用户名: 密码: 验证码:
以线虫为模型研究中药中活性成份的生物学功能及中药紫苏梗降糖功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一篇:秀丽新杆线虫(Caenorhabditis elegans)是生活在泥土中的一类非寄生类线虫,它也是第一个被阐明全部基因组序列的多细胞真核生物。它具有生命周期短暂、全身透明、易培养和观察等特点使得秀丽新杆线虫成为生命科学研究领域中的一种优秀的模式生物。近年来许多的实验小组都将线虫应用于长寿模型的建立和药理学的研究中,这是由于线虫在培养的过程中会不断地摄入添加在培养基中的物质,始终保持其体内的药物浓度,而且线虫从发育到死亡过程中组织结构及行为表现的变化也可在显微镜下进行观察,因而可以对其生物学表型进行系统的研究,所以线虫就成为了我们研究中药活性成份生物学功能的优秀模式生物。
     本文第一部分将石斛,“螃蟹脚”(扁枝槲寄生),三七总皂苷,甜菜碱,人参多糖,瑞香素分别提取或者溶解后,配制成含有一定浓度的中药活性成份的培养基。我们利用给药组及对照组的培养基喂养线虫,观察和比较生活在两种培养基中的线虫寿命,在观察寿命的同时记录其他表型。通过观察和比较寿命得出:浓度为100μg/ml和300μg/ml的甜菜碱(从卵给药),40μg/ml和200μg/ml人参多糖,折合成生药量为0.67g/ml和0.067g/ml石斛水溶性成分都具有延长线虫寿命的功能;三七皂苷,螃蟹脚(扁枝槲寄生)对于线虫寿命没有任何作用,浓度为300μg/ml和500μg/ml的瑞香素对于线虫有缩短寿命和导致发育异常的作用,为以后这些中药活性成份的开发和利用提供理论依据。
     本文的第二部分研究了瑞香素对于线虫的生物学功能的影响。瑞香素对于线虫生物学功能的影响包括两个方面:缩短寿命和异常发育。从实验结果我们可以看出瑞香素对于线虫寿命的缩短是具有类似毒性累积和遗传作用的,且这种寿命的缩短现象是随着浓度的升高而增大,是浓度依赖型的;此外,线虫的异常发育现象可能与毒性累积和遗传作用无关,因为F2代线虫异常发育的比
     率小于F1代。这为瑞香素类药物的开发和利用提供了理论基础和依据。
     本文的第三部分利用建立的紫外损伤模型,对松籽油微囊粉抗紫外辐射作用进行了研究。研究结果表明适当浓度的松籽油微囊粉(50μg/ml,100μg/ml)对于低剂量的紫外辐射(100J/m2)具有保护作用,对于大剂量(800J/m2)的紫外辐射不具有保护作用;适当浓度的松籽油微囊粉(50μg/ml,100μg/ml)对于线虫的寿命具有延长作用,在一定浓度范围内是浓度依赖的。这就为松籽油微囊粉的抗紫外辐射产品的开发和利用提供了理论依据。
     许多中药活性成份的药理作用已经在人体及多种动物模型中得到了证明,但是对于线虫生命活动的影响尚没有系统的报道。而线虫作为高等的真核多细胞生物,其短暂的生命周期,十分利于我们进行寿命研究的。同时其生理特征也保证了我们进行药理学研究的可能。因此,已经有越来越多的实验组通过线虫来研究中药活性成份的生物学功能。在本研究中,我们利用线虫模型,系统的分析了几种中药活性成份的生物学功能,为这些中药活性成份的研究与开发提供新的理论依据。
     第二篇:糖尿病(DM)是一类公认的代谢紊乱综合征,以高血糖和血脂异常为主要特征的慢性疾病。糖尿病主要分为三种类型。1型糖尿病的特征是胰岛素生产的缺乏,2型糖尿病源于人体无法有效利用胰岛素,即:代谢靶组织的胰岛素抵抗,和妊娠期糖尿病。其中,2型糖尿病(T2DM)是最常见的形式,占全世界所有糖尿病患者的90%左右。胰岛素受体(IR)具有酪氨酸激酶活性区及自身磷酸化位点,受体与胰岛素结合后,催化受体的酪氨酸磷酸化而激活,启动级联反应。这种自身磷酸化能够提高IR的激酶活性,导致胰岛素受体底物(IRS)的磷酸化,随后激活磷脂酰肌醇3-激酶(PI3-K)和下游的蛋白激酶AKT,最终招募葡萄糖转运GLUT4,使其向细胞膜上易位,从而调节葡萄糖摄取。因此,提高靶组织对胰岛素的敏感性,将成为改善糖代谢异常的重要目标。
     蛋白酪氨酸磷酸酶(PTPs)是一类庞大的、结构不同的细胞信号调节酶家族,调节细胞内蛋白酪氨酸磷酸化水平,并在细胞信号转导和代谢过程中发挥重要作用。SHP-1(SH2-containing tyrosine phosphatase1),又称为HCP、SHPTP1或PTP1C,是含有SH2结构域的具有高度保守序列的蛋白质酪氨酸磷酸酶的亚家族中的重要成员,它是一种胞浆蛋白,其N端有2个SH2结构域,C端有1个催化功能结构域。研究表明,SHP-1的活力增高可导致免疫缺陷综合症和白血病。最近的一些研究发现,SHP-1与2型糖尿病的发生有关,认为SHP-1的活力增高是导致高血糖的原因之一,说明内源性SHP-1在调节血糖代谢方面发挥着重要作用,这也意味着通过抑制体内SHP-1的活性,有可能降低糖尿病患者的血糖。
     我们应用离子交换方法,通过Q-Sepharose Fast Flow,SP-Sephadex两种离子交换柱,分离纯化得到目的蛋白SHP-1。透析冻干后,经SDS-PAGE、HPLC分析鉴定,其纯度大于90%。酶反应动力学实验显示在前20分钟内该酶显示了良好的线性关系,我们筛选出中药紫苏梗对SHP-1具有明显的抑制效果,其IC50值为4ug/ml,双倒数作图法进一步得出紫苏梗是SHP-1的非竞争性抑制剂。
     我们研究中药紫苏梗的降糖机制。我们发现,不同浓度的紫苏梗水提液可以显著提高HepG2细胞中蛋白质的磷酸化水平,以及胰岛素信号通路中关键蛋白胰岛素受体IRβ和细胞外信号调节激酶ERK的磷酸化水平。与对照组相比,1mg/ml和0.75mg/ml紫苏梗水提液组对HepG2细胞中蛋白质、IRβ和ERK磷酸化水平显著提高。我们推测,紫苏梗很可能是通过抑制SHP-1的酶活性,进而激活胰岛素信号通路而实现的,这为紫苏梗对2型糖尿病的治疗提供理论依据。
     我们采用STZ对小鼠进行腹腔注射的方式建立2型糖尿病小鼠模型,用血糖测定试剂盒每周对小鼠检测一次血糖,结果显示,建模第14天后,小鼠平均血糖明显升高,血糖浓度平均值为28.3mmol/L,大于11.1mmol/L,说明建模成功。随机选取小鼠进行分组:正常对照组,紫苏梗灌胃给药组,模型对照组。对正常对照组的健康小鼠和模型对照组的2型糖尿病小鼠按照饮用水25ml/kg体重进行灌胃,对紫苏梗灌胃给药组的2型糖尿病小鼠按照生药量10g/kg体重进行灌胃给药,每日一次,共持续25天。结果显示,中药紫苏梗具有明显的降血糖作用,使小鼠血糖平均降低了19.4mmol/L。实验表明紫苏梗这种中药很可能是通过抑制SHP-1的活性,从而降低了2型糖尿病模型小鼠的血糖。这为紫苏梗在治疗2型糖尿病中的应用提供了理论依据。
PART1:Caenorhabditis elegans (referring as the C.elegans in the followingpresentation) is a category of non-parasitic C.elegans living in the soil, which isused to be the first multicellular eukaryotes to clarify the sequence of the entiregenome. Due to the short lifespan, the transparent body, and the easiness to cultivateand observe, the C.elegans becomes an excellent model organism in the field of lifescience research. In recent years, many experimental groups applied the C.elegans toestablish the longevity model and conducted the pharmacological research, becausein the process of cultivation, the C.elegans will continue to consume material addedin the medium, maintain the concentration of drug in its body, and the changes in theorganizational structure and behavior expression of the C.elegan from developmentto death can be observed under the microscope, making it possible to conduct asystematic research on the biological phenotype. Therefore, the C.elegans becomesthe appropriate model organism in the rasearching of the biological function of theactive constituent in traditional Chinese herb.
     In the first part of this article, we prepare a medium contained certainconcentration of the active constituent in traditional Chinese herbs, then feed themwith the different medium in the administration group and the control group, observeand compare the life span in each situation and record other biological phenotype.We conclude that all the Betaine with the concentration of100μg/ml and300μg/ml,the Ginseng polysaccharide with the concentration of40μg/ml and200μg/ml, andthe conversation of Dendrobium water-soluble components into crude drug with theconcentration of0.67g/ml and0.067g/ml can post an effect of extending the lifespan of the C.elegans, while the Notoginsenoside and “Crab legs” post none.Daphnetin with the concentration of300μg/ml and500μg/ml will shorten the lifespan and leading to dysplasia. All these provide the theoretical basis for the development and utilization of the related the active constituent in traditionalChinese herbs.
     The second part of the paper reveals the effect of the daphnetin on thebiological function of the C.elegans. There are two aspects that the daphnetin canaffect the the biological function of the C.elegans: shorten the life span and developewith dysplasia. From the experimental results, we conclude that the shorten effect oflife span brought by the daphnetin on the C.elegans is similar to thecumulative toxic and genomics effect, and this life shortening phenomenon isincreasing with the rising of concentration. In addition, the relations between theabnormal development of the C.elegans and the cumulative toxic and genomicseffect may be very weak, because the proportion of dysplasia of the F2is lower thanthe F1. These results provide a toxicological basis and foundation for thedevelopment and utilization of the daphnetin drugs.
     In the third part of this article, we conduct a research on the resistance effect toUV radiation of the pine nut oil microencapsulated powder through theestablishment of a model of UV damage. The pine nut oil microencapsulated powderwith the concentration of50μg/ml and100μg/ml presents the resistance effect on thelow level of UV radiation with100J/m2, while this protection disappears on the levelof the UV radiation rising to800J/m2. The life span of the C.elegans can beextended on the appropriate concentration of pine nut oil microencapsulated powder(50μg/ml,100μg/ml), which provides a theoretical basis for the development anduse of the products of the pine nut oil microencapsulated powder UV radiation.
     Although a lot of pharmacological effects of the active constituent in thetraditional Chinese Herb have been proven in the human body and a variety ofanimal models, none of the effects on the C.elegans life activities have been reportedsystematically. As a higher eukaryotic multicellular organism, the C.elegans is veryconducive to our life research due to its short life span, and of great value to conductthe pharmacology research due to its physiological characteristics. Therefore, moreand more experimental groups use the C.elegans to research the biological functionof the traditional Chinese Herb active constituent. In this research, we takeadvantage of the C.elegans model, conduct a systematic analysis of the biologicalfunction of the active constituent of Chinese herbal medicine, that provide a new
     theoretical basis for the research and development of the active constituent of theseherbs.
     PART2:Diabetic mellitus (DM) is recognized as a group of metabolic disordersand characterized by hyperglycemia and dyslipidaemia. Type1diabetes ischaracterized by a lack of insulin production and type2diabetes results from thebody's ineffective use of insulin, Insulin resistance in its metabolic target tissues.Type3diabetes is gestational diabetes. Type2diabetes mellitus (T2DM) is the mostcommon form and accounts for around90%of all diabetes worldwide. Insulinbinding evokes a cascade of phosphorylation events, beginning with theautophosphorylation of the IR on multiple tyrosyl residues. Autophosphorylationenhances IR kinase activity and leads to recruitment of insulin receptor substrate(IRS) proteins, followed by activation of phosphatidylinositol3-kinase (PI3K) anddownstream protein kinase AKT, subsequent translocation of the glucose transporterGLUT4and regulation of glucose uptake. Therefore, Improving tissue sensitivity toinsulin is a major clinical goal to help ameliorate abnormal metabolism.
     Protein tyrosine phosphatases (PTPs) constitute a large and structurally diversefamily of signaling enzymes that control the cellular levels of protein tyrosinephosphorylation and play an important role in the intracellular signal transductionprocess and metabolism. SHP-1(SH2-containing tyrosine phosphatase1), also calledHCP, SHPTP1and PTP1C, is an important member of protein tyrosine phosphotasesubfamily with highly conserved sequence. SHP-1is a kind of cytosolic proteincontaining two SH2domains at the N-terminal and one catalytic domain at theC-terminal. It was reported that increased SHP-1activity led to immuno-deficientsyndrome andn leukemia. The most recent studies have shown that SHP-1is relatedto type II diabetes and high level of blood sugar is due to elevated SHP-1activitywhich means that endogenous SHP-1plays a critical role in regulating blood sugarmetabolism and SHP-1may be a potential target for reducing the blood sugar of diabetes patients by inhibiting its activity.
     Two steps of ion-exchange chromatography, Q-Sepharose Fast Flow andSP-Sephadex, were used to isolate and purify SHP-1protein obtained from E.coliDE3strain. The purity of target protein was more than90%determined bySDS-PAGE and HPLC analysis. The enzyme showed a linear relationship during thefirst20min. The catalytic domain of SHP-1protein tyrosine phosphatase, is moresensitive towards the Perilla stem extract than other PTPs and its IC50was4μg/ml.
     Based on the above experimental phenomenon, we investigated thehypoglycemic mechanism of Perilla stem. The tyrosine phosphorylation levels ofthe IR β-subunit and ERK1/2significantly increased in the HepG2cells by theconcentration of1mg/ml and0.75mg/ml of Perilla stem compared to the controlgroup.We speculate that the hypoglycemic mechanisms of Perilla stem may becaused by inhibition of the SHP-1activity, consequently, activating the signalingpathway, which also provide us a theoretical basis for Perilla stem on type2diabetictherapy.
     40mice were selected for establishing type2diabete animal model which wereinjected with STZ/kg per day. After the treatment, each mouse was weighed everyday and the blood sugar was detected every week using Blood Glucose Kit. Themouse with more than11.1mmol/L blood sugar was considered as established model.The mice were randomly grouped into control group, herb-treated group, and modelgroup. Both the control group (healthy mice) and the negative control group (type IIdiabetic mice) were administrated with25ml/kg water according to body weights,while the herb-treated group (type II diabetic mice) was administrated with10g/kgherbs according to body weights for25days. Our animal experiments providedstrong evidence that perilla stem significantly reduced the blood sugar of type2diabetes animal model with19.4mmol/L.The Perilla stem has hypoglycemic effectthrough inhibiting the protein phosphorylation of SHP-1, which may lead to thesecondary development of Chinese traditianal herbs.
引文
[1]张玉军。三七总皂苷的药理研究[J]。广西医学,2009,31(4):589-591
    [2]李亚萍。三七总甙对心肌缺血再灌注的保护效应[J]。药物研究,2005,10(17):72-73
    [3]Chart P,Thanas CN, Tromlinson B.Protective efects oftrilinolein ex-traoted fromPanax notoginseng against cardiovascular disease[J].Planta Med,2002,68:1024-1025
    [4]唐旭东,姜建青,姜大春等。三七总皂苷对心肌缺血再灌注中性粒细胞核因子一KB活化及其黏附的影响[J]。中国药理学报,2002,18(5):556-560
    [5]陈礼波,李晓辉,张海港等。三七总皂苷对兔腹主动脉粥样硬化防治作用的超声学评价[J].现代生物医学进展,2008,8(6):1054-1056
    [6]司银楚,李巾伟,朱培纯等。三七总皂苷对脑出血大鼠前脑兴奋性氨基酸受体NR1表达的作用[J]。中国药科大学学报,2005,36(4):350-353
    [7]原春山,申品德,李庭喜等。血栓通治疗自发性脑出血急性期临床观察[J].医药论坛杂志,2003,24(23):44-45
    [8]Dong TT, Cui XM, Song ZH, et a1.Chemical assessment of roots of Panaxnotoginseng in China: regional and seasonal variations in itsactiveconstit—uents[J].J Agric Food Chem,2003,51(16):4617-4623
    [9]高瑞兰,徐卫红,林筱洁等.三七皂苷对造血细胞GATA-l和GATA-2转录调控蛋白的诱导作用[J]。中华血液学杂志,2004,25(5):281-284
    [10]周小玲,李永伟,李逢春等。三七总皂苷对大鼠免疫功能影响的实验研究[J].广西医科大学学报,2001,18(3):360-361
    [11]葛忠,张东生,胡义利等。三七皂甙对大鼠急性重症胰腺炎治疗作用的比较研究[J]。中国现代医学杂志。2002,12(14):17-19
    [12]Cicero AF, Vitale G, Savion G, et al. Panax notoginseng (Bunk)efectsfibrinogen and lipid plasma lever in rats fed on a high-fatdiet[J].Phytother Res,2003,17(2):174-178
    [13]刘海燕,陈孝文,刘华峰等。三七总甙对尿毒血清诱导的HK-2细胞增殖及总胶原分泌的影响[J]。中国中西医结合肾病杂志,2004.5(3):143-145
    [14]于长凯,赵晓民,高允生。甜菜碱的药理学研究进展[J]。药学实践杂志,2007,25(6):358-360
    [15]Olthof MR, Verhoef P. Effects of betaine intake plasma ho-mocvsteineconcentrations and consequences for health[J].Current Drug Metab,2005,6(1):15-19
    [16]Yagisawa M,Shigematsuo N,Nakata R.Effects of chronic betaine ingestionon methionine-loading induced plasma homocysteine elevation in rats[J].JNutr Sci Vitaminol(Tokyo),2006,52(3):194-199
    [17]Ohhof MR,Vail Vliet T,Boelsma E,et a1.Low dose betaine supplementationleads to immediate and long term lowering of plasma homocysteine in healthymen and women[J].J Nutr,2003,133(12):4135-4138
    [18]Kharbanda KK, Rogers DD Ⅱ, Mailliard ME,et a1.A comparison of theeffects of betaine and S-adenosylmethionine on ethanol-induced changes inmethionine methionine metabolism and steatosis in rat hepatocytes[J].J Nutr,2005,135(3):519-524
    [19]D Mehta K, Van Thiel DH, Shah N, et a1. Nonalcoholic fatty liver disease:pathogenesis and the role of antioxidants[J]. NutrRev,2002,60(9):289-294
    [20]Trappoliere M, Tuccillo C, Federico A, et a1. The treatment of NAFLD[J].EurRev Med Pharmacol Sci,2005,9(5):299-304
    [21]Sparks JD, Collins HL, Chirieac DV, et a1. Hepatic very-low-ensity lipoproteinand apolipoproteinb production are increased following in vivo induction ofbetaine-homocysteines-methyl transferase[J].Biochem J,2006,395(2):363-367
    [22]Samara K, Liu C, Soldevila-Pico C, et a1. Betaine resolves severealcohol-induced hepatitis and steatosis following liver transplantation[J].DigDis Sci,2006,51(7):1226-1230
    [23]Kim YC,Jung YS,Kim SK.Effect of betaine supplementation on changes inhepatic metabolism of sulfur-containing amino acids and experimentalcholestas is induced by alpha-naphthylisothiocyanate[J].Food Chem Toxicol,2005,43(5):663-667
    [24]Kim SK. Kim YC. Attenuation of bacterial lipopolysaccharide-inducedhepatotoxicity by betaine or taurine in rats[J].Food Chem Toxicol,2002,40(4):545-549
    [25]Kempson SA,Montrose MH.Osmotic regulation of renal betaine transport:transcription and beyond[J].Pflugers Arch,2004,449(3):227-231
    [26]Monobe M, Uzawa A,Hino M,et a1.Glycine betalne,a beer component,protects radiation-induced injury[J].J Radiat Res(Tokyo),2005,46(1):117-122
    [27]Kanbak G,Ozdemir F,Caliskan F,et a1. Betaine prevents loss of sialic acidresidues and peroxidative injury of erythrocyte menbrane in ethanol-givenrats[J].Cell Biochem Funct,2007,25(1):103-107
    [28]Zollei I,Szabo A,Kaszaki J,et a1. Betaine-palmitate reduces acetylsalicylicacid—induced gastric damage in rats[J].Scand J Gastroenterol,2001,36(8):811-815
    [29]徐静,傅颖媛。瑞香素的药理作用研究进展[J]。广东医学2006,27(1),131-133
    [30]莫建初,程家安。瑞香属植物生物活性研究进展[J]。天然产物研究与开发,2003,15(2):167-170
    [31]Yesilada E, Taninaka H, Takaisj Y, et al. In vitro inhibitory effects of Daphneoleoides ssp. Oleoides on inflammatory cytokines and activity-guided isolationof active constituents [J]. Cytokine,2001,13(6):359-364
    [32]张明发,沈雅琴。瑞香素的抗整体小鼠缺氧作用[J]。天然产物研究与开发,1994,6(3):21-23
    [33]沈雅琴,张明发,陈瑞明等。瑞香素和槐果碱的抗腹泻作用及其机理[J]。中国新药杂志,1993,2(4):1-4
    [34]刘云光,王琴美,徐月琴等。瑞香素抗红外疟原虫作用的研究[J]。中国寄生虫学和寄生虫病杂志,2001,19(1):30-32
    [35]牟凌云,王琴美,倪奕昌。瑞香素对体外培养恶性疟原虫超氧化物歧化酶活性及DNA合成的影响[J]。中国寄生虫学和寄生虫病杂志,2003,21(3):157-159
    [36]牟凌云,王琴美,倪奕昌。瑞香素体外抗疟作用与其铁螯合能力的关系[J]。中国寄生虫学和寄生虫病杂志,2002,20(2):83-85
    [37]郭俭,倪奕昌,吴嘉彤等。蒿甲醚与瑞香素伍用对感染伯氏疟原虫小鼠的治疗作用[J]。中国寄生虫学和寄生虫病杂志,2004,22(3):164-166
    [38]Yang E B, Zhao Y N, Zhang K, et al. Daphnetin, one of coumarin derivatives, isa protein kinase inhibitor[J]. Biochem Biophys Res Commun,1999,260(3):682-685
    [39]杨祖培,方秋霞,樊锁强等。瑞香素与金属铜配合物的热分解机理研究[J]。陕西师大学报,1992,20(2):43-45
    [40]胡道道,房喻,崔亚丽等。瑞香素及其铜(Ⅱ)、锌(Ⅱ)配合物超氧自由基的清除作用[J]。中国中药杂志,1995,20(12):749-750
    [41]林萍,毕志明,徐红等。石斛属植物药理活性研究进展中草药[J]。中草药,2003,34(11):19-22
    [42]Chman M, Nagararthnum D, Gopal D, et al. Synthesis and evaluation of stilbeneand dihydro stilbene and dehydro stilbene derivatives as po tential anticanceragents that inhibittubulin polymerization[J]. Med Chem,1991,34(8):25792-2588
    [43]Lee Y H, Park J D, Back N J. In vitro and in vivo antitumo rphenanth renes fromthe aerial parts of Dendrobium nobile[J]. Planta Med,1995,61(3):1782180.
    [44]Morita H, Fujiwara M, Yoshida N, et al. New picrotoxinin-type anddendrobine-type sesquiterpenoids from Dendrobium Snowflake ‘Red Star’[J].Tetrahedron,2002,56(32):5801-5805
    [45]Luo H L, Cai T Y, Chen Q L, et al. Enhancement of Dendrobium candidumpolysaccharide on killing effect of LAK cells of umbilical cord blood andperipharal blood of cancer patients in vitro[J]. Cancer,2000,19(12):1124-1126
    [46]Zhao W, Ye Q, Tan X, et al. Three new sesquiterpene glycosides fromDendrbium nobile with immunomodulatory activity [J]. J Nat Prod,2001,64(9):1196-1200
    [47]Chen C C, Wu L G, Ko F N, et al. Antiplatlet aggregation principles ofDendrobium loddigesii [J]. J Nat Prod,1994,57(9):1271-1274
    [48]Fan C, Wang W, Wang Y, et al. Chemical constituents from Dendrobiumdensiflorum [J]. Phytochemistr,2001,57(8):1255-1258
    [49]Miyazawa M, Shimamura H, N akamura S, et al. Antimutagenic activity ofgogantol from Dendrobium nobile[J]. J Agr Food Chem,1997,45(8):2849-2851
    [50]Miyzawa M, Shimamura H, Nakamura S, et al. Moscatilinfrom Dendrobiumnobile, a naturally occurring bibenzyl compound with potential antimutagenicactivity [J]. J Agr Food Chem,1999,47(5):2163-2167
    [51]Lin T H, Chang S J, Chen C C, et al. Two phenanth raquine from Dendrobiummoniliforme[J]. J Nat Prod,2001,64(8):1084-1086
    [52]肖培根,朱兆仪,张福泉。人参的研究及栽培[M],农业出版社,1987
    [53]徐绥绪,陈英杰,蔡忠琴。中国辽宁栽培西洋参化学成份的研究[J].药学学报,1987,10,750
    [54]陈英杰,徐绥绪,马启凤等。人参叶微量成份分析[J]。药学学报,1987,22,9
    [55]台桂花,张翼伸,梁忠岩。人参茎中水溶性多糖的研究[J]。生物化学与生物物理学报,1988,20(2):119-122
    [56] Gao Q P,Itlroaki Kiyohara,Jong-chol cyong,et al. Chemical properties andanti—complernetatary activities of polysaccharide fractions from roots andleaves of Panax ginseng[J].Plantal Med,1989,55:9-13
    [57]傅平平,王维盅,高其品等。人参根多糖化学性质及抗肿瘤活性的研究[J]。白求恩医科大学学报,1994,20(5):439-443
    [58]Yutaka Suzuki, Hiwdli Hikino. Mechanisms of Hypogtycemic activity ofPanaxA and B, glycansof Panax nsdlg roots: effects on the key Enzymes ofglucose metabolism in the liver of mice[J]. Phytotherapy Research,1989,3(1):15-19
    [59]Yoshiteru Oshima, ChoMehi Kon,Hiroshi Hikino. Isolation and hypoglycemicactivity of Panaxans I,J,K and L,glycans of Panax ginseng roots[J]. JEthnopharmacol,1985,14:255-261
    [60]王毕妮,张富新,李建科。松籽油的氧化稳定性研究[J]。探讨与科学,2005,7:96-98
    [61]蔡秀成,王力光,邢立新等。松籽油对大鼠血脂及脂质过氧化的影响[J]。营养卫生,1999,6:54
    [62]赵启友,王晓林,张浩等。扁枝槲寄生的生药学鉴定研究[J]。天然产物研究与开发,1999,11(5):46-50
    [63]杨凤贤,向轶波,冯小飞等。螃蟹脚黄酮类化合物提取工艺优化研究[J]。时珍国医国药,2009,20(5):1072-1074
    [64]钟文武,彭文书,余正云等。扁枝槲寄生多糖体外抗氧化活性[J]。食品科学,2011,32(11):25-28.
    [65]王晓林,李良琼,李美蓉。扁枝槲寄生化学成分研究(Ⅱ)[J]。华西药学杂志,1995,10(1):71-76
    [66]孙艳琳,司民真等。“螃蟹脚”的红外光谱分析[J]。光谱实验室,2012,9,2639-2641
    [67]Ho J C, Chan-Yeung M, Ho SP, et al. Disturbance of systemic antioxidantprofile in nonsmall cell lung carcinoma[J]. Eur Respir J,2007,29(2):273-278
    [68]孙薇,杨晓虹,周小平。锰超氧化物歧化酶模拟物的研究进展[J]。中国药物化学,2005,15(1):55-60。
    [69]方允中,李文杰。自由基与酶[M]。北京:科学出版社,1989
    [70] S. Brenner. The genetics of Caenorhabditis elegans[J]. Genetics77(1974)71-94
    [71]Grant B D, Wilkinson H A. Functional genomic maps in Caenorhabditiselegans[J]. Curr. Opin. Cel l. Biol.2003,15:206-212
    [72]Pothof J, Van Haaften G, Thijssen K, et al. Identification of genes that protectthe C. elegans genome against mutations by genome-wide RNAi[J]. Genes Dev.2003,17:443-448
    [73]Mathies L D, Henderson S T, Kimble J. The C. elegans hand gene controlsembryogenesis and early gonadogenesis[J]. Development.2003,130:2881-2892
    [74]Kamath R. S., Ahringer J. Genome-wide RNAi screening in Caenorhabditiselegans [J]. Methods.2003,30:313-321
    [75]Xue Y, Fares H, Grant B, et al. Genetic analysis of the myotubularin family ofphosphatases in Caenorhabditis elegans[J]. J. Biol. Chem.2003,278:34380-34386
    [76]Newmark P A, Reddien P W, Cebria F, et al. Ingestion of bacterially expresseddouble-stranded RNA inhibits gene expression in planarians[J]. Proc. Natl.Acad. Sci. USA.2003,100(1):11861-11865
    [77]Piekny A J, Johnson J L, Cham G D, et al. The Caenorhabditis elegansnonmuscle myosin genes nmy-1and nmy-2function as redundant componentsof the let-502/Rho-binding kinase and mel-11/myosin phosphatase pathwayduring embryonic morphogenesis[J]. Development.2003,130:5695-5704
    [78]Lee J, Nam S, Hwang S B, et al. Functional genomic approaches using theC.elegans Caenorhabditis elegans as a model system[J]. J. Biochem. Mol. Biol.2004,37:107-113
    [79]Wang J C, Walker A, Blackwell T K, et al. The Caenorhabditis elegansortholog of TRAP240, CeTRAP240/let-19, selectively modulates geneexpression and is essential for embryogenesis[J]. J. Biol. Chem.2004,279:29270-29277.
    [80]Solomon A, Bandhakavi S, Jabbar S, et al. Caenorhabditis elegans OSR-1regulates behavioral and physiological responses to hyperosmoticenvironments[J]. Genetics.2004,167:161-70
    [81]Ludewig A H, Kober-Eisermann C, Weitzel C, et al. A novel nuclearreceptor/coregulator comple controls C. elegans lipid metabolism, larvaldevelopment, and aging[J]. Genes Dev.2004,18:2120-2133.
    [82] M. Viswanathan, S.K. Kim, A. Berdichevsky, and L. Guarente, A role forSIR-2.1regulation of ER stress response genes in determining C. elegans lifespan. Dev Cell9(2005)605-15.
    [83]. Arena S; Benvenutis S; Bardellia A. Genetic analysis ofthe kinome andphosphatome in cancer. Cell Mol Life Sci.2005,62,2092–2099.
    [84]. Zhang ZY. Protein tyrosine phosphatases: prospects fortherapeutics. Curr OpinChem Biol.2001,5,416–423.
    [85]. Goldstein BJ. Protein-tyrosine phosphatases: emerging targets for therapeuticintervention in type2diabetes and related states of insulin resistance. J ClinEndocrinol Metab.2002,87(6),2474-80.
    [86]. Asante-Appiah E;Kennedy BP. Protein tyrosine phosphatases: the quest fornegative regulators of insulin action. Am J Physiol Endocrinol Metab.2003.284(4), E663-70.
    [87].Oriente F; Iovino S;Cabaro S; Cassese A; Longobardi E; Miele C; UngaroP; Formisano P; Blasi F.Prep1controls insulin glucoregulatory functionin liver by transcriptional targeting of SHP1tyrosine phosphatase.Diabetes.2011,60(1),138-47.
    [88]. Szkudelski, T.. The mechanism of alloxan and streptozotocin action in B cellsof the rat pancreas. Physiol Res.2001,50,537-46.
    [89]Bento JL, Palmer ND, Mychaleckyj JC, et al. Association of Protein TyrosinePhosphatase1B Gene Polymorphisms With Type2Diabetes. Brief GeneticsReport,2004,53:3007-3012.
    [90]. Tonks, N.K.;B.G. Neel.Combinatorial control of the specificity of proteintyrosine phosphatases. Curr Opin Cell Biol.2001,13,182-95.
    [91]. Maegawa, H.. Expression of a dominant negative SHP-2in transgenic miceinduces insulin resistance. J Biol Chem.1999,274,30236-43.
    [92]Kennedy BP, Ramachandran C. Protein Tyrosine Phosphatase-1B in Diabetes.Biochemical Pharmacology,2000,60:877-883.
    [93]. Dubois, M.J..The SHP-1protein tyrosine phosphatase negatively modulatesglucose homeostasis. Nat Med.2006,12,549-56.
    [94] J.I. Toohey Vitamin B12and methionine synthesis: a critical review. Isnature's most beautiful cofactor misunderstood. Biofactors.2006.26,45–57
    [95]B.A. Yaqub, A. Siddique, R. SulimaniEffects of methylcobalamin on diabeticneuropathy Clin. Neurol. Neurosurg.,1992,94,105–111
    [96]Y. Izumi, R. Kaji Clinical trials of ultra-high-dose methylcobalamin in ALSBrain Nerve,2007,59,1141–1147
    [97]Yang J, Liu L, He D, et al. Crystal structure of human protein-tyrosinephosphatase SHP-1. J Biol Chem,2003,278(8):6516—6520.
    [98]Cayabyab FS, Tsui FW, Schlichter LC. Modulation of the ERG K+current bythe tyrosine phosphatase, SHP-1. J Biol Chem,2002Dec13;277(50):48130-8.
    [99]Miyake A, Murata Y, Okazawa H, et al. Negative regulation by SHPS-1ofToll-like receptor-dependent proinflammatory cytokine production inmacrophages. Genes Cells,2008Feb;13(2):209-19.
    [100]Witkiewicz A, Raghunath P, Wasik A,et al. Loss of SHP-1tyrosine phosphataseexpression correlates with the advanced stages of cutaneous T-cell lymphoma.Hum Pathol,2007Mar;38(3):462-7.
    [101]Zhu C, Sato M, Yanagisawa T, et al. Novel binding site for Src homology2-containing protein-tyrosine phosphatase-1in CD22activated by Blymphocyte stimulation with antigen. J Biol Chem,2008Jan18;283(3):1653-9.
    [102]Vyas YM, Maniar H, Lyddane CE, et al. Ligand binding to inhibitory killer cellIg-like receptors induce colocalization with Src homology domain2-containing protein tyrosine phosphatase1and interruption of ongoingactivation signals. J Immunol,2004Aug1;173(3):1571-8.
    [103]Dubois MJ, Bergeron S, Kim HJ, et al. The SHP-1protein tyrosinephosphatase negatively modulates glucose homeostasis. Nat Med,2006May;12(5):549-56.
    [104]Nicholas K, Tonks. PTP1B: From the sidelines to the front lines!. FEBSLetters,2003,546:140-148.
    [105]王辰,王沥,杨泽。蛋白质酪氨酸磷酸酶1B (PTP1B)与2型糖尿病及肥胖的关系,遗传,2004,26:941-946。
    [106]Lin Y, Sun ZJ. Thyroid hormone potentiates insulin signaling and attenuateshyperglycemia and insulin resistance in a mouse model of type2diabetes. BrJ Pharmacol2011;162:597-610.
    [107]Dantzer C, Swendsen J, Maurice-Tison S, Salamon R. Anxiety and depressionin juvenile diabetes: A critical review. Clin Psychol Rev,2003,23(6):787-800.
    [108]Gao X, Lu L, Zhu M, et al. Inhibitory activities of some oxovanadiumcomplexes with N-het-erocyclic ligands against PTP1B/ALP. Acta ChimSinica2009;67:929-936.
    [109]Sarmiento M, Zhao Y, Gordon SJ, Zhang ZY. Molecular Basis for SubstrateSpecificity of Protein-tyrosine Phosphatase1B. THE JOURNAL OFBIOLOGICAL CHEMISTRY,1998,273:26368-26374.
    [110]Clark TA, Heyliger CE, Edel AL, Goel DP, Pierce GN. Codelivery of a TeaExtract Prevents Morbidity and Mortality Associated With Oral VanadateTherapy in Streptozotocin-Induced Diabetic Rats. Metabolism,2004,53:1145-1151.
    [111]陈云龙,何国庆,张铭,等.细茎石斛多糖的降血糖活性作用.浙江大学学报(理学版),2003,30(6):693-696.
    [112]戚向阳,陈维军,宋云飞,等.罗汉果提取物对糖尿病小鼠的降血糖作用.中国公共卫生,2003,19(10):1226-1227.
    [113]郝海平,许惠琴,朱荃,等.环烯醚萜总苷对糖尿病血管并发症大鼠NO、NOS和ET的影响.南京中医药大学学报,2003,19(3):157-158.
    [114]高小平,张蔚瑜,邹文俊,等.中药提取物中α-葡萄糖苷酶抑制剂的筛选.天然产物研究与开发,2003,15(6):536-538.
    [115]刘霞,冯长根.酶抑制剂在抗糖尿病药物中的应用研究.中国药学杂志,2003,38(2):89.
    [116]侯宁宁,隋国良,刘国庆,等.第59届美国糖尿病协会(ADA)年会会议纪要.中国糖尿病杂志,1999,7(5):313.
    [117]侣丽红,赵余庆.苦瓜的降血糖作用及活性成分的研究.中药材,2002,25(6):449.
    [118]蔡仲德,吴杰,朱惠荣.中医药治疗糖尿病研究概况.中国实验方剂学杂志,2002,8(6):56.
    [119]熊学敏,曹玉,石扬,等.南瓜多糖颗粒治疗2型糖尿病的临床疗效评价.中成药,2001,23(7):495.
    [120]J rgensen SB, Honeyman J, Oakhill JS, Fazakerley D, St ckli J, Kemp BE etal. Oligomeric resistin impairs insulin and AICARstimulatedglucose uptake inmouse skeletal muscle by inhibitingGLUT4translocation. Am J PhysiolEndocrinol Metab.2009,297(1):57–66
    [121]Zhao Z; Bouchard P; Diltz CD; Shen SH; Fischer EH. Purification andcharacterization of a protein tyrosine phosphatase containing SH2domains,JBiol Chem1993,268(4),2816-20.
    [122]Zhao Z; Larocque R; Ho WT; Fischer EH; Shen SH. Purification andcharacterization of PTP2C, a widely distributed protein tyrosine phosphatasecontaining two SH2domains.J Biol Chem.1994,269(12),8780-5.
    [123]Guma A, Zierath JR, Wallberg-Henriksson H, Klip A. Insulininducestranslocation of GLUT-4glucose transporters in humanskeletal muscle. Am JPhysiol.1995,268:613–622
    [124]Bryant NJ, Govers R, James DE. Regulated transport of the glucosetransporterGLUT4. Nat Rev Mol Cell Biol.2002,3:267–77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700