用户名: 密码: 验证码:
冬小麦断根机械化关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冬小麦机械断根技术源于小麦高产的生产实践,是小麦精播高产栽培的一项重要配套技术。山东农业大学余松烈院士等对小麦断根研究发现:深耘断根对植株生长有促控作用,不仅有断老根、喷新根、深扎根,促进小麦根系发育,扩大根系在土壤中的分布范围,提高根系活力,还具有控制分蘖和群体、提高成穗率,促进穗大粒多和防早衰、促粒重的作用,增产效果十分显著。研制开发适合小麦断根要求的新型断根机械,是大面积推广小麦断根新技术,促进断根增产、增效的必要条件,是实现小麦断根机械化的关键技术,也是发展小麦全过程机械化的关键环节。
    本课题以小麦断根增产理论为基础,采用农机农艺相结合的方法,研究设计了适合小麦断根要求的工作部件及其合理配置方案,进行了多功能小麦断根机的结构设计,在动力学分析的基础上,对其工作稳定性、操纵性能、断根质量和断根效果进行了全面、系统地研究。在国内,首次设计完成了多功能小麦断根机械,解决了小麦断根机械化作业的关键技术。
    选题在理论上先进、生产上具有重要的推广价值和实际意义。
    1.根据小麦断根的农艺要求,研究设计了断根机的总体结构,利用现代设计理论,对齿轮传动、链传动、三角带传动及轴承进行了可靠性设计。
    (1)首次设计断根铲和断根刀两种工作部件,且能够方便地进行多种组合配置,断根行间距可在10~50cm之间调整。
    (2)首次设计弹性限深仿形轮机构,仿形轮在仿形弹簧的作用下随地表起伏运动,以保证断根深度的稳定;断根深度可在5~25cm 间调整。
    (3)设计弹性镇压轮装置,镇压力的大小可通过镇压弹簧来调节,保证断根后土壤的压实,以利于保墒。
The technique of winter wheat mechanical root cutting came from high-yield producing practice, and it’s an important compounding technique for winter wheat precision planting. CAE academician Yu Songlie and other scholars, who are from SDAU, found that deep cultivation not only cut original fibers, accelerated new roots to grow deeply and widely, but also increased the rate of effective tillers, accelerated spike to grow bigger, accelerated kernels of each spike to be more, prevented premature senility, and it did have a remarkable increase-yield effect. It is a requirement for popularizing root-cutting technique to study and empolder new model of root-cutting machine, it is a key to develop wheat root-cutting production mechanization as well.
    This thesis based on wheat root-cutting theory, took use of the method of combining farming machinery with agriculture theory, finished the design of multifunctional wheat root-cutting machine for the first time at home. Based on the dynamic analysis to the machine, studied the operating stability, handling capability, root-cutting quality and effect completely and systemically, which solved the key technique to wheat root-cutting mechanization.
    1. According to the agriculture request of wheat root-cutting technique, the main structure of the wheat root-cutting machine was designed and studied. The main structure characteristics and innovation points as follows:
    1) Adopted root-cutting shovels and blades as operating parts for the first time. In order to fit different wheat planting models, different assembled configuration with root-cutting shovels and knives were designed, and the root-cutting distance between two near rows can adjust at a range of 100~500mm freely.
    2) Designed a flexibility depth-control and profile-modeling wheel framework creatively, the profile-modeling wheel follows the surface of the earth under the press of profile-
    modeling spring, ensuring a steady root-cutting depth. The root-cutting depth can adjust at the range of 50~250mm freely. 3) Designed the flexibility-squash wheel framework to squash the soil after cutting roots, the squash force can be adjusted by changing the working length of the spring. 4) Designed triangle tooth-shape surfaces between root-cutting shovel and machine frame, which ensured the enter-soil angle keep steady in work. 5) Adopted two sets of driving wheels: rubber wheel and iron wheel, the tread(distance between the two driving wheels) can freely adjust at a range of 350-800mm. 6) Designed a ±120°-free-turning joint for driving wheel and axle connected, keeping the root-cutting machine to turn and handle flexibly. 7) Designed the type-new clutch that assembled with texrope pulley together, which characteristically by small size, compacted structure, steadily transmission of power and a longer longevity. 8) Used the texrope transmission, chain and gear to transmit the power, which had a simple structure and lower cost. 2. Studied and designed the key root-cutting parts—root-cutting shovel and root-cutting blade for the first time. The root-cutting shovel’s parameters have an important effect on root-cutting quality. Through analyzing the structural parameters, for the first time proposed three main root-cutting mechanisms, and tested the root-cutting quality and effect with different parameters, finally got the best structural parameters. The test shows: the root-cutting power of a shovel mainly lies on soil-cutting angle β0, the sharp degree of blade and wing-open angle 2γ. Smash-soil angle βhas an assistant effect for wheat cutting root. With the increase of the wing-open angle and the soil-smash angle, the quantity of roots being cut increased continuously, but soil turnover, wheat seedlings injured and irregular earth surface will be serious. The bigger entering soil angle αis, the more both quantity of roots being cut and wheat seedling injured are, while α=3~10°, there is no soil turnover and wheat seedlings injured. The soil deformation area, root-cutting quantity and wheat seedings injured increased while the root-cutting shovel’s breadth B and root-cutting depth increased. The test shows that the reasonable root-cutting shovel parameters are: γ=45°, β=12°, β0 =18°, α=8.5°, B=8cm. The root-cutting blade is a new-type wheat root-cutting operation part, its figure character can express by 4 sizes: curve radius r, height H, the length to protrude L, blade’s handle crosssection d×C. The distance between root-cutting knife and wheat seedling, s , and
    root-cutting depth, h , are two important factors which effect on the root-cutting quality. The test shows that the reasonable configuration parameters of root-cutting blade are: h=120~150mm, s=30~50mm 3. Researched entirely working stability and handling capability of the wheat root-cutting machine, which ensured the design quality. Through analysing the dynamics of the wheat root-cutting machine and soil mechanics, the mass requirement and the centroid requirement of wheat root-cutting machine going forward steady and keeping the root-cutting depth steady were given in theory, as well the computational formulas were given, which provided a new theoretical basis to design the machine. The theoretical analysis and tests showed that the mass of the machine at the range of 60~125kg, and the centroid location is 15~40mm in front of driving shaft. The moving velocity is another important factor that influences the working stability and handling capability of the machine. The test showed that the woking stability decreased while over speeding, meanwhile deteriorated the handling capability, injured a great deal of wheat seedling ; but lower productivity with lower speed. The proper moving velocity is about 2.8~3.0km/h. 4. Studied entirely root-cutting quality and effect with different models of root-cutting parts assembled, and got the perfect root-cutting compages. The compages of working parts is an important factor that influences the root-cutting quality and effect. According to the requirement of agriculture, three different root-cutting testing projects were designed: cutting root with shovels compages, cutting root with blades compages, cutting root with both shovels and blades compages. The results showed that: all three projects have remarkable root-cutting and product-increase effect. Generally speaking, the rate of root-cutting of shovels compages is 25.8%, the rate of root-cutting of blades compages is 31.6%, the rate of root-cutting of shovels & blades is 42.1%; the average soil bulk weight decrease by 3.81~6.5%, and the average soil moisture content increase by 0.3~0.7% because of improving the soil surface condation. The root-cutting operation have an effect of restrain first and promote later, after jointing the roots weight evidently beyond the contrast which did not cut roots, and the deeper roots is also more. The three root-cutting methods all have remarkable production-increase effect. Spike number decreased, grain number per spike and 1000-grain weight increased evidently, the average grain yield increased by 9.96~11.41%. As a matter of fact, the combine of shovels & blades has the best root-cutting effect, and also has the most remarkable production increase. It showed that the more roots being cut, the higher production increased.
引文
1.余松烈、亓新华等,冬小麦返青期中耕对植株的抑制和促进作用研究[J].作物学报,1965(2):127~134
    2.余松烈、亓新华等,冬小麦深耕断根增产作用的研究[J].中国农业科学,1985,(4):30~35。
    3.余松烈,冬小麦高产栽培理论分析[J].中国农业科学,1978(2):34~41
    4. 刘殿英,小麦断根对其根系与产量性状影响[J]山东农学院学报,1983(2).
    5.王法宏,高产小麦生育后期根系活性的空间分布与衰老关系及其调控. 山东农业大学博士学位论文,1998 年12 月.
    6.石岩,位东斌,余松烈等.中耕断根对旱地小麦花后根系衰老及产量的影响[J]. 应用与环境生物学报,2000,6(6):516~519
    7. 石岩,旱地高产小麦花后衰老及调控的研究.山东农业大学博士学位论文,1999 年5 月.
    8.卢布,高产冬小麦穗收和穗重的调控兼成穗机制的探讨.山东农业大学博士学位论文,1999 年5 月。
    9.李絮花,冬小麦断根机理和断根与施肥的互作效应研究.山东农业大学博士学位论文,2002 年6 月.
    10.宋秉隰,小麦断根措施增穗防倒和抗干热风作用[J].北京农业科学,1984(1):6
    11.余松烈等,小麦高产途径的商榷——论穗、粒、重的矛盾[J].科学通报,2000(4):156
    12.张娴静,小麦苗期镇压的增产效应[J].贵州农业科学,1989(4):43
    13.梁建生,水稻籽粒库强度与起淀粉积累之间关系的研究[J].作物学报.1994,20(6):687~691
    14.于振文等,高产小麦产量构成因素的分析[J].山东农业科学,1982,(3):16
    15.刘殿英,小麦断根对其根系与产量性状的影响[J].山东农业大学学报,1983(2):25~42
    16.欧阳西荣,小麦冬前壮苗的增产机理与高产栽培技术[J].1995,21(3)239~244
    17.庄巧生,《中国小麦品种及其系普》[J].农业出版社,1983
    19. 陈雨海,高产条件下小麦高产栽培技术和理论基础。山东农业大学博士学位论文,1996
    20.山仑,黄占斌,张岁岐.节水农业[M].北京:清华大学出版社,2000,6
    21.季景顺,中国农业机械化理论探讨[J].农业机械学报,1998(3):183~187
    22.方文熙等,手扶驱动式圆盘犁实验分析[J].农业机械学报,1997(3):15~20
    23. 方文熙等,1LYQ-320型手扶驱动式圆盘犁[J].农牧与食品机械,1994(5)
    24.方文熙等,手扶驱动式圆盘犁运行经济性分析[J].福建农机,1995(3):3~4
    25.方文熙等,驱动圆盘犁工作参数分析[J].福建农学院学报,1991,(4):468~474
    26.张性雄等,驱动式圆盘犁耕作深[J.福建农业大学学报,1995,24(4):470~474
    27.张性雄等,驱动式圆盘犁作用下土壤位移的表述和测定[J].1986(6):19~24)
    28.凌刚等,进口旱地免耕播种机开沟器材质分析[J].农业机械学报,1997,28(3):11~15
    29.冯炳元,我国农机科研的发展动向[J].农业机械学报,1994,25(1)1~5
    30.蒋金林等,免耕播种机单体工作性能分析[J].农业工程学报,2000,31(5)63~65
    31.韩景星等,论蔬菜保护地机械化作业[J].农业机械学报,1996,27(1):130~134
    32.刘明树等,驱动轮下不平软路面的激励[J].农业机械学报,1996,27(2):6~9
    33.李洪文等,保护性耕作下深松技术研究[J].2000,31(5):42~47
    34.裴攸等,宽窄行交互种植条带深松新耕法及配套机具的研究[J].2000,31(5)66~69
    35.张守勤等,圆盘开沟器部件的受力及计算模拟[J].1995,11(4)52~56
    36.涂程海等,小动力耕耘机动力学分析,农业机械学报,1999,30(4):116~119
    37.程远鱼等,果树松土除草轮的研究[J].1999,30(4):121~123
    38.邵长发等,全方位深松在农业可持续发展中的作用研究[J].农业机械学报,1999,30(5):83~88
    39.王丽霞.机械深松耕作技术及应用[J].农机化研究,2000,2:104~105
    40.杜兵,邓健,等.冬小麦保护性耕作法与传统耕作法的田间对比试验[J]. 中国农业大学学报,2000,5(2):55~58
    41.南京农业大学,农业机械学(上)[J].北京:中国农业出版社,1996,8
    42.中国农机院,农业机械设计手册[J].农业机械出版社,1992
    43.李洪文等,固定道保护性耕作试验研究[J].农业工程学报,2000(4):73~78
    44.张晋国等,不同条件下麦秸切碎效果的实验研究[J].农业工程学报,2000,16(5):71~72
    45.宋卫堂等,夏玉米免耕覆盖移栽的实验研究[J].农业工程学报,2000,16(3):57~59
    46.王纪县,安徽省农业机械化现状与发展的思考[J].农业工程学报,2000,16(3):68~70
    47.张云文等,层流型分草曲面用于覆盖免耕播种机的研究,农业机械学报,1994,25(1):46~49
    48.苏工兵,对农业机械化发展认识误区的辨析[J].农业机械学报,1998,29(1):157~158
    49.北京农业工程大学.农学基础[M]。北京:农业出版社,1979
    50.孙海国.保护性耕作和植物残体对土壤养分状况的影响[J].生态农业研究,2003,V01.5No.1,
    51.王耀,石玉升,等.以深松为主体的旱作土壤耕作制度的建立及其配套机具的选用[J].农机化研究,1998,5:111~113
    52.杜兵,李问盈,等.保护性耕作表土作业的田间试验研究[J].中国农业大学学报,2000,5(4):65~67
    53.贺德先.高产冬小麦健壮根群的生理特征及调控。山东农业大学博士学位论文,1998.5
    54. 王频等,单犁铧自磨刃形成机理探讨[J].农业机械学报,1998,29(2):16~19
    56.杨有刚等,一种新型链式开沟器设计参数和功率的确定[J].1998(2):21~23
    57.农业部农业机械化管理司.旱地农业工程的理论与实践[J].北京农业大学出版社, 1995,10
    58.[苏]西涅阿可夫TH等,土壤耕作机械理论和计算[J].中国农业机械出版社,1981
    59.王福林,农业机械化在农业产出增长中贡献的测算方法[J].农业机械学报,1998,29(2):162~164
    60.方文熙,驱动圆盘机组平衡分析[J].农业机械学报,1998,29(3):27~30
    61. 朱红仁等,驱动圆盘犁机组平衡的计算分析[J].农业机械学报,1998,29(3):31~34
    62.成大先主编.机械设计手册.第四版(第三卷).北京:化学工业出版社,2002
    63.郝庆生,农机经济寿命计算问题的探讨与商榷[J].农业机械学报,1998,29(3):168~171
    64.刘效民等,旋耕机运动参数优化问题的探讨[J].农业机械学报,1996,2,137~140
    65.毛罕平,秸杆粉碎掩埋复式作业机试验研究[J].农业机械学报,1996,3:42~46
    66.任露全等,松软地面机械仿生理论与技术[J].2000,31(1)5~8
    67.马名健等,移动式土壤工作部件性能参数测试系统[J].2000,31(2):35~39
    68.胡少兴等,根茬粉碎还田机出茬刀滚功耗模型的建立[J].2000,31(3):36~40
    69.丁为民等,旋耕刀正切刃设计方法的研究[J].农业机械,1995(9):8~9
    71.贾洪雷等,旋耕碎茬机理和通用刀辊的设计[J].农业机械学报,2000,31(5):28~32
    72.李洪文等.旱地表土耕作效应研究[J].干旱地区农业研究,2000,6:13~18
    73.孟庆秋,等.土壤深松对玉米产量及其构成因素的影响[J].吉林农业科学,2000,25(2):25~28
    74.许迪,R.Schm门,等.耕作方式对土壤水动态变化及夏玉米产量的影响[J]. 农业工程学报,1999(9):101~106
    75.丁昆仑,M,L Hann.耕作措施对土壤特性及作物产量的影响[J].农业工程学报,2000,5:28~31 .
    76.王晓燕,高焕文,等.保护性耕作对农田地表径流与土壤水蚀影响的研究[J].农业工程学报,2000.5
    77.陈君达,李洪文.旱地玉米保护性耕作及居于作业工艺的组合研究[J].农业工程学报,1998
    78.李新举,张志国,等.免耕对土壤生态环境的影响[J].山东农业大学学报,1998,52~52
    79.任天志,Stefano Grego.持续农业中的土壤生物指针研究[J].中国农业科学,2000,33(1):68~75
    80.沈昌蒲.机械化土壤耕作[M].北京:中国农业出版社,1995,10
    81.D.希勒尔.土壤物理学[M].西安:陕西人民教育出版社,1988,2
    82.冷石林,韩仕峰,等.北方旱地作物节水增产理论与技术[M].北京:中国农业科技出版社,1996
    83.李洪文等,旱地玉米保护性耕作经济效益分析[J].干旱地区生态农业研究,2000(9):44~49
    84.孙忠英等,农业机器行走装置对土壤压实作用的研究.农业机械学报,1998,(29)173~176
    86.王耀,石玉升,等.以深松为主体的旱作土壤耕作制度的建立及其配套机具的选用[J].农机化研究,1998,5:111~113
    87.杜兵,邓健,等.冬小麦保护性耕作法与传统耕作法的田间对比试验[J]. 中国农业大学学报,2000,5(2):55~58
    88.梁恒禄,等.机械化旱作农业技术的研究与应用[J]。农机化研究,1999(5)
    89.李洪文,陈君达,等.旱地农业三种耕作措施的对比研究[J].干旱地区农业研究,1997,3:7~11
    90.吴国丰.土壤深松作业的探索[J].农业机械,1999,1:37
    91. 华中农业大学,南京农业大学.农业生产机械化—农业机械分册[M].北京:农业出版社,1994
    92. 南京农业大学主编,农业机械学[M].中国农业出版社,1996
    93. 汤楚宙.自推进耕耘机械的研究现状与分析[J].农业机械学报,2001(5):112~115
    94. 方文熙.驱动式圆盘犁的发展与现状[J].福建农业大学学报,1998,27(3): 257~260
    95. 山东农机网.山东农业统计资料[J]. http://www.sdnj.gov.cn
    96. 应义斌,李建平.我国设施农业机械现状及亟待解决的技术问题[J].农机与食品机械,1998(4):1~4
    97. 桑正中.农业机械学(上册)[M].第2版.北京:机械工业出版社,1988,128~130
    98. 中国农业机械信息网. http://www.amic.agr.gov.cn
    99. 北京农业机械化学院.国外耕耘机械技术水平[J].北京:农业出版社,1981.
    100. 北京农业工程大学.农业机械学(上册) [M].北京:农业出版社,1996.
    101. 李翰如,孙凤楼,柯保慷等.农业机械学(上册)[M].北京:农业出版,1981.163
    102. 中国农机学会与科技情报所.小规模农业机械化杭州国际会议论文集[C].重庆科技出版社,1982.
    103 周金根,苏英煜,张家衡.圆盘犁研究综述及稻田圆盘犁的设计问题[J].农业机械报,1966,19(2):39-45.
    104. 应义斌,蒋焕煜,成方.蔬菜棚室用自走式微型旋耕机的研究[J]. 农业工程学报,1997,13(1):88~913
    105. 王丽霞.机械深松耕作技术及应用[J].农机化研究,2000,2:104~105
    106. 裴攸等.宽窄行交互种植条带深松新耕法及配套机具的研究[J]. 农业机械学报,2000,31(5)66~69
    108. 李清桂,高尔光等译.土壤耕作机械的理论和计算[M].北京:中国农业机械出版社,1981.250~253
    109. 中国农业机械化科学研究院.农业机械设计手册(上册)[M].北京:机械工业出版社,1988
    110. 农业部农业机械化管理司.小四轮拖拉机配套农具[M].机械工业出版社出版1990.12
    111. 镇江农业机械学院,洛阳农业机械学院等.拖拉机理论[M].北京:中国农业机械出版社,1981,(3)33~55
    112. 吉尔WR等.耕作和牵引土壤动力学翻译组译.耕作和牵引土壤动力学[M].北京∶农业出版社,1983.
    113. 王焕儒,李国兴,刘惠珍.1GL60型温室旋耕机的研究[J].农机与食品机械, 1997,(4):16~184
    114. 关艳玲.1GLP小型旋耕机的研究[J].农机化研究,1993(4):27~305
    115. 卢美林.北京地区冬小麦精播技术应用[J],农村机械化,1998,(1):4~6
    116. 涂澄海等.小动力耕耘机动力学分析[J].农业机械学报, 1999,30 (1):116~119
    117. 王会明.拖拉机教程[M].泰安:泰安新闻出版局.1992.
    119. [美]卡拉费斯LL.越野车辆工程土力学[M].北京:机械工业出版社,1986∶251~253
    120. 殷涌光等.不平软路面对车轮激励机理[J].农业机械学报,1991,22(3)∶72~77
    121. 机械电子工业部洛阳拖拉机研究所主编.拖拉机设计手册(上册) [M]. 北京:机械工业出版社,1994.139~141,226~227
    122. 机械电子工业部洛阳拖拉机研究所主编.拖拉机设计手册(下册) [M]. 北京:机械工业出版社,1994.139~141,226~227
    123. 中国农业机械化科学研究院.农业机械设计手册(下册)[M].北京:机械工业出版社,1988.
    124. 李达,朱德清,吕长义.棚室耕整机具的研究[J].沈阳农业大学学报, 1994,30 (2):144~146
    125. 信增瑞,马廷玺.驱动圆盘耕作部件的试验研究[J].北京农业工程大学学报, 1989,9(1):27~35
    126. 蒋金林等.免耕播种机单体工作性能分析[J].农业工程学报,2000,31(5)63~65
    127. 刘明树等.驱动轮下不平软路面的激励[J].农业机械学报,1996,27(2):6~9
    128. (日)土屋工为.耕耘动力研究[M].农业机械学会志,1976.28(2)
    129. (美)W.R.吉尔.耕作和牵引土壤动力学[M].农业出版社,1983.
    130. 杨黎明.机械零件设计手册[M]. 北京:工业出版社,1996.
    131. 张守勤等.圆盘开沟器部件的受力及计算模拟[J]. 农业机械学报,1995,11(4)
    132. 孙玉纯.节能型多功能手扶拖拉机的研究与设计[J].农业机械学报,1992,23(2):110~113
    133. 谢晓谜.土壤—工具动力学系统数值分析模拟方法的研究[D].长春∶吉林工业大学,1985.
    134. 刘志峰.产品的可拆卸性及其设计方法[J].机械设计与研究,1997,(1):20~21.
    135. 中国农机研究所.实用机械设计手册(上)[M].北京:机械工业出版社,1998.
    136. 中国农机研究所.实用机械设计手册(下)[M].北京:机械工业出版社.
    137. 西北工业大学.机械设计教程[M].西安:陕西科技出版社,1986.
    138. 党祖祺.机械原理[M]. 北京:北京航空学院出版社,1996.
    139. 北京有色冶金设计研究总院.机械设计手册[M].北京:化学工业出版社,1993
    140. 刘效民.旋耕机运动参数优化问题的探讨[J].农业机械学报,1996,2,137~140
    141. 杨可桢等.机械设计基础[M].高等教育出版社,1999
    142. 杨敏琴等.材料力学[M].机械工业出版社出版,1994年8月第一版
    143. 贺德先.高产冬小麦健壮根群的生理特性及调控[J]. 山东农业大学博士论文, 1999
    144. 贺德先等.冬小麦植株地上部与地下部有关性状研究[J].河南农业大学学报,1994 (1):19-24
    145. 刘殿英.土壤水分对小麦根系的影响[J]. 山东农业大学学报,1992.22:103~110
    146. 机械电子工业部洛阳拖拉机研究所.拖拉机设计手册(上)[M].机械工业出版社, 1994
    147. 机械电子工业部洛阳拖拉机研究所.拖拉机设计手册(下)[M]. 机械工业出版社,1994
    148. 孙玉纯.青岛41型节能多功能手扶拖拉机的研究与设计[J]. 农业机械学报,1992,23(2):110~1133
    149. 靳锁芳等.小动力耕耘机研究.农业机械学报[J],1994,25(3):107~110
    150. 浙江大学数学系高等数学研究室.概率论与数理统计[M],1998
    151. 加德纳著.CW 随机方法手册[M].上海:科学技术出版社,1988
    152. 张祖明.机械可靠性研究的特点与展望[J].北京:北京机械工业管理学院学报可靠性专辑,1990
    153. 王时任,陈继平.可靠性工程概论[M].武汉:华中工业学院出版社,1983
    154. 周源泉,翁朝曦.可靠性工程概论.航空航天部一院十九所,1990
    155. 滕启,刘军棋,可靠性设计的新发展[J].组合机床与自动化加工技术,2002.(03),56~58
    156. 牟致忠.机械零件可靠性设计[M].北京:机械工业出版社,1988
    157. 赵彦茹,圆柱齿轮传动的可靠性优化设计[J].河北农业大学学报,1995.18(1),87~91
    158. 张佩文.复杂工况下齿轮接触强度的可靠性优化设计[J].机械制造,1996.(09),9~11
    159. 彭雄奇,刘更,吴立言.齿轮弯曲疲劳强度可靠性分析的新方法[J].航空动力学报,1995.(02),143~146
    160. 崔海涛.机械强度可靠度计算的随机有限元法[J].机械科学与技术,1997.(5),3~5
    161. 李成刚.滚动轴承高可靠寿命的理论计算方法[J].机械工程学报,1993.29(3),91~97
    162. 孙志礼.截尾分布理论及疲劳模糊可靠性设计方法的研究[J].东北大学博士论文,1996
    163. 黄洪钟.机械传动可靠性理论与应用[M].科学技术出版社,1995
    165. 何立民.MCS-51 系列单片机应用系统设计[M].北京:北京航空航天大学出版社,1990
    166. 刘君华.现代检测技术与测试系统设计[M].西安:西安交通大学出版社,1999
    167. 北京农业机械化学院.国外耕耘机械技术水平[J].北京:农业出版社,1981
    168. 北京农业工程大学.农业机械学(上册) [M].北京:农业出版社,1996
    169. 李翰如,孙凤楼,柯保慷等.农业机械学(上册)[M].北京:农业出出版社,1981
    170. 崔玉莲.国内外机械产品典型可靠性设计方法[J].质量与可靠性,2000.90(6):24~28
    171. 蔡春源.新编机械设计实用手册[M].北京:学苑出版社,1992
    172. 齿轮强度国家课题工作组.渐开线圆柱齿轮承载能力的计算方法:国家标准的介绍.齿轮,1983,(4)
    173. 喻全余,余雷.基于一次二阶矩法的齿轮传动可靠性设计研究[J].机械传动.2003.(04):34~35
    174. 刘明保,曹秋霞.齿轮轴的可靠性设计分析[J].机械传动.2002.(04):41~46
    175. 王建,吴华,吴成武,余贵珍,王启慧,张建军.犁耕阻力测试系统的研究[J]. 农业机械学报,2002.33(4):49~51
    176. Weibull W.A Statistical Function of Wide Applicability.Journal of Applied Mechanics,1951.18
    177. AGREE.Reliability of Military Electronic Equipment.Report of the Advisory Group on Reliability of Electronic.Washington DC:Office of the Assistant Secretary of Defense,1957
    179. NPD 8720.1:NASA Reliability and Maintainability(R&M)Program Policy
    180. The Key Features of Japanese Total Quality Control.Dale B.G.Qual and Reliab.Eng.Int.,1993.9(3)
    181. A.M.Freudenthal.the Safety of Structure[J].ASCE Trans,1947.112:125~129
    182. A.M.Freudenthal.the Safety and the Probability of Structural Failure[J]. ASCE Trans,1956.121:1337~1397
    183. A.H.Sang,W.H.Tang.Probality Concepts in Engineering Planning and Design.John Wiley & Sons,Vol.1.1975, Vol.2.1984
    184. A.M.Hasofer,NC.Lind.Exact and Invariant Second-moment Code format.J.Eng.Mech.Div,ASCE,1974.100(1):111~121
    185. R.RackWitz,B.Fiessler.Structural Reliability under Combined Random Load Sequences.Vol.9,1978
    186. Robert Ryan.Application of Probability Analysis/Design Methodsin Space Programs.The Approaches,The Status,and The Needs.NASA,1992
    187. Steven K.Kerlin.Probability Design Analysis:Methods and Applications.General Dynamics,1993
    188. Diane Byme.Robust Function for Attaining High Reliability at Low Cost.ITEO,1993
    189. Aifredo H-S,Ang&Wilson H Tang.Probability concepts in Engineering Planning and Design.Jokn Wilcy&Sons,1984
    190. Moses F.Rashedi M R.The Application of System Reliability to Structural safety.4th Int.Conf.,Application of Statistics and Probability in Soil and Engineering.Italy,1983
    190. Cruse TA,Mahadevans.Huang Q,etal.Mechanical System Reliability and Risk Assessment[J].Al A A Journal,1994,32(11):2249~2259.
    191. Mischke C.A Method of Relating factor of Safety and Reliablity[J].Journal of Engineering for Industry.Transaction of ASME,1970,92(3):537~542.
    192. H.S.Blanks.Quality and Reliability Research intp the Next Century,Qulity and Reliability Intternational,1994,10(3):179~184
    193. Y.Ben-Haim.Usability of mechematical Models in mechanical Decision Progresses.Mechanical System and Signal Processing,1998,12(1):121~134
    194. J.P.Gupta. Performance of rotary tiller types. AMA,1996,27(1)
    195. Heinz Diert ,Trends in power and machinery,J.agric.Engng Res.(2000),76,237-247
    196. J.N.Tullberg.Wheel traffic effects on tillage draught. J.agric.Engng Res.(2001),75,375-382
    197. D,xu,Topsoil properties as affected by tillage practices in north China,SOIL&Tillage Research,(2001)60:11-19
    198. F.E.Rhoton influnce of time on soil response to no –till practice , Soil&Tillage Research,(2002)610:18-22
    199. J.W.Panning, Laboratory and field testing of seed spacing uniformity, Applied Engineering Agriculture,(2000)Vol.16(1):7-13
    200. S.J.Miles, Dibber drill for precise placement of seed , J.agric. Engng Res.(1999)74, 127-133
    201. J.N.Tullberg, Wheel traffic effects on tillage draught , J.agric. Engng Res.(2000)75, 375-382
    202. Nawroth P, Test of a harvest –seeding-system for winter wheat , Conference Abstract Ageng98A-118
    203. Morrison-JE, Allen-RR, Wilkins-DE,etc.Conservation planter, drill and air-seeder selection guideline .Applied Engineering in Ageicture,1984,4(4),300~309
    204. Willian. R. Gill, A.gricural Engineering Research Division .Soil Dynamics in Tillage and Traction. U.S. Department of Agriculture,1968,202~204
    205. Stafford J V. The Performance of a Rigid in Relation to Soil Properties and Soil Properties and speed .J.of Agri Engng .Res,1979,(24):41~56
    206. Morrison-JE ,Gerik-TJ. Planter depth-control:Ⅰ.predictions and projected effects on crop emergence. Transa-tions of the ASAE ,1985,28(5):1415~1418
    207. J.V. Stafford, D. W. Tanner. Effect of Rate on Soil Shear Strength and Soil~Metal Friction .Soil & Tillage Research,1983,(3):245~260
    208. D.N.Reshetov. Mechanical Analysis and Design. Elsevier North Hollanal, Inc, 1987
    209. Yacov Helor, Relaxed parametric design with probabilistic. Computer Aided Design 1994, 26(56)
    210. Spoor G, Godw in R J. Soil deformation and shear strength characteristics of some clay soil sat different moisture contents.J.ofsoilscience,1979,30∶483~498
    211. Gleen A Kramer ,A geometric constraint engine, Artificial Intelligence, 1992, 58 : 327~360
    212. Roller D, An approach to computer-aid parametric design, computer-aided parametric design 1991, 23, (5), 385~391
    213. H.M. Hanna,D.C. Erbach. Comparison of the Goryachkin Theory to Soil Flow on a Sweep .Transactions of the ASAE 1993, 36(2): 293~299
    214. Khalid Hussain . Effect of forward speed and rear shield on the performance of rotary tiller. AMA.,1996,27(2)
    215. W.R.Grill. Soil dynamics in Tillage and Traction .Agric resser D.A. 1968.1
    216. Qunying..Modal Analysis of a walking tractor and Driver System.LSAE, 1989
    218. Morrison-JE ,Gerik-TJ. Planter depth-control: Ⅱ.predictions and projected effects on crop emergence. Transa-tions of the ASAE ,1985,28(6),1415~1418
    219. Schaaf-DE;Hann-S;Rogers-B The development of performance date on seed drill furrow openers. ASAE Paper.1979,(6):79~101
    220. N Oriand .Study of soil~tool interaction .ASAE,1983.
    221. Baker-CJ, Mai~TV. Physical effects of direct drilling equipment on undisturbed soils V.Groove compaction and seedling root development .N.Z.J.of Agri.Rea.,1982,25,51~60
    222. RR, Johnson-CE. Grain-drill opener effects on wheat emergence. Transaction of the ASAE ,1983,26(4),651~660
    223. Gui J, Mantyla M. Functional understanding of assembly modeling, computer~aided parametric design 1994, 26, (6), 435~451
    224. White G .Multiple Stage Split Power Transmission .Journal of Mechanisms, 1970, (5), 505~520
    225. Bedingfield D.L. power Dividing Transmission .Machine Design, 1995, 25(6), 83
    227. Kaburaki.H, Kisu.M.Studies on Cutting Characteristics of Plows. Agr. Exp. Sta. Jour. (Konosu, Japan),1959(12):90~144
    228. H.W.Muller. Adaptation of Continuously Variable Transmission to the Characteristic of a Driven machine by Bicoupled Planetary Transmission .Journal of Mechanism Design, 1981, Vol .103.No.1~4
    229. K.Tomaszewski. Synthesis of Composed Planetary Variators. IEEE, 1975
    230. Choudhary-Mabaker-CJ. Physical effects of direct drilling equipment on undisturbed soils I .wheat seeding emergence under controlled climates. N.Z.Journal of Agri. Res, 1980.23,489-49
    231. Wilkins-DE, Muilenberg-GA, Allmaras-RR, Johnson-CE, Grain-drill opener effects on wheat emergence. Transaction of the ASAE,1983.26(4),651-660
    232. Payton-DM, Hyde-GM, Simpson-JB. Equipment and method for no-tillage wheat planting. Transactions of the ASAE, 1985.28(5),1419-1424,1429
    233. Chaudhyr-AD, Baker-CJ. Barley seeding establishment by direct drilling in a wet soil I effects of openers under simulated rainfall and high water-table. Soil & Tillage

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700