用户名: 密码: 验证码:
玉米免耕播种机切茬挖茬装置研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国北方部分地区气温低、春天风大、风蚀和春早严重。种植作物以一茬玉米为主。该地区采用保护性耕作技术,可以有效地抵御春旱、控制风蚀、防治沙尘暴、提高产量和培肥地力。主要技术措施是秸秆回收利用做青畜饲料,留高茬春季免耕直接播种。在有玉米茬的未耕地上进行免耕直播时,由于玉米根茬粗,不易破除,要求免耕播种机具有很好的破茬入土能力。目前生产中所应用的普通免耕播种机,还没有针对处理玉米根茬所设计的破茬装置,在有玉米根茬的未耕地上直接播种时就存在破茬能力差,将种子播在根茬上,或将玉米根掀出形成大坑等问题,严重影响播种质量。为满足生产需要,本文对免耕播种机玉米根茬处理问题进行了深入的理论分析与系统的试验研究,主要研究成果包括:
     (1)提出了新的切挖处理播种带玉米根茬的思想。根据此原理设计了玉米根茬处理装置,并开发出了新型免耕播种机。通过对新型免耕播种机的田间生产试验,证明了切挖处理播种带玉米根茬原理可行,所开发的机具结构新颖,具有创新性;该机不但能创造无根茬的良好种床条件,有利于种子生长发芽,而且不需大量粉碎根茬,因而扰土量少、整机消耗动力小、破茬入土能力强,有利于充分发挥保护性耕作的优势。
     (2)首次研究测定了整株玉米根茬及根茬-土壤复合体的力学特性。试验结果表明,①根茬含水率愈高,剪切力愈小,根茬含水率与剪切力近似为二次曲线关系;刀片剪切速度愈快,剪切力愈小;凸曲线、斜线、凹曲线和直线四种不同的刀刃曲线对整株根茬剪切力依此由小到大,凸曲线和斜线剪切时有一定程度的滑切作用,所以剪切力相比较小,当根茬含水率为48.2%,剪切速度500mm/min时,与其他三种曲线相比凸曲线型刀刃的剪切力依次分别减少了7.2%、22%和29%;对根茬中部、梢部和根部的剪切力,在相同试验条件下,径向中部最大,比梢部,轴向根部和根部茎秆所需剪切力分别增加32%、45%和111%;当含水率为48.2%,刀片的剪切速度为500mm/min时,一年一熟玉米根茬比一年两熟的玉米根茬剪切力增大37%。②玉米根茬的抗冲击能量为30.2J~60.4J,在相同试验条件下,一年一熟玉米根茬的抗冲击能量比一年两熟玉米根茬的抗冲击能量增大14%~23%;根茬径向抗冲击的冲击能量比轴向大约23%。③土壤-根茬复合体其抗剪强度τ与剪切面上的法向压应力σ成正比,复合体土壤凝聚力C比无根土壤增加115%~205%;内摩擦角φ增加11%~15%。
     (3)设计制作了用于室内土槽试验研究的根茬处理试验装置,并设计制作了8种不同结构的破茬刀,通过试验建立了各种破茬刀单刀切茬切土阻力矩数学模型以及根茬处理装置功耗模型;单刀切有根茬土壤比无根茬土壤阻力矩增大约14%;随着刀轴转速的增加刀轴所消耗的功率呈平方关系增加;切茬线速度与前进速度之比λ对破茬质量影响较大,随着速比增大,破茬质量明显提高,当速比小于6时,随着速比的减小,破茬效果明显变差。
     (4)设计出了新型的切挖刀,并对其结构参数进行了较深入的分析和研究。
     (5)制作出2BMYW-2型切挖式玉米免耕播种机一台,在河北丰宁和学校农场进行了110多亩的免耕播种试验,结果表明:该机对播种带的玉米根茬清除率达92%以上,种床基本无玉米根茬,破茬能力强、清茬效果较好,动土量少,表土破土量约占20%~27%。开沟和播种质量能满足农艺要求。
Conservation tillage is an effective method to prevent soil from wind and water erosion in northern arid regions of China. However, one of the most important limitations to conservation tillage is qualified no-tillage planter. The opener of the no-tiilage planter often can't break up corn rootstalks and penetrate into the soil so as reducing the performance of the planter. In order to solve this problem a new method of dealing with corn rootstalk is put forward and a new model of no-tillage planter equipped with cutting corn rootstalk and residue mechanism has been developed. Systematical experiments about the performance of the mechanism and the theory of cutting corn rootstalk and residue have been conducted in this paper, and significant research achievements have been obtained. The research results include:
    1 A new method of dealing with corn rootstalk is put forward and a new model of no-tillage planter equipped with cutting and digging corn rootstalk mechanism has been developed. The test results in the no-tillage fields with corn rootstalks shown that the sample machine has a good ability to cut and dig corn rootstalks only in the seed beds so that the new no tillage planter can create a good condition of seed bed and have lower power consume.
    2 System experiment is conducted to investigate the mechanical properties of rootstalks and soil rootstalk composite. The experiment results include: 甌he maximum cutting force decreased exponentially with increasing cutting speed and the moisture contents of rootstalks. The maximum cutting forces are very different using four different curves of knives, namely convex, diagonal, concave and beeline. The cutting force using convex knife is the smallest among all the knives and decrease 7. 2% 22% and 29% respectively less than using other three knives at cutting speed of 500mm/min when the moisture contents of rootstalks was 48.2%. The cutting forces were tested at four different parts of rootstalk that were the middle part along a radius, the tip part along a radius, the middle part along axis and the stalk part along a radius, and the force at the middle along a radius is the largest and increase 32% 45% 111%, respectively more than at the other three parts. The force increase 37% to cut the rootstalks from
     the areas one crop a year more than that from two crops a year. ㏕he resistant impact of rootstalks is from 30.2J to 60.4J. The resistant impact of rootstalks from the areas one crop a year increases 37% more than that from areas two crop a year; (3) The direct shear strength of soil rootstalk composite can be scribed by Coulomb equation. The coherence force C and the inner friction angle of composite increase 115%-205% and 11%~15% respectively more than that of no rootstalk soil.
    3 The mechanism of dealing with corn rootstalks and eight kinds of blades for experiment in the soil bin have been developed in order to investigating the performance of dealing with rootstalks. The mathematic models of power consume and single blade resistant torque have been set up. The power consume increase exponentially with increasing rotor speed and forward velocity. The rototilling speed ratio obviously effects on breaking rootstalk properties. While A. is less than 6, the quantity of breaking rootstalk becomes worse with decreasing.
    4 A new blade has been developed and its parameters have been studied in detail.
    5 A new no-tillage planter 2BMYW-2 is made and more than 110mu fields in Herbei province are
    
    
    planted using it. The production experiments shown that the rate of clearing rootstalks away from seed beds is more than 92% and disturbed soil is from 20% to 27% and the working performance of the sample machine is excellent.
引文
[1] 高焕文,李问盈,李洪义.中国特色保护性耕作技术[J].农业工程学报,2003,19(3):1~4.
    [2] 高焕文.机械化保护性耕作研究.河北农机,2001,增刊,8~16.
    [3] J. A. Smith, R. G. Wilson, G. D. Binford, C. D. Yonts. TILLAGE SYSTEMS FOR IMPROVED EMERGENCE AND YIELD OF SUGARBEETS. American Society of Agricultural Engineers, 2002,18(6): 667~672.
    [4] John E.Morrison. Development and Future of Conservation Tillage in American.. China International Conference on Dryland and Water-Saving Farming, Beijing, China. November, 2000,132~135.
    [5] D. N. Sharma, M. L. Jain, Evaluation ofno-tillage and conventionai tillage system AMA 1984(3): 65~70.
    [6] Choudhary-MA, Baker-CJ. Physical effects of direct drilling equipment on undisturbed soils l.wheat seedling emergence under controlled climates.N.Z.Journal of Agri. Res., 1980,23,489~496.
    [7] Choudhary-MA, Guo Pei Yu,Baker-CJ. seed placement effects on seedling establishment in direct-drilled fields. Soil & Tillage Research, 1985,6,79~934.
    [8] Baker-CJ,Mai-TV.Physieal effects of direct drilling equipment on undisturbed soil V.Groove compaction and seeding root development.N.Z.J, ofAgri. Rea., 1982,25,51~60.
    [9] Wilkins-DE,Muilenburg-GA, Allmaras-RR, Johnson-CD. Grain-drill opener effects on wheat emergence. Transaction of the ASAE, 1983,26(4),651~660.
    [10] Payton-DM,Hyde-GM, Simpson-JB.Equipment and methods for no-tillage wheat planting. Transaction of the ASAE, 1985,28(5), 1419~1424.
    [11] 1995 Executive Summary. National Crop Residue Management Survey .Published by Conservational Technology Information Center, 1996,February.
    [12] 高焕文.北方旱地机械化耕作模式探讨.中国农业大学学报,1996,增刊:7~12.
    [13] 高焕文等.机械化保护性耕作培训讲义.中国农业大学保护性耕作课题组,山西省农局.1996.7
    [14] 高焕文,李洪文,李问盈.可持续机械化旱作农业研究[J].干旱地区农业研究,1999,(1):57~62.
    [15] 贾延明,尚长青,张振国.保护性耕作适应性试验及关键技术研究[J].农报,2002,18(1):78~81.
    [16] 杜兵,邓键,李问盈等.冬小麦保护性耕作法与传统耕作法的田间对比试验[J].中国农业大学学报,2000,(2):55~58.
    [17] 杜兵,廖植樨,邓健等.用人工模拟降雨研究玉米保护性耕作措施和压实对水土保护的影响[J].中国农业大学学报,1996(1):63~67.
    [18] 王晓燕,高焕文,李洪文等.保护性耕作对农田地表径流与土壤水蚀影响的试验研究[J].农业工程学报,2000,(3):66~69.
    [19] 陈君达,王兴文,李洪文.旱地农业保护性耕作体系与免耕播种技术.北京农业工程大学学报,1993,13(1):27~33
    [20] 施森宝,胡鸿烈,丁加明.秸秆覆盖免耕法[J].农业工程学报,1990,6(3):31~36.
    
    
    [21] 胡鸿烈,丁加明,曾爱军,施森宝.2BQM-6A型免耕播种机的研制,北京农业大学学报,1993,19(2):41~47.
    [22] 施森宝,胡鸿烈,丁加明.机械化吨粮田配套技术的研究,农业工程学报,1992,8(4):34~40.
    [23] 施森宝;胡鸿烈等.国产免耕覆盖播种机的研制与试验,北京农业大学学报,89,15(3):273~279.
    [24] 陈君达,李洪文,高焕文.玉米免耕整秆覆盖播种技术及机具试验研究[J].干旱地区农业研究,1994,(3):95~100.
    [25] 杜兵,王耀发,陈佩芳.旱地小麦免耕施肥播种机的研制.北京农业工程大学学报,1995,15(4):26~30.
    [26] 陈君达,李洪义,高焕文.玉米免耕整秆覆盖播种机防堵装置研究[J].北京农业工程大学学报,1994,14(3):34~39.
    [27] 吴子岳.玉米秸秆与根茬切碎模型及其机具的研究.[博士后研究报告]北京:中国农业大学,2000.
    [28] 阎文圣 陈颍 对玉米秸秆综合利用的探讨.中国农机化2003(3)12~14
    [29] 韩鲁佳,闫巧娟,刘向阳,胡金有.中国农作物秸秆资源及其利用现状.农业工程学报,2002,18(3):87~91.
    [30] 高祥照,马文奇,马常宝,张福锁。王运华.中国作物秸秆资源利用现状分析.华中农业大学学报,2002,21(3):242~247.
    [31] 吴子岳,高焕文.根茬处理技术的现状与发展.中国农业大学学报,2000,5(4):46~49.
    [32] 毛罕平,陈翠英.秸秆粉碎掩埋复式作业机的试验研究.农业机械学报,1996,27(3):42~45.
    [33] 毛罕平,陈翠英.秸秆还田机研制现状.农业机械学报,1996,27(2):152~154.
    [34] 赵四申.段汝浩,宁吉洲等.玉米秸秆整株深埋还田技术研究.农业工程学报,2002,18(2):58~61.
    [35] 张西群,赵四申,贾素梅,王秀.玉米秸秆机械化还田技术应用效果分析.农业机械学报,2002,33(6):132~134.
    [36] 丛维军.1G-4型灭茬机的试验研究.农牧与食品机械,1993(3):16~17.
    [37] 肖丽,樊健柱,王建群.FMH-150型玉米秸秆粉碎切茬旋耕联合作业机简介.现代化农业,1996,4:29~30.
    [38] 薛惠岚,薛少平,杨青,姚万生,雷树武.秸秆粉碎覆盖与施肥播种联合作业的实现及机具设计.农业工程学报,2003,19(3):104~107.
    [39] 郑东旭,姜海勇,李兵,李洪文,张晋国.玉米整秆覆盖下小麦免耕播种机研究.河北农业大学学报,2003,26(增刊):285~287.
    [40] 李兵.小麦对行免耕播种机的研究.[硕士学位论文]中国农业大学,2004,3.
    [41] 中国农机学会农机化学会科技交流中心编.农作物秸秆利用技术与设备.北京:中国农业出版社,1996.
    [42] 宋日,吴春胜,牟金明等.玉米根茬留田对土壤微生物量碳和酶活性动态变化特征的影响[J].应用生态学报2002,13(3):303~306.
    [43] 赵秀兰,许大志,高云.玉米根茬还田对土壤肥力的影响研究简报[J].土壤通报,1998,29(1):14~16.
    [44] 牟金明,姜亦梅,王明辉,姜岩.玉米根茬还田对玉米根系垂直分布的影响.吉林农业科学,1999,24(2):25~27.
    [45] 陈丽荣,姜岩,弓晓杰.作物根茬对土壤肥沃状况的影响.吉林农业科学,1999,24(6):38~40.
    [46] 陈丽荣,姜亦梅,牟金明,姜岩.作物根茬对土壤腐殖质结合形态的影响.吉林农业大学学报,1998,20(1):55~58.
    [47] 陈丽荣,弓晓杰,江源,姜岩.作物根茬不同分解时期对土壤有效微量元素的影响.吉林农业大学学报,1999,21(2):47~49.
    [48] Odogherty M J.A study of the physica and mechanical properties of wheat straw.J Agric Engng Res,1995,62:133~142.
    [49] James G. Effect of knife angle and velocity on the energy required to cut cassava tubers. Journal of
    
    Agricultural Engineering Research, 1996,64(2):99~106.
    [50] P.S.Chattopadhyay, K.P.Pandey, Effect of knife and Operational Parameters on Energy Requirment in Forage Harvesting, J.Agric. Engng Res, 1999,(73):3-12
    [51] P.S.Chattopadhyay, K.P.Pandey, Mechanical , Properties of Sorghum Stalk in relation to Quasi-static Defoemation, J.Agric. Engng Res, 1999,(73):199-206
    [52] 杨中平,杨林青,郭康权等.玉米秸秆工业化处理技术的试验研究.农业工程学报,1996(4):185~188.
    [53] 孙骊,赵豪杰,李锁牢.麦秆压缩剪切特性的研究.西北农业大学学报,1998,26(4):106~109.
    [54] 盛全军,Ahmed EI-Behery;Hassan Gom aa,棉秆切碎及压缩成型的试验研究.农业工程学报,1999,15(4):221~225.
    [55] 张晋国.高焕文,杨光.不同条件下麦秸切碎效果的试验研究.农业工程学报,2000,16(3):70~72.
    [56] 吴子岳,高焕文,张晋国.玉米秸秆切断速度和切断功耗的试验研究.农业机械学报,2001,32(2):38~41.
    [57] 高梦祥,郭康权,杨中平,李星恕.玉米秸秆的力学特性测试研究.农业机械学报,2003,34(4):47~52.
    [58] 朱清科,陈丽华,张东升等.贡嘎山森林生态系统根系固土力学机制研究.北京林业大学学报,2002,24(4):64~67.
    [59] 刘国彬,蒋定生,朱显谟.黄土区草地根系生物力学特性研究.土壤侵蚀与水土保持学报,1996,2(3):21~28.
    [60] 程洪,张新全.草本植物根系网固土原理的力学试验探究.水土保持通报,2002,22(5):20~23.
    [61] 张云伟,刘跃明,周跃.云南松侧根摩擦型根土粘合键的破坏机制及模型.山地学报,2002,20(5):628~631.
    [62] 刘跃明,张云伟,周跃.侧根的根土粘合键模型及牵引效应测试系统.南京林业大学学报,2003,27(1):50~54.
    [63] 李会科,王忠林,贺秀贤.地埂花椒林根系分布及力学强度测定.水土保持研究,2000,7(1):38~41.
    [64] 杨亚川,莫永京,王芝芳等.土壤-草本植被根系复合体抗水蚀强度与抗剪强度的试验研究.中国农业大学学报.1996,1(2):31~38.
    [65] 王芝芳,杨亚川,赵作善等.土壤-草本植被根系复合体抗水蚀能力的土壤力学模型.中国农业大学学搬,1996,1(2):39~45.
    [66] 郝彤琦,谢小妍,洪添胜.滩涂土壤与植物根系复合体抗剪强度的试验研究.华南农业大学学报,2000,21(4):78~80.
    [67] 黄义熙.土的工程性质.北京:水利电力出版社,1983.39-327.
    [68] 王国华.基于虚拟仪器的农机土槽测控系统.[硕士学位论文]:中国农业大学,2002,3.
    [69] 金昊,高焕文.虚拟仪器技术及其在农业自动化中的应用.农业机械学报,1999,23(4):108~112
    [70] 王鲁君.拖拉机旋耕机组整机参数最优匹配的数学模型.拖拉机现代设计方法应用文集,1989.
    [71] 姜正旭,张文春,方在华.拖拉机旋耕机组单刀耕耘动态载荷的数学模型.洛阳工学院学报,1998,19(4):46~49.
    [72] 姜正旭.旋耕机组的动态匹配.[硕士论文]:洛阳工学院,1998.
    [73] 管西强,方在华.旋耕机耕耘转矩的仿真分析.洛阳工学院学报,1999,20(1):1~4.
    [73] 姜正旭.旋耕机组的动态匹配.[硕士论文]:洛阳工学院,1998.
    [74] 李耀明,陈进.旋耕机运动参数动态试验方法的研究.农业机械学报.1994,25(1):52~55.
    [75] 刘永清,桑正中.潜土逆转旋耕刀参数对耕作功耗的影响.江苏理工大学学报,2001,22(4):15~18.
    [76] 刘孝民,桑正中,刘佳生.潜土旋耕试验研究(1)-正、逆转单刀旋耕对比试验.佳木斯工学院学报,1997,15(3):191~195.
    
    
    [77] 刘孝民,桑正中,王俊发.潜土旋耕试验研究(2)-逆转旋耕抛土刀片试验研究.佳木斯工学院学报,1998,16(1):1~6.
    [78] 刘孝民,桑正中,王建国.潜土旋耕试验研究(3)-潜土逆转旋耕仿真试验研究.佳木斯工学院学报,1998,16(3):283~287.
    [79] 茆诗松等.回归分析及其试验设计.上海:华东师范大学出版社.1986.
    [80] 萧兵,钟俊维.农业多因素试验设计与统计分析.湖南:科学技术出版社.1985.
    [81] 赵作善.试验设计.中国农业大学试用教材.
    [82] 曾德超.机械土壤动力学.北京:北京科学技术出版社,1995.
    [83] James G Hendrick, William R. Gill. Rotary-Tiller Design Parameters Part Ⅰ-Direction of Rotation. Transactions of the ASAE 1971:669~674.
    [84] James G Hendrick, William R. Gill. Rotary-Tiller Design Parameters Part Ⅱ-Depth of Tillage Transactions of the ASAE 1971:675~678.
    [85] James G. Hendrick, William R. Gill. Rotary-Tiller Design Parameters Part Ⅲ-Ratio of Peripheral and Forwod Velocities. Transactions of the ASAE 1971:679~683.
    [86] James G. Hendrick, William R. Gill. Rotary-Tiller Design Parameters PartⅣ.Transactions of the ASAE 1973:4~7
    [87] 彭嵩植,吴德光.旋耕机工作部件设计方法的研究(一).镇江农机学院学报,1982(3):5~26.
    [88] 彭嵩植,吴德光.旋耕机工作部件设计方法的研究(二).江苏工学院学报,1983(1):41~56.
    [89] 丁为民,彭嵩植.旋耕刀正切刃设计方法的研究.农业机械学报,1995,26(4):56~61.
    [90] 吴其进,于爱平,邓建华.AMQH-3.6型秸秆切碎还田机.农机与食品机械.1998,2:20.
    [91] Siqueira-R, Boiler-W, Gamero-CD.Cutting efficiency and energy consumption of a straw chopper in different cover crops.Engenharia-Agficola 1997,17(2):79~86.
    [92] 吴子岳,高焕文,张晋国.玉米秸秆切断速度和切断功耗的试验研究.农业机械学报,2001,32(2):38~41.
    [93] 丁为民,王耀华,彭嵩植.反转旋耕刀滑切角分析与计算.农业机械学报.2001,32(6):27~29.
    [94] 陈钧,潘采庚,高良润.下切式节能旋耕刀刃口线设计研究.江苏工学院学报,1992,13(4):20~25.
    [95] 陈钧,近江谷和彦.旋耕刀曲面典型形状的研究.农业机械学报,1995,26(4):50-55
    [96] 孔令德,张认成.旋耕刀的研究现状与展望.江苏理工大学学报,1997,18(3):88~92.
    [97] J.P.Gupta, K.EPandey, Performance of Rotary Tiller Tynes Under wet land Condition, Agricultural Mechanization in Asia, Africa and Latin America, 1996,27(1): 16-20.
    [98] 北京农业工程大学.农业机械学.北京:中国农业出版社,1999
    [99] 孙一源,高行方,余登苑.农业土壤力学.北京:农业出版社,1985.
    [100] 李守仁,林金天.驱动型土壤耕作机械的理论与设计.北京:机械工业出版社,1997
    [101] 康海彦等.IG6型旋耕灭茬机主要工作部件的研究与设计.农机化研究,1995(4):28~31
    [102] L.N. Shukla, A.M. Chauhan, I.S. Dhaliwal, rt al. Development of Minimum Till Planting Machinery. Published in AMA, 1996, VOL.27, NO.4:15-18.
    [103] Darmora-DP, Pandey-KP. Evaluation of performance of furrow openers of combined seed and fertilizer drills. Soil & Tillage Research, 1995,34(2):127~139
    [104] AllenR R.performemee of three seeders in conversation tillage residue.Appl engi in agri,1988,4(3):191~196.
    
    
    [105] Kushwaha R.L., Foster R.K.. Field evaluation of grain drill furrow openers under conservation and conventional tillage system .Canadian Agri Engi, 1993,35(4):253~260.
    [106] 蒋金琳.免耕播种机开沟器的研究.[硕士学位论文]:北京农业工程大学,1990.
    [107] 于丽娟.旱地保护性耕作施肥技术与机具研究.[硕士学位论文]:中国农业大学,1994.
    [108] 张波屏.播种机械设计原理.北京:机械工业出版社,1982.
    [109] Tenssier S.Saxton K E. Zero-tillage furrow opener effects on seeds environment and wheat emergence.Soil tillage research. 1991,21 (3~4):347~360.
    [110] 苏元升等.免耕播种机开沟器工作性能的测试与分析.中国农业大学学报,1999,4(4):28~30.
    [111] 南京农业大学.田间试验和统计方法.北京:农业出版社,1988.
    [112] 何月娥等编.农机试验设计.北京:机械工业出版社,1986。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700