-415.
    Lundmark, C., Stein, H. and Weihed, P. The geology and Re/ Os geochronology of the Palaeoproterozoic Vaikijaur Cu-Au-(Mo) porphyry-style deposit in the Jockmock granitoid, northern Sweden[J]. Mineralium Deposita, 2005, 40( 4): 396-408.
    Lyons, T. W., Gellatly, A. M., McGoldrick, P. J, et al. Proterozoic sedimentary exhalative (SEDEX) deposits and links to evolving global ocean chemistry[A]. In: Kesler Stephen E and Ohmoto Hiroshi eds. Evolution of early Earth's atmosphere,hydrosphere, and biosphere; constraints from ore deposits[C]. Memoir - Geological Society of America, 2006, 198: 169-184.
    MacDonald, A. J., Lewis, P. D., Thompson, J. F. H., et al. Metallogeny of an Early to Middle Jurassic Arc, Iskut River Area, Northwestern British Columbia[J]. Economic Geology, 1996, volume 91: 1098-1114.
    MacIntyre, D. G. SEDEX-sedimentary-exhalative deposits[A]. In: McMillan, W. J, Hoy T, MacIntyre, D. G, et al, eds. Ore Deposits, Tectonics and Metallogeny in the Canadian Cordillera[C]. Victoria: Queens Printer for British Columbia, 1992, 25-66.
    Magnusson, N. H. Iron and sulfide ores of central Sweden[J]. 21th IGC, Copenhagen, Excursion Guides A26 and C21, 1960,1-48.
    Mantero, E. M. and Alonso C. F. M. Structural control of the massive sulfide deposits in the mineral cut of the northern vein, Tharsis, Iberian Pyrite Belt [A]. In: Universidad de Huelva, Huelva, Spain eds, 6th geological congress of Spain, Volume 3[C]. Madrid: Sociedad Geologica de Espana, 2004, 81-84.
    Mashkovtsev, G. A., Kochenov, A. V. and Khaldey, A. Ye. Hydrothermal-sedimentary formation of stratiform uranium deposits in Phanerozoic depressions [A]. In: Kholodov V N and Mashkovstev G A eds, Rare metal-uranium ore formation in sedimentary rocks; collection of scientific works[C]. Moscow: Nauka. Moscow, Russian Federation, 1995, 37-51.
    Marchig, V., Gundlach, H., Moller, P., et al. Some geochemical indicators of discrimination between diagenetic and hydrothermal metalliferous sediments[J]. Marine Geology, 1982, 50: 241-256.
    Mozley, P. S. and Wersin, P. Isotopic composition of siderite as an indicator of depositional environment[J]. Geology, 1992, 20 (9): 817- 820.
    Narayanan1, V., Anirudhan1, S., and Andrea, G. G.. Oxygen and carbon isotope analysis of the Miocene limestone of Kerala and its implications to palaeoclimate and its depositional setting. Current Science, 2007, 93(8): 1155-1159.
    Nelson, C. S. and Smith, A. M. Stable oxygen and carbon isotope compositional fields for skeletal and diagenetic components in New Zealand Cenozoic nontropical carbonate sediments and limestones: A synthesis and review. N. Z. J. Geol. Geophys., 1996, 39: 93-107.
    Nigel, H. T., Stephen, R. F. and Ruth, K. Subaqueous silicification of the contents of small ponds in an Early Devonian hot-spring complex, Rhynie, Scotland[J]. Can. J. Earth Sci., 2003, 40: 1697–1712.
    Oen, I. S., Maesschalck, A. A. and Lustenhouwer, W. J. Mid Proterozoic exhalative sedimentary Mn skarns containing possible microbial fossil, Grythyttan, Bergslangen, Sweden[J]. Econ. Geol., 1986, 81: 1533-1543.
    Panteleyev,A. Hot-spring Hg[A]. In: Lefebure,D.V. and Hoy, T., eds, Selected BritishColumbia mineral deposit profiles[C]. British Columbia Ministry of Employment and Investment,Volume 2-Metallic Deposits, open file 1996-13, 1996a, 31-32.
    Panteleyev, A. Hot-spring Au-Ag[A]. In: Lefebure,D.V. and Hoy, T., eds, Selected British Columbia mineral deposit profiles[C]. British Columbia Ministry of Employment and Investment,Volume 2-Metallic Deposits, open file 1996-13,1996b, 33-36.
    Poulsen, K.H. and Hannington, M.D. Volcanic-associated massive sulphide gold[A]. In: Eckstrand, O. R., Sinclair, W. D. and Thorpe, R. I., eds, Geology of Canadian mineral deposit types[C]. Geological Survey of Canada, Geology of Canada, number 8, 1996, 183-196.
    Park, S. H., Park, S. W. and Kwon, S. J. Development of technical and economic evaluation model for seafloor massive sulfide deposits[J]. Ocean and Polar Research, 2006, 28(2): 187-199.
    Peng, R. M,, Zhai, Y. S., Wang, Z. G., et al. Discovery of double-peaking potassic volcanic rocks in Langshan Group of the Tanyaokou hydrothermal-sedimentary deposit, Inner Mongolia, and its indicating significance[J]. Science in China Ser. D Earth Sciences, 2005, 48(6): 822-833.
    Peter, J. M., Goodfellow, W. D. and Doherty, W. Hydrothermal sedimentary rocks of the Health Steele Belt, Bathurst mining camp, New Brunswick; Part 2, Bulk and rare earth element geochemistry and implications for origin [A]. In: Peter Jan M,Goodfellow Wayne D and Doherty W eds, Massive sulfide deposits of the Bathurst mining camp, New Brunswick, and northern Maine[C]. Lancaster: Economic Geology Publishing Co., 2003, 391-415.
    Pearce, J., Harris, N. B., Tindle, A. G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Jour. Petrol., 1984, 25: 956-983.
    Plyusnina, L. P. and Vysotsky, S. V. Two-phase separation of fossil hydrothermal fluids in the Mid-Indian Ridge ophiolites[J]. Geochimica et CosmochimicaActa, 58(9): 2035-2039.
    Plumb, K. A, Ahmad, M., Wygralak, A. S. Mid-Proterozoic basins of the North Australian craton—regional geology and mineralisation.In: Hughes F E, ed. Geology of the Mineral Deposits of Australiaand Papua New Guinea (Volume 1) [M]. The Australasian Institute of Mining and Metallurgy Clunies Ross House, Victoria, 1990, 881-902.
    Patrick, J. W. An Introduction to the Metallogeny of the McArthurRiver_Mount Isa-Cloncurry Minerals Pronince[J]. Economic Geology, 1998, 93: 1120-1131.
    Qi, H. W., Hu, R. Z., Su, W. C., et al. Continental hydrothermal sedimentary siliceous rock andgenesis of superlarge germanium (Ge) deposit hosted incoal: A study from the Lincang Ge deposit, Yunnan, China[J]. Science in China Ser. D Earth Sciences, 2004, 47(11): 973-984.
    Rittmann, A. Note to contribution by V. Gottini on the“serial character of volcanic rocks of Pantelleria”[J]. Bull. Volcano, 1970, (33): 979-981.
    Rona, P. A. Criteria for recognition of hydrothermal mineral deposits in ocean crust[J]. Econ.Geol. 1978, 73(2): 135-160
    Rona, P. A. Hydrothermal mineralization at oceanic ridge[J]. Mineralogist. 1980, 26: 431-465.
    Rona, P. A. Hydrothermal mineralization at seaftoor spreading centers [J]. Earth-Science Reviews, 1984, 20: 1-104.
    Rona, P. A. Hydrothermal mineralization of oceanic ridges[J]. Canadian Mineralogy, 1988, 26(3): 447-465.
    Rona, P. A.,Scott S.P. A special issue on sea-floor hydrothermal mineralization: New perspectives[J]. Econ Geo1., 1993, 88(8): 1935-1976.
    Rona, P. A. Hydrothermal mineralization at occeanic ridges[J]. Journal of the mineralogical association of Canada, 1988, 266(3): 200.
    Russell, M. J. The generation at hot springs of sedimentary ore deposits microbialites and life[J]. Ore Geology Reviews, 1996,10: 99-214.
    Russell, M. J., Couples, G.. D. and Lewis, H. SEDEX genesis and super-deep boreholes: Can hydrostatic pore pressures exist down to the brittle-ductile boundary? [A]. In: Pasava, Kribek and Zak eds. Mineral Deposits[C]. Balkma Rotterdam, 1995: 315-318.
    Sangster, D. F. and Scott, S. D. Precambrian stratabound, massive Cu-Zn-Pb sulfide ores of North America[A]. In: Wolf, K. H. ed.Handbkook of strata-bound and stratifortn ore depostis[C]. Amsterdam. Elsevier, 1976, 6: 129-222.
    Sangster, D. F. Volcanic-exhalative massive sulphide deposits[A]. In: Maria da Glória da Silva Aroldo Misi ed. Base metal deposits of Brazil[C]. Brazil: Ernesto von Sperling, 1999a, 13-15.
    Sangster, D. F. Sedimentary-exhalative (SEDEX) sulphide deposits[A]. In: Maria da Glória da Silva Aroldo Misi, ed. Base metal deposits of Brazil[C]. Brazil: Ernesto von Sperling, 1999b, 16-17.
    Sawkins, F. J. Massive sulphide deposits in relation to geotectonics[A]. In: Strong K F. ed. Metallogeny and Plate Tectonics[C]. Geol. Assoc.Canada Spec. Publ., 1976, 14: 221-242.
    Shimizu and Masuda, Cerium in cherts as an indication of marine environment of its formation[J]. Nature, 1977, 266: 346- 348.
    Shimizu, H. and Masuda, A. Cerium in chert as an indication of marine environment of its formation[J]. Nature, 1977, 266: 346-348.
    Skripchenko, N. S. Deposition and differentiation of ore-bearing muds in the Atlantis II deep of the red sea[J]. International Geology Review, 1984, 651-662.
    Solomon, M, Gemmell, J. B. and Zaw, Khin. Nature and origin of the fluids responsible for forming the Hellyer Zn-Pb-Cu, volcanic-hosted massive sulphide deposit, Tasmania, using fluid inclusions, and stable and radiogenic isotopes[J]. Ore Geology Reviews. 2004, 25(1-2): 89-124.
    Stanton, R. L. Constitutional features and some exploration implications of three zinc-bearing stratiform skarns of eastern Australia. Trans. Instn. Min. Metall[J]. Sect. B: Appl. earth Sci., 1987, 96: B37-B57.
    Stephen, R. F. and Nigel, H. T. A review of the palaeoenvironments and biota of the Windyfield chert[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 2004, 94, 325-339.
    Vanchez, A. and Nicolas, A. Mountain building: strike–parallel motion and mantle anisotropy. Tectonophysics[J]. 1991, 185: 183-201.
    Wang, L. J., Shimazaki, H., Shiga, Y. Skarns genesis of the Huanggang Fe-Sn deposit, Inner Mogolia[J]. China. Resouce Geology, 2001b, 51(4): 359- 376.
    Wang, L. J., Shimazaki, H., Wang, J. B., et al. Ore-forming fluid and metallization of the Huanggangliang skarnFe_Sn deposit, Inner Mongolia[J]. Science in China(Ser. D), 2001a, 44(8): 735- 747.
    Wang, L. J., Wang, J. B., Wang, Y. W., et al. Fluid-melt inclusions in fluorite of the Huanggangliang skarn iron-tin deposit and their significance to mineralization[J]. Acta Geologica Sinica, 2001c, 75(2): 204- 211.
    Weaves, B. L. Trace element geochemistry of Madras granulites[J]. Contrib.Mineral.Petrol, 1980, 71: 271-280.
    Willner, A. P. Tourmalinites from the stratiform peraluminous metamorphic suites of the Central Namaqua Mobile belt (South Africa) [J]. Mineralium Deposita, 1992, 27: 304-313.
    Wilson, M. Igneous Petrogenesis: A Global Tectonic Approach[M]. London: Unwin Hyman, 1989, 1-466.
    Woodcock, N. H. The role of strike-slip fault system at plate boundaries[J]. Philos. Tranr Son London, SerA, 1986, 317: 13-19.
    Xia, F.,Ma, D. S., Pan J. Y., et al. Strontium isotopic signatureof hydrothermal sedimentation from Early Cambrianbarite deposits in eastGuizhou, China[J]. Chinese Science Bulletin, 2004, 49 (24 ): 2632-2636.
    Xu, W. Y., Hou, Z. Q., Yang, Z. S., et al. Numerical simulation of fluid migration during ore formationof carboniferous exhalation-sedimentary massive sulfide depositsin the Tongling District, Anhui Province[J]. Acta Geologica Sinica, 2005,79 (1) : 98-105.
    Xu, Z. W., Lu, X. C., Ling, H. F., et al. Metallogenetic mechanism and timing of late superimposing fluid mineralization in the Dongguashan diplogenetic stratified copperdeposit, Anhui Province[J]. Acta Geologica Sinica , 2005, 79 (3): 405-413.
    Yang, J. W. Finite element modeling of transient saline hydrothermal fluids in multifaulted sedimentary basins: implications for ore-forming processes[J]. Canadian Journal of Earth Sciences, 2006, 43(9): 1331-1340.
    Zheng, R. C.,Wang, C. S., Zhu, L. D., et al. Discovery of the first example of the "white smoke" type of exhalative rock (hydrothermal sedimentary dolostone) in the Jiuxi Basin, western China[J]. Journal of Chengdu University of Technology. 2003, 30( 1): 1-8.
    Zierenberge, R. A. and Shanks, W. C. Mineralogy and geochemistry of epigenetic features in metalliferous sedimeng, Atlantis II deep,red sea[J]. Economic Geology, 1983, 78: 57-72.
    艾霞.内蒙古大井锡多金属矿床成矿特征极成矿模式[J].矿产与勘察,1992, (2): 82-92.
    艾永福,张晓辉.内蒙大井矿床的脉岩与成矿[A].见:中国地质学会编,“八五”地质科技重要成果学术交流会论文集[C].北京:地震出版社,1996,231-234.
    艾永富,刘国平.内蒙大井矿床的绿泥石研究[J].北京大学学报(自然科学版),1998,34(1): 97-105.
    白大明,刘光海.浩布高铅锌铜锡矿床地物化综合找矿模式探讨[J].有色金属矿产与勘查,1996,5(6): 361-367.
    白大明,刘光海.黄岗梁-乌兰浩特铜多金属成矿带区域综合找矿模式[J].物探与化探,1996,2(4): 30-32.
    陈多福,陈先沛,高计元,等.礁硅岩套与超大型矿床[J].中国科学(D缉),1998,28(增刊):83-91.
    陈俊,周怀阳.华南含锡花岗岩的地质地球化学研究[J].南京大学学报,1988,(1):,130-140.
    陈先沛,陈多福,李英,等.热水沉积作用与超大型矿床[A].见:中国超大型矿床(I).北京:科学出版社,2000,154-184.
    陈先沛,高计元,陈多福.热水沉积作用的概念和几个岩石学标志[J].沉积学报,1992,10 (3): 124-132.
    陈旭瑞,刘建明,杨思道,等.华北克拉通北缘与盆地流体有关的若干矿床实例[J].矿物岩石地球化学通报,2000,19(2): 109-113.
    陈玉清,李长生,宗德奎.白音诺尔铅锌矿勘探类型及生产探矿[J].有色金属(矿山),2002,31(3): 16-18.
    成秋明.空间模式的广义自相似性分析和矿产资源评价[J].地球科学, 2004, 29(6): 733-744.
    成秋明.非线性成矿预测理论:多重分形奇异性-广义自相似性——分形谱系模型方法[J].地球科学, 2006, 31(3): 337-348.
    成秋明.成矿过程奇异性与矿产预测定量化的新理论与新方法[J].地学前缘,2007,14(5): 42-53.
    程裕淇.中国区域地质概论[M].北京:地质出版社,1994,1-122.
    储雪蕾,霍卫国,张巽.内蒙古林西县大井铜多金属矿床的、碳和铅同位素及成矿物质来源[J].岩石学报,2002,18(4): 566-574.
    邓晋福,赵海琳,莫宣学,等.大陆根-柱构造-大陆动力学的钥匙[M].,北京:地质出版社,1996,1-120.
    邓晋福,赵海玲,莫宣学,等.中国大陆根-柱构造-大陆动学的钥匙[M].北京:地质出版社,1996,49-53.
    邓军,陈学明,饶轶群,等.南岭地区两种类型盆地的压实流体系统及其矿化作用[J]. 现代地质,2004,18(1): 1-7.
    邓军,陈学明,杨立强,等.粤北凡口超大型铅锌矿床矿化流体喷溢中心的确定[J].岩石学报,2000,16(4): 528-530.
    邓军,孙忠实,王建平,等.动力系统转换与金成矿作用[J].矿床地质,2001,20(1): 71-77.
    邓军,孙希贤.隐形类矿床的灰色特征及其灰色预测初探[M].见:何科昭主编.校庆四十周年文集.北京:海洋出版社,1993, 217-223.
    邓军,徐守礼,孙希贤.模糊数学在胶东西北部金矿带成矿预测研究中的应用.现代地质,1994,8(2):229-235.
    杜光树.喷流成因夕卡岩与成矿-以西藏甲马铜多金属矿床为例[M].四川:四川科学技术出版社,1998,1-120.
    丁国瑜,蔡文伯,于品清等.中国岩石圈动力学概论《中国石圈动力学地图集》说明书[M]. 北京:地震出版社,1991.482-.491
    丁清峰,孙丰月.基于专家证据权重法的成矿远景区划与评价—以东昆仑地区金矿为例[J].地质科技情报,2006,25(1):41-46.
    丁蕴杰,夏国英,段承华,等.内蒙古哲斯地区早二叠世地层及动物群[M].中国科学院天津地质矿产研究所所刊,北京:地质出版社, 1984, 1-44.
    丁振举,姚书振,刘丛强,周宗桂.碧口地块古海底热水喷流沉积及其成矿作用地球化学示踪[M].北京:地质出版社,2003.1-92.
    方曙,王永祥,李立新.大兴安岭东南部太平山地区断裂控矿作用及控矿应力场[J].矿床地质,2004,23(1):107-114.
    方维萱,张国伟,胡瑞忠,等.秦岭造山带泥盆系热水沉积岩相应用研究及实例[J].沉积学报, 2001,19(1): 48-54.
    冯建忠,艾霞,吴俞斌,等.内蒙大井多金属矿床稳定同位素地球化学特征[J].吉林地质,1994,13(3): 60-66.
    冯建忠.大井锡-多金属化物矿床地质特征及成因[J].内蒙古地质,1992,(1): 69-77.
    冯建忠.内蒙大井多金属矿床微量元素特征及地质意义[J].矿产与勘查,1990,(4): 47-52.
    冯建忠.巴尔哲碱性花岗岩稀有稀土矿床地质特征及成因探讨[J].中国有色金属学报,1994,4(4): 14-17.
    冯锐.中国地壳厚度及上地幔密度分布(三维重力反演果)[J].地震学报,1985,7(2): 143-157.
    符力奋.河台金矿床成因探讨[J].广东地质,1989,4(4): 35-43.
    葛文春,林强,孙德友,等.大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据[J].岩石学报,1999,15(3): 396-407.
    葛文春,林强,孙德有,等.大兴安岭中生代两类流纹岩成因的地球化学研究[J].地球科学,2000,25(2): 172-178.
    耿文辉,汪劲草.内蒙古东部闹牛山-巨里河相多金属扩带扩家空间分布的分维特征[J].有色金属矿产与勘查,1995,4(5): 295-298.
    耿文辉,姚金炎.内蒙古东部闹牛山铜矿成矿地质背景分析[J].矿产与地质,2004,18(3): 239-244.
    顾连兴,杨浩,郑素娟,等.钨和锡-华南型块状化物矿床的特征元素[J].地质论坪,1990,36(4):298-304.
    郭锋,范蔚茗,王岳军,等.大兴安岭南段晚中生代双峰式火山作用[J].岩石学报,2001,17(1): 161-168.
    韩发, R. W.哈钦森.大厂锡多金属矿床热液喷气沉积成因的证据-容矿岩石的微量元素及稀土元素地球化学[J].矿床地质,1989,8(3): 33-42.
    韩发,R. W.哈钦森.大厂锡多金属矿床热液喷气沉积成因的证据-含矿建造及热液沉积岩[J].矿床地质,1989, 8 (3) : 25-37.
    韩发,R.W哈钦森.大厂锡矿-一个喷气-沉积型锡矿[J].地学前缘, 1994,1(3-4): 233-235.
    韩发,R.W.哈钦森.大厂锡-多金属矿床热液喷气沉积成因的证据-容矿岩石的微量元素及稀土元素地球化学[J].矿床地质,1989,8 (3) : 33-41.
    韩发,沈建忠,R. W.哈钦森.冰长石-大厂锡-多金属矿床同生成因的标志矿物[J]. 矿床地质,1993, 12 (4): 330-337.
    韩发,孙海田. Sedex型矿床成矿系统[J].地学前缘,1999, 6 (1) : 139-162.
    韩发,赵汝松,沈建忠,等.大厂锡-多金属矿床地质及成因[M].北京:地质出版社,1997:1-213.
    和政军,刘淑文,任纪舜,等.内蒙古林西地区晚二叠世-早三叠世沉积演化及构造背景[J].,中国区域地质,1997,16(4): 403-409.
    洪大卫,黄怀曾,肖宜君,等.内蒙古中部二叠纪碱性花岗岩及其地球动力学意义[J].地质学报,1994,68(3): 219-230.
    洪大卫,王式,谢锡林,等.兴蒙造山带ENd(t)值花岗岩的成因和大陆地壳生长[J].地学前缘,2000,7(2): 441-456.
    洪大卫,王式光,黄怀曾.中国北疆及其邻区晚古生代-三叠纪碱性花岗岩带及其动力学意义初探[A].见:李之彤主编.中国北方花岗岩及其成矿作用论文集[C].北京: 地质出版社,1991,40-48.
    侯曾谦,张琦玲.冲绳海槽活动热水成矿系统的CO2-烃类流体:流体包裹体证据[J].中国科学(D缉),1998,28(2):142-148.
    侯增谦.现代和古代海底热水成矿作用:新观察和新思考[A].见陈毓川主编.当代矿产资源勘查平价的理论与方法[C].北京:地震出版社,1999,108-122.
    候增谦,候立纬,叶庆同,等.三江地区义敦岛弧构造-演化与火山成因块状化物矿床[M].北京:地震出版社,1995,1-218.
    候增谦,李红阳.试论幔柱构造与成矿系统-以三江特提斯成矿为例[J].矿床地质,1998, 17 (2) ): 17.
    候增谦,莫宣学.现代海底热液成矿作用研究现状及发展方向[J].地学前缘,1996,3(3): 263-272.
    黄瑞玺,祁思敬,李英,等.喷流-沉积矿床成矿作用研究现状与进展[M].北京:昌平县百善印刷厂,1994,1-50.
    贾群子,李文明,于浦生,等.西昆仑块状化物矿床成矿条件和成矿预测[M].北京:地质出版社,1999,1-130.
    蒋国源,权恒.大兴安岭根河、海拉尔盆地中生代火山岩[J].中国地质科学院沈阳地质究所所,1988,(3): 23-100.
    金章东,李英,朱金初.霍各乞铜多金属矿区热水沉积岩类初探[J].内蒙古地质,1997,(2): 22-28.
    李福东,张汉文,宋治杰.鄂拉山地区热水成矿模式[M].西安:西安交通大学出版社,1993,1-312.
    李江海,初凤友,牛向龙,等.河北兴隆中元古代化物黑烟囱群发现及其地质成因[J].自然科学进展,2005,15(2): 179-191.
    李江海,冯军,牛向龙,等.华北中元古代化物黑烟囱发现的初步报道[J].岩石学报,2003,19(1): 167-168.
    李江海,牛向龙,冯军.海底黑烟囱的识别研究及其科学意义[J].地球科学进展,2004,19(1): 17-24.
    李良芳.内蒙古达茂旗哲斯敖包早二叠世地层的研究[J].长春地质学院,1980,10(3): 21-32.
    李如满,康利祥.大井锡多金属成矿地质特征及找矿方向探讨[J].矿产与地质,2004,18(6): 517-522.
    李双林,欧阳自远.兴蒙造山带及邻区的构造格局与构造演化[J].海洋地质与第四纪地质,2002, 18(3) : 45-54.
    李孝红.黄岗-甘珠尔庙成矿带银的地球化学特征及找矿预测[J].有色金属矿产与勘查,1999,8(6): 670-671.
    李之彤,赵春荆.内蒙古中部古生代花岗岩类的成因类型及其产出的构造环境[J].中国地质科学院沈阳地质矿产研究所所刊,1987,(16):68-83.
    李忠军.闹牛山铜矿床次火山岩及与成矿的关系[J].矿产与地质,1995,9(3): 153-159.
    林强,葛文春,曹林,等.大兴安岭中生代双峰式火山岩的地球化学特征[J].地球化学,2003,32(3): 208-221.
    林强,葛文春,孙德友,等.东北地区中生代火山岩的大地构造意义[J].地质科学,1998,33(2): 129-139.
    林强,葛文春,孙德有,等.大兴安岭中生代两类流纹岩与玄武岩的成因联系[J].长春科技大学报,2000,30(4): 322-328.
    林振宏.海底热液矿床[A].见:朱而勤主编.,近代海洋地质学[C].青岛:青岛海洋大学出版社,1991: 0-34
    刘城先.内蒙布敦化铜矿成矿系列和成矿模式[J].长春工程学院学报(自然科学版),2001,18(4): 575-584.
    刘光鼎.中国海区及邻域地质地球物理特征[M].北京:科学版社,1992,47-54.
    刘光海,白大明.莲花山铜银矿床综合找矿模式[J].矿床地质,1994,13(2): 163-180.
    刘家军,何明勤,李志明,等.云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义[J].矿床地质, 2004, 23(1): 1-9.
    刘家军,郑明华,刘建明,等.西秦岭寒武系金矿床中硅岩的地质地球化学特征及其沉积环境意义[J].岩石学报,1999,15(1): 145-154.
    刘建明,刘家军,顾雪祥.沉积盆地中流体活动及其成矿作用[J].岩石矿物学杂志,1997,16(4): 341-352.
    刘建明,刘家军.滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式[J].矿物学报, 1997,17(4): 448- 456.
    刘建明,王京彬,陈旭瑞,等.大兴安岭南段与盆地流体有关的同沉积期金属矿化[A].见:资源环境与可持续发展[C].北京:科学出版社,1999, 119-121
    刘建明,张锐,张庆洲.大兴安岭地区的区域成矿特征[J].地学前缘,2004,11(1):269-277.
    刘建明.成矿组分沉积同生富集的一种新机制:动态海水团的混合过程[J].地球科学进展,1994, 9 (2):24-27
    刘鹏举,郭伟.内蒙古哲斯地区早二叠世地层的新认识[J].世界地质, 1998, 17(2): 1-5.
    刘伟,储雪蕾,赵善仁.大井铜-锡-多金属矿成矿流体的流体包裹体和稀土元素地球化学[A].陈颙,王水,秦蕴珊,等主编.寸丹集,庆贺刘光鼎院士工作50周年学术论文集[C].北京:科学出版社,1998,459-468.
    刘伟,李新俊,谭骏.内蒙古大井铜-锡-银-铅-锌矿床的流体混合作用—流体包裹体和稳定同位素证据[J].中国科学(D辑),2002,32(5): 405-414.
    刘永高,谭佐山,刘书金.内蒙古东部的上二叠统林西组[J].内蒙古地质,1999,(2):21-26
    刘裕庆,刘兆廉,杨成兴.铜陵地区冬瓜山铜矿的稳定同位素研究[J].中国地质科学院矿床地质研究所所刊, 1984,1:70-101.
    卢焕章,池国祥,王中刚.典型金属矿床的成因及其构造环境[M].北京:地质出版社, 1995,107- 118.
    吕志成,段国正,郝立波,等.大兴安岭南段早二叠系大石寨组细碧岩岩石学地球化学特征及成因探讨[J]. 石学报,2002,18(2) : 212-222.
    吕志成,段国正,郝立波,等.大兴安岭中南段中生代中基性火山岩岩石学地球化学研究[J].高校地质学报,2004,10(2): 186-198.
    吕志成,郝立波,段国正,等.大兴安岭南段早二叠世两类火山岩岩石地球化学特征及其构造意义[J].地球化学,2002, 31(4) : 338-346.
    毛景文,赫英,丁悌平.胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据[J].矿床地质,2002,21(2): 121- 127.
    毛晓冬,段其发,陈泽云.湘桂地区泥盆系硅质岩稀土元素地球化学及沉积环境[J].岩石矿物学杂志,1999,18(3): 229-236.
    毛宇秀.安乐锡矿山地质储量变化的原因分析[J].有色金属矿产与勘查,1999,8(4): 246-248.
    苗宗瑶,施林道,方如恒,等.华北陆块北缘及邻区有色金属矿床地质[M].北京:地质出版社,1994,476.
    Murray R W.美国加利福利亚弗朗西斯杂岩和蒙特雷群中燧石的稀土元素、主元素和微量元素:海相细粒沉积物中稀土元素来源的确定(董维全,张清译)[J].地质地球化学,1993,3: 45-461.
    内蒙古自治区地质矿产局.内蒙古自治区区域地质志[M].北京:地质出版社,1991,1-532.
    内蒙古自治区地质矿产局.内蒙古自治区岩石地层M].武汉:中国地质大学出版社,1996,198-244.
    裴荣富,吕风翔,范继璋,等.华北地块北缘及共北侧金属矿床成矿系列与勘查[M] .北京:地质出版社,1998,1 -6.
    裴荣富,吕风翔,范继璋,等.华北地块北缘及共北侧金属矿床成矿系列与勘查[M].北京:地质出版社,1998,1-6.
    彭军,夏文杰,伊海生.湘西晚前寒武纪层状硅质岩的热水沉积地球化学标志及其环境意义[J].岩相古地理, 1999,19(2): 30- 37.
    彭润民,翟裕生.内蒙古狼山-渣尔泰山中元古代被动陆缘热水喷流成矿特征[J].地学前缘,2004,11 (1): 257-268.
    彭润民,翟裕生,王志刚.内蒙古东升庙-甲生盘中元古代SEDEX矿床同生断裂活动及其控矿特征[J].地球科学-中国地质大学学报,2000,25 (4),404-409.
    彭润民,翟裕生.内蒙古狼山炭窑口热水喷流沉积矿床钾质“双峰式”火山岩层的发现及其示踪意义[J].中国科学(D), 2004,34(12): 1135-1144.
    祁思敬,李英,曾章仁,等.秦岭热水沉积型铅锌(铜)矿床[A].庆贺刘光鼎院士工作50周年学术论文集[C].北京:科学出版社,1998,459-468.
    曲丽莉,王莉娟,王玉往.华北克拉通北部内、外缘中生代流体成矿作用研究[J].矿产与地质,2002,6(4): 193-198.
    任纪舜,陈延愚,牛宝贵,等.中国东部及邻区岩石圈的构造演化与成矿[M].北京:科学出版社,1990,205.
    任耀武,曹倩雯.内蒙古大井锡-铜多金属矿床成因刍议[J].矿物岩石地球化学通报,1993,(4): 211-213.
    任耀武,曹倩雯.再论内蒙古大井锡铜多金属矿床成因[J].吉林地质,1996, 15(2): 45-51.
    芮宗瑶.海底喷气沉积矿床研究的新进展[J].矿床地质,1989,(3): 19-57.
    芮宗瑶,施林道,方如恒,等.华北陆块北缘及邻区有色金属矿床地质[M].北京:地质出版社,1994, 100-476.
    尚庆华.北方造山带内蒙古中、东部地区二叠纪放射虫的发现及意义[J].科学通报,2004,49(24):254-2579.
    邵济安,刘福田,陈辉,等.大兴安岭-燕山晚中生代岩浆作用与俯冲作用关系[J].地质学报, 2001,75(1): 56-63.
    邵济安,牟保磊,何国琦,等.华北北部在古亚洲域与古太平洋域构造叠加过程中的地质作用.中国科学,D缉,1997,27(5):390-394.
    邵济安,张履桥,贾文,等.内蒙古咯喇沁变质核杂岩及其隆生机制探讨[J].岩石学报,2001,17(2): 283-290.
    邵济安,张履桥,牟保磊.大兴安岭中南段中生代的构造热演化[J].中国科学(D辑),1998,28(3): 194-200.
    邵济安.中朝板块北缘中段地壳演化[M].北京:北京大学出版社,1991,136.
    邵军,王世称,马晓龙.大兴安岭北段金、多金属矿床区域成矿特征[J].吉林大学学报(地球科学版),2003,33(1): 32-36.
    沈远超,邹为雷,曾庆栋,等.矿床地质学研究的发展趋势:深部构造与成矿作用[J].大地构造与成矿学,1999,23(2): 180-185.
    盛继福,付先政,李鹤年,等.大兴安岭中段成矿环境与铜多金属矿床地质特征[M].北京:地震出版社,1999,1-169.
    宋长春.内蒙古莲花山铜银矿床蚀变统计分带研究[J].矿物岩石地球化学通报,1996,15(3): 183-185.
    宋叔和,韩发,葛朝华,等.火山岩型铜多金属化物矿床VCPSD知识模型[M].北京:地质出版社,1994,1-99.
    苏养正.中国东北区二叠纪和早三叠世地层[J].吉林地质,1996,15(3/4) : 55-65.
    孙钧.大兴安岭成矿带中金矿找矿前景的探讨[J].有色金属矿产与勘查,1996,5(1):3-9.
    唐克东.中国东北及邻区大陆边缘构造[J].地质学报,1995,69(1): 16-29.
    涂光炽.,广西大厂矿床成因并兼论锡石化物矿物形成条件[A].见:中华人民共和国地质矿产部,联合国亚太经社会区域矿产资源开发中心,锡矿地质讨论会论文集(中国)(C).北京:地质出版社,1987,105-109.
    涂光炽.,热水沉积矿床[J].江苏地质科技情报,1988,(1): 1-5.
    涂光炽.我国南方几个特殊的热水沉积矿床[A].谢家荣纪念文集[C].地质出版社,1988.
    涂光炽.,中国层控矿床地球化学(第一卷) [M].北京:科学出版社,1984,1-100.
    涂光炽.,中国层控矿床地球化学(第二卷) [M].北京:科学出版社,1987,1-125.
    涂光炽.,中国层控矿床地球化学(第三卷) [M].北京:科学出版社,1988,1-136.
    涂光炽.中国超大型矿床(I) [M].北京:科学出版社,2000,59-64, 129-157,387-396.
    万志民,于峰,李永新,等.白音诺尔铅锌矿找矿新线索[J].有色矿山,2003,32(1): 4-7.
    王长明,邓军,张寿庭,等.河南省卢氏-栾川地区铅锌矿成矿多样性分析及成矿预测[J].地质通报,2005a, 24(10-11):1074-1080.
    王长明,邓军,张寿庭,等.河南省华北陆块南缘铅金成矿系统[J].地质找矿论丛, 2005b,20(3): 170- 175.
    王长明,邓军,张寿庭.南泥湖Mo_W_Cu_Pb_Zn_Ag_Au成矿区内生成矿系统[J],地质科技情报(待刊). 2006.
    王长明,张寿庭,邓军.大兴安岭中南段构造演化与成矿[A].中国地质大学2006年全国博士生学术论坛论文集[C].北京:地质出版社,2006a,199- 204.
    王长明,张寿庭,邓军.大兴安岭中南段铜多金属矿床时空结构[J].成都理工大学学报,2006b,33(6):1- 7.
    王长明,邓军,张寿庭,孙艳霞,燕长海,吕文德.河南冷水北沟铅锌矿综合找矿模型,金属矿山, 2006c.6:44-47.
    王长明,邓军,张寿庭.河南雈香洼金矿找矿综合模型,黄金, 2006d.27(6):11-14.
    王江海,颜文,常向阳,等.陆相热水沉积作用-以云南地区为例[M].北京:地质出版社,1998,1-123.
    王京彬,秦克章,吴志亮,等.阿尔泰山南缘火山喷流沉积型铅锌矿床[M].北京:地质出版社,1998,1-210.
    王京彬,王玉往,王莉娟.大兴安岭南段中生代伸展成矿系统[J].矿床地质,2002,21(增刊) : 241-244.
    王京彬,王玉往,王莉娟.大兴安岭中南段铜矿成矿背景及找矿潜力[J].地质与勘探,2000,35(5): 1-4.
    王开华.内蒙古安乐锡多金属矿床特征及成矿模式[J].矿产与地质,1998,12(6): 404-409.
    王莉娟,王京彬,王玉往,等.内蒙黄岗梁夕卡岩型铁锡矿床稀土元素地球化学[J]. 石学报,2002,18(4): 575-584.
    王莉娟,岛崎英彦,王京彬,等.黄岗梁夕卡岩型铁锡矿床成矿流体及成矿作用[J].中国科学(D辑),2001,31(7): 553-562.
    王莉娟,王京彬,王玉往,等.内蒙黄岗梁夕卡岩型铁锡矿床稀土元素地球化学[J].岩石学报,2002,18(4): 575-584.
    王莉娟,王玉往,王京彬,等.大井矿床锡铜矿体成矿流体研究及其成因意义[J].岩石学报,2000,16(4): 9-14.
    王惠,陈志勇,杨万容.内蒙古满都拉二叠纪海绵生物丘的发现及意义[J].地层学杂志,2002,26(1): 33-38.
    王琦,艾水富.内蒙古白音诺铅锌矿床富锰单斜辉石与矿化的关系[J].北京大学学报(自然科学版),1995,31(2): 224-228.
    王一先,赵振华.巴尔哲超大型稀土铌铍锆矿床地球化学和成因[J].地球化学, 1997,26(1): 24-35.
    王永争,覃功炯,欧强.内蒙古林西大井铜锡多金属矿区构造与成矿[J].地质与勘探,2001,37(5): 19-23.
    王永争,覃功炯,欧强.内蒙古林西大井铜锡多金属矿区上二叠统林西组之研究[J].矿产与地质,2001,15(3): 205-211.
    王友,樊志勇,方曙,等.西拉木伦河北岸新发现地质资料及其构造意义[J].内蒙古地质, 1991,90(1): 6-28.
    王瑜.中国东部内蒙古-燕山造山带晚古生代-中生代的造山作用过程[M].北京:地质出版社,1996: 1-141.
    王玉往,曲丽莉,王京彬,等.大井锡多金属矿床矿石矿物成分及时空演化[J].矿床地质,2002,21(1): 24-35.
    王玉往,曲丽莉,王丽娟,等.大井锡多金属矿床矿化中心的探讨[J].地质与勘探,2002,38(2): 23-27.
    王玉往,王京彬,王莉娟,等.内蒙古大井矿床中银矿物的研究[J].地质与评论,2002,48(5): 526-533.
    王玉往,王京彬,王莉娟.大兴安岭南段上二叠统林西组中的火山岩[J].矿产与地质,2005,19(1): 1-6.
    王之田,张树文,孙树人,等.大兴安岭东南缘成矿集中区成矿演化特征与找矿潜力[J].有色金属矿产与勘查,1997,6(增刊): 4-12.
    王中刚,于学员,赵振华,等.稀土元素地球化学[M].北京:科学出版社,1989,133-212.
    韦昌山,杨振强,付建明,等.河南桐柏刘山岩铜锌矿床成因及古大地构造环境[J].地质科技情报,2004,23(2): 25-30.
    韦昌山,杨振强,战明国.河南刘山岩铜锌型块状化物矿床流体包裹体研究[J].,华南地质与矿产,2002a,(2): 47-53.
    韦昌山,杨振强,魏君奇,等.刘山岩矿床矿石的稀土元素和、铅同位素的地质意义[J].华南地质与矿产,2002b, (4): 41-46.
    韦龙明,林锦富,吴烈善,等.凤县八卦庙特大型金矿热水沉积岩的地质地球化学特征[J].岩石学报,2004,78(6): 829-835.
    魏菊英,王关玉.同位素地球化学[M].北京:地质出版社,1988,112-165.
    魏斯禹,滕吉文,王谦身,等.中国东部大陆边缘地带的岩石圈结构与动力学[M].北京:科学出版社,1990,177-187.
    吴福元,孙德有,林强.东北地区显生宙花岗岩的成因与地壳增生[J].岩石学报, 1999,15(2): 181-189.
    吴言昌,常印佛.关于岩浆夕卡岩问题[J].地学前缘,1998,5(4): 291-301.
    夏邦栋,钟立荣,方中,等.下扬子区早二叠世孤峰组层状硅质岩成因[J].地质学报, 1995,69(2): 125-137.
    夏军,王成善,李秀花,等.海拉尔盆地及其邻区中生代火山岩的特征及其边缘陆块型火山岩的提出[J].成都地质学院学报,1993,(4): 46-79.
    夏林圻,夏祖春,徐学义.北祁连山海相火山岩岩石成因[M].北京:地质出版社,1996,1-98.
    夏林圻,夏祖春.细碧角斑质火山岩若干问题[J].中国地质科学院西安地质矿产研究所刊,1987,19: 1-30.
    夏学惠,赵玉海,袁家忠.内蒙古林西-天山地区多金属化物矿床地质及成矿规律[J].化工矿产地质,2002,24(4): 198-206.
    夏国英.内蒙古早二叠世含蜓地层及分带[A].见:中国古生物学会第12届学术年会论文选集(C).北京:科学出版社, 1981, 116-126.
    肖成东,杨志达.内蒙赤峰北部两个重要的成矿带及其成矿特征[J].有色金属矿产与勘查,1997,6(4): 197-201.
    肖克炎,张晓华,王四龙,等.矿产资源GIS评价系统[M].北京:地质出版社,2000,90-94.
    肖荣阁,杨忠芳,杨伟东.热水成矿作用[J].地学前缘,1994, 1(3-4) : 140-147.
    徐备,陈斌,张臣,等.华北板块北缘中段含铁变质岩系的时代和构造环境初探[J].地质论评,1994,40(4): 307-311.
    徐公愉.大兴安岭的大陆火山岩及其矿化作用[J].中国区域地质,1983 ,(5): 39-49.
    徐克勤,王鹤年,周建平,等.论华南喷流-沉积块状化物矿床[J].高校地质学报,1996,2 (3 ): 241-254.
    徐克勤,朱金初.华南钨锡矿床的时空分布和成矿控制[A].见:中华人民共和国地质矿产部,联合国亚太经社会区域矿产资源开发中心,锡矿地质讨论会论文集(C).北京:地质出版社,1987: 50-59.
    徐跃通,尚树川,张邦花.浙江西裘铜块状化物矿床火山-热泉沉积成矿的地质地球化学证据[J].地球化学,2000,29(1):14-20.
    徐跃通.鄂东南晚二叠世大隆组层状硅质岩成因地球化学及沉积环境[J].桂林工学院学报, 1997,17(3): 204-212.
    徐志刚.内蒙古东南部铜多金属矿床成矿构造背景[A].见:张德全,赵一鸣主编,大兴安岭及邻区铜多金属矿床论文集[C].北京:地震出版社,1993,20-42.
    许文良,孙德有,尹秀英.大兴安岭海西期造山带的演化:来自花岗质岩石的证据[J].长春科技大学学报, 1999,29(4): 319-323.
    薛春纪,马国良,隗合明,等.南秦岭主要类型热水沉积岩的REE地球化学[J].桂林工学院学报, 1996,18(3): 21-28.
    薛春纪.秦岭泥盆纪热水沉积[M].西安:西安地图出版社,1997,1-134.
    燕长海. 2004.东秦岭铅锌银成矿系统的内部结构研究[M].北京:地质出版社,2004,46-112.
    杨宝俊,刘万崧,王喜臣,等.中国东部大兴安岭重力梯级带域地球物理场特征及其成因[J].地球物理学报,2005,48(1): 86-97.
    杨国富.内蒙大兴安岭南段二叠系的地质建造与控矿作用[J].矿产与地质,1996,10(2): 120-125.
    杨海生,周永章,杨志军,等.华南热水成因硅质岩建造的稀土元素地球化学特征[J]. 矿物岩石地球化学通报,2003,22(1): 61-64.
    杨茂森,黎清华,张淑珍. GIS技术在山东胶东地区金矿预测中的应用[J].山东师范大学学报(自然科学版),2005,20(3):52-55.
    杨振强,陈开旭,蒋德和,等.粤北海西早期沉积盆地扩张与热水成矿[J].岩相古地理,1996,16(3): 58-70.
    杨振强,陈开旭,金光富,等.地球灾变事件、热水沉积和有机质富集成矿:湖北白果园震旦纪银钒矿床的沉积学[J].中国地质科学院宜昌地质矿产研究所所刊,1995,20: 93-104.
    杨振强,陈开旭,翟丽娜.生物成矿和热水成矿中碳来源的同位素示踪[J].华南地质与矿产, 1999,(2): 59- 65.
    杨振强.大宝山块状化物矿床成因:泥盆纪海底热事件[J].华南地质与矿产,1997,(1): 7- 17.
    杨振强.湘中地区奥陶系和震旦系含锰层中稳定同位素组成的沉积学解释[J].岩相古地理,1993,13(2) : 25-36.
    杨志达,鲍修坡.黄岗-甘珠尔庙地区多金属矿床地质地球化学,见:赵一鸣,张德全.大兴安岭及其邻区铜多金属矿床成矿规律与远景评价.北京:地震出版社,1997,125-144.
    姚鹏,李金高,顾雪祥,等.从REE和硅同位素特征探讨西藏甲马矿床层状夕卡岩成因[J].岩石矿物学杂志,2006,25(4): 305-313.
    叶杰,刘建明,张安立,等.沉积喷流型矿化的岩石学证据-以大兴安岭南段黄岗和大井矿床为例[J].岩石学报, 2002,18(4): 585-595.
    尹维青,李生路,刘成忠.内蒙古驼峰山铜-金矿床地质、地球化学特征及成因分析[J].矿产与地质,2005,19(2):139-143.
    袁忠信,张敏,万德芳.低18O碱性花岗岩成因讨论-以内蒙巴尔哲碱性花岗岩为例[J]. 岩石矿物学杂志,2003,22(2): 119-12.
    曾普胜,蒙义峰,杨竹森,等.安徽铜陵矿集区与块状化物矿床有关的热水沉积岩[J].矿床地质, 2004a,23(2): 334-343.
    曾普胜,裴荣富,侯增谦,等.安徽铜陵地块沉积-喷流块状化物矿床[J].矿床地质,2002,21(增刊): 532-534.
    曾普胜,杨竹森,蒙义峰,等.安徽铜陵矿集区硅质岩成因及意义[J].地质论评,2004b,50(2): 135-145.
    张寿庭,赵鹏大,徐旃章,等.多目标矿产预测评价及其研究意义[J].成都理工大学学报(自然科学版),2003, 30(5): 441-446.
    张寿庭,牡丹江穆棱沸石矿床矿化分带特征与规律[J].矿床地质,2004,23(1): 31-38.
    张百胜.闹牛山铜矿床火山机构控矿特征及次火山岩系列演化[J].矿产与地质,2000,14(5): 299-302.
    张春华.内蒙大井锡多金属矿床矿石的物质成分及特征[J].矿产与地质,2004,18(1): 13-17.
    张德全,艾霞,鲍修坡.黄岗-甘珠尔庙中生代活化区有色金属矿床[A].芮宗瑶,施林道,方如恒.华北陆块北缘及邻区有色金属矿床地质.北京:地质出版社,1994,314-363.
    张德全,刘勇,李大新.大兴安岭地区与铜多金属成矿有关的侵入岩[A].见:张德全,赵一鸣主编,大兴安岭及邻区铜多金属矿床论文集[C].北京:地震出版社,1993,50-64.
    张季生,洪大卫,王涛.内蒙古中部重磁场特征与地壳密度结构[J].地质通报, 2005, 24(2): 118-123.
    张家荫.内蒙东部锡-多金属成矿带的大地构造环境与成矿特征[J].矿产与勘查, 1989, (1): 129.
    张炯飞,庞庆邦,朱群,等.内蒙古孟恩陶勒盖银铅锌矿床白云母Ar-Ar年龄及其意义[J].矿床地质,2003,22(3): 253-256.
    张乾,刘志浩,战新志,等.内蒙古孟恩陶勒盖银铅锌铟矿床的微量元素地球化学[J].矿物学报,2004,24(1): 39-47.
    张乾,战新志,裘愉卓,等.内蒙古孟恩陶勒盖银铅锌铟矿床的铅同位素组成及矿石铅的来源探讨[J].地球化学,2004,31(3): 253-258.
    张乾,战新志,邵树勋,等.孟恩陶勒盖银铅锌铜锡铟多金属矿床[J].矿物岩石地球化学通报, 2000, 19(4): 298-299.
    张泰,刘运纪.内蒙古驼峰山含铜化物矿床地质特征及成因初探[J].化工矿产地质, 2002, 24(1): 39-47.
    张玉清,苏宏伟.内蒙古宝音图岩群变质基性火山岩锆石U-Pb年龄及意义[J].前寒武纪研究进展, 2002, 25(3-4), 199-204.
    赵国龙,杨桂林,王忠,等.大兴安岭中南段中生代火山岩[M].北京:北京科学技术出版社, 1989, 1-205.
    赵利青,上本武,覃功炯,等.大井锡多金属矿床矿化元素分布特征研究[J].地质与勘探, 2002, 38(4): 22-27.
    赵利青,孙世华,肖成东,等.内蒙古东部二连浩特-乌兰浩特地区金矿化特征的初步研究[J].地质与资源, 2004, 13(4): 222-228.
    赵利青,覃功炯,孙世华,等.内蒙古大井锡-多金属矿床伴生金矿化特征及矿床成因[J].黄金地质, 2002, 8(3): 7-14.
    赵一鸣,王大畏,张德全,等.内蒙古东南部铜多金属成矿条件及找矿模式[M].北京:地震出版社, 1994.198-228.
    赵一鸣,张德全.大兴安岭及其邻区铜多金属矿床成矿规律与远景评价[M].北京:地震出版社, 1997,10-318.
    赵一阳,鄢明才.冲绳海槽海底沉积物汞异常-现代海底热水效应的“指示剂”[J].地球化学,1994, 23(2): 132-139.
    赵准.兰坪金顶铅锌矿[J].云南地质, 2007, 26(1): 1-14.
    郑荣才,文华国,高红灿,柯光明,2006.酒西盆地青西凹陷下沟组湖相喷流岩稀土元素地球化学特征,矿物岩石,26(4): 41-47.
    植起汉,王严,朱谷昌.闹牛山次火山岩铜矿靶区的遥感综合评价[J].矿产与地质,1997,11(3): 179-186.
    周涛发,岳书仓,猿峰,等.长江中下游两个系列铜、金矿床及其成矿流体系统的氢、氧、、铅同位素研究[J].中国科学,D缉,2000,30(增刊):122-128.
    周永章,刘建明,陈多福.华南古海洋热水沉积作用研究概述及若干认识[J].矿物岩石地球化学通报,2000, 19(2): 114-118.
    周永章.丹池盆地热水沉积硅质岩的沉积地球化学特征[J].沉积学报,1990,8(3): 75-76.
    周永章,Chown, E. H.,Guha, J.,等.粤西古水震旦系顶部层状硅岩的热水成因属性[J].沉积学报,1994,1994(3):110-117.
    朱笑青,张乾,何玉良,等.内蒙古孟恩陶勒盖银铅锌铟矿床成因研究[J].矿床地质,2004,23(1): 52-60.
    祝洪臣,张炯飞,权衡.大兴安岭中生代两期成岩成矿作用的元素、同位素特征及其形成环境[J].吉林大学学报(地球科学版),2005,35(4): 436-442.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700