用户名: 密码: 验证码:
碰撞/反应池—电感耦合等离子体质谱在食品分析中的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微量元素是构成人体细胞或体液、维持机体特殊生理功能酶系的特定生理成分或激活剂,在人体的生命活动和生理过程中必不可少,具有明显营养作用,对于维持人体的生长发育、新陈代谢、生理生化反应、遗传以及能量转换等方面肩负着极其重要的使命,微量元素的缺乏会引起人体系统生化紊乱,导致生理功能异常,产生病理性变化和疾病。食品中含有丰富的微量元素,是人体微量元素的主要来源,不同微量元素在人体的生命活动中发挥的作用不同,所表现的生物学效应也存在较大差异,食品在生产、加工、运输、贮存、销售等环节中所引入的微量重金属元素污染对人类身心健康所构成的潜在威胁也已成为一个严重的食品安全问题,因此,食品中微量元素的检验是食品质量控制过程中的一个重要环节,建立食品中微量元素的相应分析测试技术,准确分析食品中微量元素的含量及其分布具有十分重要的意义。
     电感耦合等离子体质谱(ICP-MS)法具有灵敏度高、线性范围宽、检测限低、能提供同位素比值信息并能同时进行多元素的测定等分析特性,在食品分析与检验中应用十分广泛。但由于食品组成的复杂性和种类的多样性以及在样品分解处理过程中消解试剂的使用所产生的质谱干扰仍然是ICP-MS技术获得得高精度分析结果所面临的难题。在常用的四极杆ICP-MS仪器的离子透镜和四极杆质量分析器之间加入了一个碰撞/反应池(CRC)所组成的碰撞/反应池-电感耦合等离子体质谱(CRC-ICP-MS)仪,当样品经ICP电离,通过采样锥和截取锥取样,经离子透镜聚焦后,在封闭的碰撞/反应池中与碰撞/反应气体产生碰撞/反应,使分析离子、干扰离子及其它离子碎片之间产生质量与电荷的差异从而达到校正干扰的目的。本文系统地阐述了CRC-ICP-MS法的基本理论和方法,并围绕CRC-ICP-MS法在食品科学领域中的分析应用进行了探索:
     (1)研究了应用八极杆碰撞/反应池电感耦合等离子体质谱(ORS-ICP-MS)法测定坚果Li、Al、Ti、V、Cr、Mn、Fe、Co、Ni、 Cu、Zn、As、Se、Rb、Sr、Mo、Ag、Cd、Sn、Sb、Ba、Hg、Tl、Pb等24种微量元素的分析方法。以HNO3+H2O2混合体系为消解介质采用升压控制模式对样品进行微波消解后直接进行测定,利用5%甲醇在等离子体中的增敏效应改善了难电离元素质谱分析的灵敏度,获得了仪器的最佳质谱工作参数,以Sc、In、Bi混合内标溶液校正了分析过程中的基体效应,应用碰撞/反应系统和炬屏蔽系统校正了质谱工作过程中的多原子离子干扰。采用国家标准物质GBW10045验证了方法的准确性和精密度,所有待测元素的检出限在0.002-0.290μg/L之间。采用该法分别对国外5种坚果类进口食品美国榛子、巴西腰果、美国杏仁、美国开心果、巴西松子进行分析,结果表明,坚果内微量营养元素含量丰富,其中腰果和开心果中硒含量较高,对照我国坚果炒货食品国家标准GB/T22165-2008,所有坚果中的重金属元素含量处于极低水平,食用安全,具有较高的营养价值。该法可用于坚果类食品的质量评价和安全评估。
     (2)对土豆样品采用HNO3+H2O2混合酸消解体系进行微波消解处理制样,用ORS-ICP-MS法同时测定土豆中Na、Mg、Al、P、 K、Ca、Cr、Mn、Fe、Co、Ni、Cu、Zn、As、Se、Pb共16种无机元素的含量。详细地研究了样品的前处理条件,采用八极杆碰撞/反应池(ORS)技术,通过选择不同的碰撞/反应模式,改变碰撞/反应气的流速,在确保方法灵敏度的情况下,有效地减少了多原子分子的重叠形成的质谱干扰。选用Rh作内标元素校正基体效应和信号漂移。该方法对16种待测元素的检出限为0.005-0.236μg/L,通过添加标准进行加标回收,所有待测元素的回收率在92.20%-109.65%之间,相对标准偏差(RSD)均小于3.18%,结果准确可靠。采用该法对来自不同产地的4个土豆样品进行分析,结果显示,土豆中无机元素的含量具有较大的地域性。土豆中含钾较高,钾是人体调节体液平衡、维持肌肉和神经的功能以及代谢所必需的主要营养元素,并具有抗癌防癌作用;土豆中P、Mg、Ca钙含量也较高,而重金属元素的含量很低,远低于我国食品国标限量规定标准,食用安全。该法可为土豆中无机元素的快速检测提供科学依据。
     (3)建立了ORS-ICP-MS法测定食品添加剂甜味剂中Cr、Co、 Ni、Cu、As、Cd、Sn、Sb、Hg、Pb等10种重金属元素的含量。采用微波消解法消解样品后直接进行分析。考察了长时间质谱分析对待测元素信号强度的影响,在碰撞/反应池内分别通入高纯氦气或氢气,通过多原子离子与氦气或氢气的碰撞/反应来减少多原子离子的干扰,选用Sc、Y、In、Bi等元素为内标混合液校正基体效应和信号漂移,确定了实验的最佳测定条件。该方法对10种待测元素的检出限在0.003~0.038μg/L之间,加标回收率在93.0%~106.6%之间,相对标准偏差(RSD)≤3.4%。采用该法对木糖醇、阿斯巴甜、糖精钠、甜蜜素等4种常用非营养型甜味剂进行分析,结果表明,4种食品甜味剂中重金属元素的含量均低于10μg/g的限量标准。该方法简便、快速、准确,完全可以用于食品添加剂甜味剂质量控制和安全评价。
     (4)利用带ORS和屏蔽炬系统(Shield Torch System, STS)的ICP-MS测定蜂蜜中Na、Mg、Al、K、Ca、Cr、Mn、Fe、Ni、Cu、 As、Se、Mo、Cd、Ba、Hg、Pb等多种微量元素。研究了在标准模式、He碰撞模式和H2反应模式下待测元素的背景等效浓度(background equivalent concentration,BEC)变化情况,结果显示,在碰撞/反应模式下,质谱分析过程中易干扰元素的BEC降低了1-3个数量级,有效地克服了多原子分子离子的干扰。该法灵敏度高,各元素的检出限在1.05-73.45ng/L之间;各待测元素线性关系良好,线性相关系数均大于0.9995;重现性好,各待测元素相对标准偏差(RSD)小于2.73%;准确度高,加标回收率在92.2%-106.8%之间。采用该法对市售的4个品种的蜂蜜进行分析,结果表明,18种微量元素在4种蜂蜜中的含量存在很大差异,蜂蜜中含有大量人体所必需的营养元素,而重金属元素的含量处于较低水平。蜂蜜是一种营养丰富、食用安全的天然滋养食品。
     (5)研究了分别采用双聚焦电感耦合等离子体质谱(SF-ICP-MS)法和ORS-ICP-MS法测定食品膨松剂碳酸氢钠中Be、Mg、Al、Ca、 Cr、Mn、Fe、Ni、Cu、Zn、As、Cd、Hg、Pb等14种杂质元素的分析方法。样品经硝酸密闭微波溶解后,试液直接用SF-ICP-MS法和ORS-ICP-MS法测定上述微量元素。详细地研究了样品的消解方法、待测元素同位素的选择以及SF-ICP-MS法和ORS-ICP-MS法的差异。SF-ICP-MS法采用低分辨模式和中分辨模式有效地消除了多原子离子对待测元素的干扰,ORS-ICP-MS法采用氦碰撞模式和氢反应模式消除了多原子离子对待测元素的干扰。以Ge、In、Bi为内标元素可明显改善仪器分析的稳定性和精密度水平。结果表明,两种分析方法所测定的结果基本一致,ORS-ICP-MS法较SF-ICP-MS法具有更低的检出限。
Trace elements are the specific physiologic element or activator forming human cells or body fluids, to maintain the body's special physiological function of enzymes, it is essential in the life activities and physiological processes in the human body, and it plays an obviously nutritional role in the growth of the human organism, the process of metabolism, the biochemical reaction of physiology, and energy conversion. So it shoulders the important mission. The lack of trace elements will cause the biochemical disorders of human body system, lead to physiological dysfunction, and produce diseases and pathological problems. Rich trace elements in food are the main source of trace elements of human body. Because different trace elements play different roles in the life activity of human body, their biological effects are greatly different. The trace elements of heavy metal in food brought by food production, processing, delivery, storage and sales have been a latent threat to human health, which is a serious problem of food safety. Therefore, inspecting trace elements of food is an important step in the work of food quality control. For this, the contents and the distributions of the trace elements in foods must be accurately analyzed.
     With its simple spectrum, extremely low detection limit, wide linearity range, fast analyzing speed and offering the ratios of isotopes, inductively coupled plasma mass spectrometry (ICP-MS) has been widely applied in food analysis. But as a result of the diversity of food species, the complexity of matrix and the spectral overlap interference, caused by the added solvents in the course of processing pre-sample, are still problems faced in ICP-MS analysis. However, the greatest difference of collision/reaction cell (CRC)-ICP-MS from the common quadrupole ICP-MS is to generate the differences of mass and electric charges among the analyzed ions, interfering ions and other fragment ions by putting a collision/reaction cell between the ion lens and the quadrupole mass analyzer when the sample is ionized by ICP and is taken with a sampling cone and an skimmer cone and then has a collision reaction/reaction with the collision/reaction gas in the sealed CRC after focusing with ion lens. Finally the corrections of interferences are achieved. The paper systematically expounds the theoretical foundation of CRC-ICP-MS method. And the analysis and application of CRC-ICP-MS method in food were explored in the following aspects:
     (1) This paper describes a simple method for the determination of Li, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Ba, Hg, Tl and Pb in nuts by using ICP-MS with octopole reaction system(ORS). Under the boost control, the sample was directly determined in nitric acid and hydrogen peroxide medium after its microwave digestion. The enhancement effect arising in the plasma of5%methanol improved the sensitivity of ICP-MS measurement of the elements ionized difficultly and the working parameters of the instrument were optimized. In this work, matrix effects were corrected in the mixed standard solution of Sc, In and Bi, and an octopole reaction system (ORS) and shield torch system (STS) was used to eliminate the interference of polyatomic ions. The applicability of the proposed method was validated by the analysis of rice standard reference material (GBW10045). The result showed that the detection limits of the24elements are in the range of0.002~0.290μg/L. This method was sensitive, precise and applicable for the analysis of the trace elements in the five kinds of nuts such as Amercan hazelnut, almond, pistachio, and Brazilian cashew and pinenut. And the result of the analysis suggested that there were rich micro-nutrients in the nuts and more Selenium in cashew and pistachio. According to GB/T22165-2008(Chinese fried snack standard of nuts), all nuts are very low in heavy metal element, so with high edible value. The technique can be applied to the quality and safety evaluations of nuts.
     (2) The sample of potato was achieved by microwave digestion in a digestion system of the mixed acid (HNO3and H2O2). And the contents of16inorganic elements (Na, Mg, Al, P, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se and Pb) in the sample were determined by ICP-MS. The pretreatment of sample was studied in detail. With ORS, different collision/reaction modes were selected, the gas flow of collision/reaction was changed, and the sensitivity of the method was ensured. Consequently, the spectral interferences caused by the overlaps of polyatomic molecules were effectively decreased. Rh as internal standard element was used to compensate matrix effect and signal drift. Under the optimal conditions, the detection limits of the16inorganic elements are in the range of0.005~0.236μg/L. The recovery was92.20%~109.65%by adding standard recovery experiment, and the relative standard deviation (RSD) was less than3.18%for all the elements. This method turned out to be precise and reliable. Four potatoes from different places of origin were analyzed in the way, and the result showed that the contents of inorganic elements in potato are greatly regional. A potato contains rich potassium which is an essential and major nutrient of human body for regulating fluid balance and maintaining muscles, nerve functions and metabolism, and even can be of cancer prevention and resistance. Potato can be safely eaten because of its rich phosphorus, magnesium and calcium, and very few heavy metal elements which are far lower than the Chinese standard of the limited food quantity. This method provides scientific rationale for determining inorganic elements of potato.
     (3) An analysis method of microwave digestion and ICP-MS with ORS were established for the determination of10heavy metal elements including Cr, Co, Ni, Cu, As, Cd, Sn, Sb, Hg and Pb in sweetener. The effect of long-time spectral analysis on the signal intensities of the determined elements was observed. Ultrapure helium and hydrogen was respectively inlet in the octopole/reaction cell system. The use of ORS can eliminate the interference of polyatomic ions dramatically. Sc, Y, In and Bi as internal standard elements were used to compensate matrix effect and signal drift. The optimum conditions for the determination was tested and discussed. Under the optimal conditions, the detection limits of the10elements was in the range of0.003~0.038μg/L, the recovery of the samples was in the range of93.0%~106.6%and the relative standard deviation(RSD)≤3.4%, which showed that the method was very precise. In the way four common non-nutritious sweeteners including xylitol, aspartame, saccharin sodium, and sodium cyclamate were analyzed. It turned out that the contents of the heavy metal elements in the four sweeteners are all less than10μg/g. The technique was simple, quick and precise, and it could be completely applied to the quality control and safety evaluation of food additive and sweetener.
     (4) An analytical method for simultaneous determination of18trace elements in honey including Na, Mg, Al, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Hg and Pb by ORS-ICP-MS has been established. And the background equivalent concentrations (BEC) of the determined elements were respectively studied under the modes of normal, hydrogen reaction, and helium collision. It showed that under the modes of hydrogen reaction and helium collision the BECs easily interfering with elements greatly declined by one to three orders of magnitude, and the interference of polyatomic ions was eliminated effectively. The method was sensitive, accurate and reproducible with the detection limits in the range of1.05~73.45ng/L, good linear relations whose relevant coefficients are all more than0.9995, the RSDless than2.73%, and the recovery in the range of92.2%~106.8%. In this way four kinds of honey bought in the market were analyzed including osmanthus honey, medlar honey, jujube honey and acacia honey. The study proved that the contents of18trace elements in different kinds of honey were of great difference. In honey there are very few heavy metal elements but sufficient trace elements which are essential in human body. So honey is rather nutritious and safe to drink.
     (5)An analytical method was examined to determine14incidental elements including Be, Mg, Al, Ca, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, Hg and Pb in sodium bicarbonate-a food bulking agent respectively by adopting sector field inductively coupled plasma mass spectrometry (SF-ICP-MS) and ORS-ICP-MS. The sample was dissolved by HNO3in a closed-vessel microwave system, and then the above14trace elements in the test solution were determined directly by SF-ICP-MS and ORS-ICP-MS. This technique covered in detail the digestion method of the sample, the selection of the isotopes of the determined elements and the differences between SF-ICP-MS and ORS-ICP-MS. SF-ICP-MS was applied to the low or middle resolution mode to eliminate the interference of polyatomic ions with the determined elements, while ORS-ICP-Ms was applied to helium collision mode and hydrogen reaction mode to eliminate the interference of polyatomic ions with the determined elements. Ge, In and Bi as internal standard elements apparently improved the stability and precision of instrumental analysis. As a result, the determinations in the two analytical methods were almost identical, and the detection limits of ORS-ICP-MS were lower than ones of SF-ICP-MS.
引文
[1]Wen X, Yang Q, Yan Z, et al. Determination of cadmium and copper in water and food samples by dispersive liquid-liquid microextraction combined with UV-vis spectrophotometry. Microchem. J.,2011,97(2):249-254
    [2]Mitica S S, Micicb R J, Simonovic R M. Analytical application of food dye Sunset Yellow for the rapid kinetic determination of traces of copper(Ⅱ) by spectrophotometry. Food Chem.,2009,117(3):461-465
    [3]Somer G, Unal U. A new and direct method for the trace element determination in cauliflower by differential pulse polarography. Talanta,2004,62(2):323-328
    [4]Somer G, Caliskan A C. A new method for the simultaneous determination of Fe(Ⅲ), Cu(Ⅱ), Pb(Ⅱ), Zn(Ⅱ), Cd(Ⅱ), and Ni(Ⅱ) in wine using differential pulse polarography. J. Appl. Electrochem.,2009,39(10):2027-2033.
    [5]Ghaedi M, Shokrollahi A, Kianfar A H, et al. The determination of some heavy metals in food samples by flame atomicabsorptionspectrometry after their separation-preconcentration on bis salicyl aldehyde,1,3 propan diimine (BSPDI) loaded on activated carbon. J. Hazard. Mater.,2008,154(1-3):128-134
    [6]Ferreira H S, Santos A C N, Portugal L A, et al. Pre-concentration procedure for determination of copper and zinc in food samples by sequential multi-element flame atomicabsorptionspectrometry. Talanta,2008,77(1):73-76
    [7]Dalman O, Demirak A, Balci A. Determination of heavy metals (Cd, Pb) and trace elements (Cu, Zn) in sediments and fish of the Southeastern Aegean Sea (Turkey) by atomic absorption spectrometry. Food Chem.,2006,95(1):157-162
    [8]Matos-Reyes M N, Cervera M L, Campos R C, et al. Total content of As, Sb, Se, Te and Bi in Spanish vegetables, cereals and pulses and estimation of the contribution of these foods to the Mediterranean daily intake of trace elements. Food Chem.,2010,122(1):188-194
    [9]Gomez-Ariza J L, Lorenzo F, Garcia-Barrera T. Comparative study of atomic fluorescence spectroscopy and inductively coupled plasma mass spectrometry for mercury and arsenic multispeciation. Anal. Bioanal. Chem.,2005,382(2):485-492
    [10]Karadjova I B, Lampugnani L, Onor M, et al. Continuous flow hydride generation-atomicfluorescence spectrometric determination and speciation of arsenic in wine. Spectrochim. Acta B,2005,60(6):816-823
    [11]Kira C S, Maihara V A. Determination of major and minor elements in dairy products through inductively coupled plasma optical emission spectrometry after wet partial digestion and neutronactivationanalysis. Food Chem.,2007,100(1): 390-395
    [12]He Q, Chang X, Huang X, et al. Determination of trace elements in food samples by ICP-AES after preconcentration with p-toluenesulfonylamide immobilized on silica gel and nanometer SiO2. Microchim. Acta,2008,160(1-2):147-152
    [13]Zeiner M, Steffan I, Cindric I J. Determination of trace elements in olive oil by ICP-AES and ETA-AAS:A pilot study on the geographical characterization. Microchem. J.,2005,81(2):171-176
    [14]Krejcova A, Cernohorsky T. The determination of boron in tea and coffee by ICP-AES method. Food Chem.,2003,82(2):303-308
    [15]Zhang N, Huang Z, Hu B. ICP-AES Determination of trace rare earth elements in environmental and food samples by on-line separation and preconcentration with acetylacetone-modified silica gel using microcolumn. Anal. Sci.,2007,23(8): 997-1002
    [16]Nardi E P, Evangelista F S, Tormen L, et al. The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples. Food Chem.,2009,112(3):727-732
    [17]Careri M, Elviri L, Mangia A, et al. ICP-MS as a novel detection system for quantitative element-tagged immunoassay of hidden peanut allergens in foods. Anal. Bioanal. Chem.,2007,387(5):1851-1854
    [18]Millour S, Noel L, Kadar A, et al. Simultaneous analysis of 21 elements in foodstuffs by ICP-MS after closed-vessel microwave digestion:Method validation. J. Food Compos. Anal.,2011,24(1):111-120
    [19]Houk R S, Fassel V A, Flesh G D, et al. Inductively coupled argon plasma as an ion source for mass spectrometric determination of trace elements. Anal. Chem. 1980,52(14):2283-2289
    [20]刘虎生,邵宏翔主编.电感耦合等离子体质谱技术与应用.北京:化学工业出版社,2005,1-3
    [21]Meinhard J E. The concentric glass nebulizer, ICP Inform. Newslett.,1976,2: 163-165
    [22]Vanhaecke F, Van Holderbeke M, Moens L, et al. Evaluation of a commercially available microconcentric nebulizer for inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom.,1996,11(8):543-548
    [23]Fassel V A, Dickinson G W. Continuous ultrasonic nebulization and spectrographic analysis of molten metals. Anal. Chem.,1968,40(1):247-249
    [24]Knisely R H, Amnson H, Butler C C, et al. An improved pneumatic nebulizer for use at lower nebulizing gas flow. Appl. Spectrosc.,1974,28:285-286
    [25]Liu Y, Lopez-Avila V, Zhu J J, et al. Capillary electrophoresis coupled online with inductively coupled plasma mass spectrometry for elemental speciation. Anal. Chem.,1995,67(13):2020-2025
    [26]Wang L, May S W, Browner R F, et al. Low-flow interface for liquid chromatography-inductively coupled plasma mass spectrometry speciation using an oscillating capillary nebulizer. J. Anal. At. Spectrom.,1996,11(12):1137-1146
    [27]Mclean J A, Zhang H, Montaser A. A Direct injection high-efficiency nebulizer for inductively coupled plasma mass spectrometry. Anal. Chem.,1998,70(5): 1012-1020
    [28]Olson K W, Hass W J, Fassel V A. Multielement detection limits and sample nebulization efficiencies of an improved ultrasonic nebulizer and a conventional pneumatic nebulizer in inductively coupled plasma-atomic emission spectrometry. Anal. Chem.,1977,49(4):632-637
    [29]Date A R, Gray A L. Applications of inductively coupled plasma mass spectrometry. BeiJing:Atomic Energy Press,1997,6-7
    [30]Paul W, Raether M. Das elektrische massenfilter. Z. Phys.,1955,140:262-271
    [31]Tan S H, Horlick G. Background spectral features in inductively coupled plasma/mass spectrometry. Appl. Spectrosc.,1986,40:445-460
    [32]Beauchenin D, Bednas M E, Berman S S, et al. Identification and quantitation of arsenic species in a dogfish muscle reference material for trace elements. Anal. Chem.,1988,60(20):2209-2212
    [33]Douglas D J. Some current perspectives on ICP-MS. Can. J. Spectrom.1995, 34(2):38-49
    [34]Bradshaw N. Communication. Inductively coupled plasma as an ion source for high-resolution mass spectrometry. J. Anal. At. Spectrom.,1989,4(8):801-803
    [35]Morita M, Ito H. Uehiro T, et al. High resolution mass spectrometry with inductively coupled argon plasma ionization source. Anal. Sci.,1989,5:609- 610
    [36]王小如主编.电感耦合等离子体质谱应用实例.北京:化学工业出版社,2005,8-19
    [37]Date A R, Cheung Y Y, Stuart M E, The influence of polyatomic ion interferences in analysis by inductively coupled plasma source mass spectrometry (ICP-MS). Spectrochim. Acta,1987,42B:3-20
    [38]Hutton R C, Edton A N. Role of aerosol water vapour loading in inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom.,1987,2(6):595-598
    [39]Hernandis V, Todoli J L, Canals A, et al. An experimental study of the behaviour of several elements in inductively coupled plasma mass spectrometry using the single-bore high-pressure pneumatic nebulizer. Spectrochim. Acta,1995,50B (9): 985-996
    [40]Fitzgerald N, Tyson J F, Leighty D A. Reduction of water loading effects in inductively coupled plasma mass spectrometry by a Nafion membrane dryer device. J. Anal. At. Spectrom.,1998,13(1):13-16
    [41]Mc Lafferty F W, Bente P F, Kornfeld R, et al. Metastable ion characteristics. ⅩⅫ. Collisional activation spectra of organic ions. J. Am. Chem. Soc.,1973, 95(7):2120-2129
    [42]Marcus R K. Collisional dissociation in plasma source mass spectrometry:A potential alternative to chemical reactions for isobar removal. J. Anal. At. Spectrom.,2004,19(5):591-599
    [43]Baranov V I, Tanner S D. A dynamic reaction cell for inductively coupled plasma mass spectrometry (ICP-DRC-MS). Part 1. The rf-field energy contribution in thermodynamics of ion-molecule reactions. J. Anal. At. Spectrom.,1999,14(8): 1133-1142
    [44]Tanner S D, Baranov V I. A dynamic reaction cell for inductively coupled plasma mass spectrometry (ICP-DRC-MS). Ⅱ. Reduction of interferences produced within the cell. J. Am. Soc. Mass Spectrom.,1999,10:(11):1083-1094
    [45]Bandura D R, Baranov V I, Litherland A E, et al. Gas-phase ion-molecule reactions for resolution of atomic isobars:AMS and ICP-MS perspectives. Int. J. Mass Spectrom.,2006,255-256:312-327
    [46]Bandura D R, Baranov V I, Tanner S D. Detection of ultratrace phosphorus and sulfur by quadrupole ICPMS with dynamic reaction cell. Anal. Chem.,2002, 74(7):1497-1502
    [47]Tanner S D, Baranov V I, Vollkopf U. A dynamic reaction cell for inductively coupled plasma mass spectrometry (ICP-DRC-MS). Part Ⅲ. Optimization and analytical performance. J. Anal. At. Spect rom.,2000,15(9):1261-21269
    [48]Hattendorf B, Gunther D. Suppression of in-cell generated interferences in a reaction cell ICP-MS by bandpass tuning and kinetic energy discrimination. J. Anal. At. Spectrom.,2004,19(5):600-606
    [49]Vanhaecke F, Balcaen L, Deconinck I, et al. Mass discrimination in dynamic reaction cell (DRC)-ICP-mass spectrometry. J. Anal. At. Spectrom.,2003,18(9): 1060-1065
    [50]Hattendorf B, Gunther D. Characteristics and capabilities of an ICP-MS with a dynamic reaction cell for dry aerosols and laser ablation. J. Anal. At. Spectrom., 2000,15(9):1125-1131
    [51]Bandura D R, Baranov V I, Tanner S D. Effect of collisional damping and reactions in a dynamic reaction cell on the precision of isotope ratio measurements. J. Anal. At. Spectrom.,2000,15(8):821-928
    [52]Mason P R D, Kaspers K, van Bergen M J. Determination of sulfur isotope ratios and concentrations in water samples using ICP-MS incorporating hexapole ion optics. J. Anal. At. Spectrom.,1999,14(7):1067-1074
    [53]Engelhard C. Inductively coupled plasma mass spectrometry:recent trends and developments. Anal. Bioanal. Chem.,2011,399(1):213-219
    [54]Beauchemin D. Inductively Coupled Plasma Mass Spectrometry. Anal. Chem., 2010,82(12):4786-4810
    [55]Tanner S D, Baranov V I, Bandura D R. Reaction cells and collision cells for ICP-MS:a tutorial review. Spectrochim. Acta,2002,57B(9):1361-1452
    [56]Koppenaal D W, Eiden G C, Barinaga C J. Collision and reaction cells in atomic mass spectrometry:development, status, and applications. J. Anal. At. Spectrom., 2004,19(5):561-570
    [57]Yip Y C, Sham WC. Applications of collision/reaction-cell technology in isotope dilution mass spectrometry. Trends Anal. Chem.,2007,26(7):727-743
    [58]李冰,胡静宇,赵墨田.碰撞/反应池ICP-MS性能及应用进展.质谱学报,2010,31(1):1-11
    [59]D'Ilio S, Violante N, Majorani C. Dynamic reaction cell ICP-MS for determination of total As, Cr, Se and V in complex matrices:Still a challenge? A review. Anal. Chim. Acta,2011,698(1-2):6-13
    [60]Bandura D R, Baranov V I, Tanner SD. Reaction chemistry and collisional processes in multipole devices for resolving isobaric interferences in ICP-MS. Fresenius1 J. Anal. Chem.,2001,370(5):454-470
    [61]Kuo C Y, Jiang S J, Sahayam A C. Speciation of chromium and vanadium in environmental samples using HPLC-DRC-ICP-MS. J. Anal. At. Spectrom.,2007, 22(6):636-641
    [62]Floor G H, Iglesias M, Roman-Ross G. Selenium determination in volcanic soils by ICP-QMS:influence of reaction cell pressurization and methanol addition on the occurrence of spectral interferences. J. Anal. At. Spectrom.,2009,24(7): 944-948
    [63]Epov V N, Benkhedda K, Evans R D. Determination of Pu isotopes in vegetation using a new on-line FI-ICP-DRC-MS protocol after microwave digestion. J. Anal. At. Spectrom.,2005,20(9):990-992
    [64]Bednar A J. Determination of vanadium by reaction cell inductively coupled plasma mass spectrometry. Talanta,2009,78(2):453-457
    [65]Sucharov J. Optimisation of DRC ICP-MS for determining selenium in plants. J. Anal. At. Spectrom.,2011,26 (9):1756-1762
    [66]Suh J K, Kang N, Lee J B. Direct determination of arsine in gases by inductively coupled plasma-dynamic reaction cell-mass spectrometry. Talanta,2009,78(1): 321-325
    [67]Fujiwara H, Kawabata K, Suzuki J, et al. Determination of 129Ⅰ in soil samples by DRC-ICP-MS. J. Anal. At. Spectrom.,2011,26 (12):2528-2533
    [68]Meeravali N N, Jiang S J. A novel cloud point extraction approach using cationic surfactant for the separation and pre-concentration of chromium species in natural water prior to ICP-DRC-MS determination. Talanta,2009,80(1):173-178
    [69]Brown C F, Dresel P E, Geiszler K N, et al. Precise ruthenium fission product isotopic analysis using dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS). J. Anal. At. Spectrom.,2006,21(9):955-962
    [70]Guo W, Hu S, Zhang J, et al. Soil monitoring of arsenic by methanol addition DRC ICP-MS after boiling aqua regia extraction. J. Anal. At. Spectrom.2011, 26(10):2076-2080
    [71]Feuerstein J, Boulyga S F, Galler P, et al. Determination of 90Sr in soil samples using inductively coupled plasma mass spectrometry equipped with dynamic reaction cell (ICP-DRC-MS). J. Environ. Radioact.,2008,99(11):1764-1769
    [72]Bednar A J, Kirgan R A, Jones W T. Comparison of standard and reaction cell inductively coupled plasma mass spectrometry in the determination of chromium and selenium species by HPLC-ICP-MS. Anal. Chim. Acta,2009,632(1):27-34
    [73]Guo W, Hu S, Zhang J, et al. Elimination of oxide interferences and determination of ultra-trace silver in soils by ICP-MS with ion-molecule reactions. Sci. Total Environ.,2011,409(15):2981-2986
    [74]Ma H L, Tanner P A. Speciated isotope dilution analysis of Cr(Ⅲ) and Cr(Ⅵ) in water by ICP-DRC-MS. Talanta,2008,77(1):189-194
    [75]Jitmanee K, Teshima N, Sakai T, et al. DRCTM ICP-MS coupled with automated flow injection system with anion exchange minicolumns for determination of selenium compounds in water samples. Talanta,2007,73(2):352-357
    [76]D'Ilio S, Violante N, Senofonte O, et al. Determination of depleted uranium in fish Validation of a confirmatory method by dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS). Anal. Chim. Acta,2007, 597(2):195-202
    [77]Lim J M, Lee J H, Moon J H, et al. Airborne PM10 and metals from multifarious sources in an industrial complex area. Atmos. Res.,2010,96(1):53-64
    [78]黎飞,王扬,张成,等.HPLC/ICP-MS法测定水质中Cr(Ⅲ)和Cr(Ⅵ)的研究.宁波大学学报(理工版),2012,25(3):13-16
    [79]Duzgoren-Aydin N S, Avula B, Willett K L, et al. Determination of total and partially extractable solid-bound element concentrations using collision/reaction cell inductively coupled plasma-mass spectrometry and their significance in environmental studies. Environ. Monit. Assess.,2011,172(1-4):51-66
    [80]Kan S F, Tanner P A. Determination of platinum in roadside dust samples by dynamic reaction cell-inductively coupled plasma-mass spectrometry. J. Anal. At. Spectrom.,2004,19(5):639-643
    [81]Liu H T, Jiang S J. Determination of copper in coal fly ash in the presence of excess titanium by dynamic reaction cell inductively coupled plasma mass spectrometry. Anal. Bioanal. Chem.,2003,375(2):306-309
    [82]Danaduraia K K S, Chellam S, Lee C T. Trace elemental analysis of airborne particulate matter using dynamic reaction cell inductively coupled plasma-mass spectrometry:Application to monitoring episodic industrial emission events. Anal. Chim. Acta,2011,686(1-2):40-49
    [83]Spada N, Bozlaker A, Chellam S. Multi-elemental characterization of tunnel and road dusts in Houston, Texas using dynamic reaction cell quadrupole inductively coupled plasma mass spectrometry:Evidence for the release of platinum group and anthropogenic metals from motor vehicles. Anal. Chim. Acta,2012,735:1-8
    [84]王立军,栗俊,张玉凤,等.应用ICP-MS直接测定近岸高盐排污口水样中重金属方法研究.海洋环境科学,2007,26(2):172-174
    [85]Santos M C, Nobrega J A, Cadore S. Determination of Cd, Cr, Hg and Pb in plastics from waste electrical and electronic equipment by inductively coupled plasma mass spectrometry with collision-reaction interface technology. J. Hazard. Mater.,2011,190(1-3):833-839
    [86]D'Ilio S, Violante N, Caimi S, et al. Determination of trace elements in serum by dynamic reaction cell inductively coupled plasma mass spectrometry: Developing of a method with a desolvating system nebulizer. Anal. Chim. Acta, 2006,573-574:432-438
    [87]Nixon D E, Neubauerb K R, Eckdahl S J, et al. Evaluation of a tunable bandpass reaction cell for an inductively coupled plasma mass spectrometer for the determination of chromium and vanadium in serum and urine. Spectrochim. Acta, 2002,57B(5):951-966
    [88]Nixon D E, Neubauerb K R, Eckdahl S J, et al. Comparison of tunable bandpass reaction cell inductively coupled plasma mass spectrometry with conventional inductively coupled plasma mass spectrometry for the determination of heavy metals in whole blood and urine. Spectrochim. Acta,2004,59B(9):1377-1387
    [89]王英锋,刘翠梅,刘少轻,等.普通/ORS模式-ICP-MS法测定动物血液和组织中硒的比较.光谱学与光谱分析,2008,28(19):2173-2176
    [90]谢建滨,张慧敏,黎雪慧,等.直接进样碰撞池ICP-MS技术测定全血中二十种元素.中国热带医学,2009,9(8):1455-1456
    [91]Batista B L, Grotto D, Rodrigues J L, et al. Determination of trace elements in biological samples by inductively coupled plasma mass spectrometry with tetramethylammonium hydroxide solubilization at room temperature. Anal. Chim. Acta,2009,646(1-2):23-29
    [92]McShane W J, Pappas R S, Paschal D. Analysis of total arsenic, total selenium and total chromium in urine by inductively coupled plasma-dynamic reaction cell-mass spectrometry. J. Anal. At. Spectrom.,2007,22(6):630-635
    [93]Jarrett J M, Xiao G, Caldwell K L, et al. Eliminating molybdenum oxide interference in urine cadmium biomonitoring using ICP-DRC-MS. J. Anal. At. Spectrom.,2008,23(8):962-967
    [94]Ito K, Palmer C D, Steuerwald A J, et al. Determination of five arsenic species in whole blood by liquid chromatography coupled with inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom.,2010,25(8):1334-1342
    [95]Parsons J G, Martinez-Martinez A, Peralta-Videa J R, et al. Speciation and uptake of arsenic accumulated by corn seedlings using XAS and DRC-ICP-MS. Chemosphere,2008,70(11)2076-2083
    [96]D'Ilio S, Violante N, Gregorio M D. Simultaneous quantification of 17 trace elements in blood by dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) equipped with a high-efficiency sample introduction system. Anal. Chim. Acta,2006,59(2):202-208
    [97]Bandura D R, Ornatsky O I, Liao L. Characterization of phosphorus content of biological samples by ICP-DRC-MS:potential tool for cancer research. J. Anal. At. Spectrom.,2004,19(1):96-100
    [98]Hann S, Obinger C, Stingeder G, et al. Studying metal integration in native and recombinant copper proteins by hyphenated ICP-DRC-MS and ESI-TOF-MS capabilities and limitations of the complementary techniques. J. Anal. At. Spectrom.,2006,21(11):1224-1231
    [99]Faria N, Winship P D, Weiss D J, et al. Development of DRC-ICP-MS methodology for the rapid determination of 58Fe erythrocyte incorporation in human iron absorption studies. J. Anal. At. Spectrom.,2011,26 (8):1648-1652
    [100]Sturup S, Bendahl L, Gammelgaard B. Optimisation of dynamic reaction cell (DRC)-ICP-MS for the determination of 42Ca/43Ca and 44Ca/43Ca isotope ratios in human urine. J. Anal. At. Spectrom.,2006,21(3):297-304
    [101]Braga P, Montes-Bayon M, Alvarez J, et al. Characterization, biological interactions and in-vivo detection of selenotrisulfide derivatives of glutathion, cysteine and homocysteine by HPLC-ICP-MS. J. Anal. At. Spectrom.,2004, 19(9):1128-1133
    [102]Sturup S, Hayes R B, Peters U. Development and application of a simple routine method for the determination of selenium in serum by octopole reaction system ICPMS. Anal. Bioanal. Chem.,2005,381(3):686-694
    [103]Ogra Y, Ishiwata K, Suzuki K T. Effects of deuterium in octopole reaction and collision cell ICP-MS on detection of selenium in extracellular fluids. Anal. Chim. Acta,2005,554(1-2):123-129
    [104]Gammelgaard B, Bendahl L, Jacobsen N W, et al. Quantitative determination of selenium metabolites in human urine by LC-DRC-ICP-MS. J. Anal. At. Spectrom.,2005,20(9):889-893
    [105]Sturup S, Bendahl L, Gammelgaard B. Optimization of LC-DRC-ICP-MS for the speciation of selenotrisulfides with simultaneous detection of sulfur and selenium as oxides combined with determination of elemental and isotope ratios. J. Anal. At. Spectrom.,2006,21(2):201-203
    [106]Batista B L, Rodrigues J L, Nunes J A, et al. Exploiting dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) for sequential determination of trace elements in blood using a dilute-and-shoot procedure. Anal. Chim. Acta,2009,639(1-2):13-18
    [107]Bonnefoy C, Menudier A, Moesch C, et al. Determination of chromium in whole blood by DRC-ICP-MS:spectral and non-spectral interferences. Anal. Bioanal. Chem.,2005,383(2):167-173
    [108]Ejnik J W, Todorov T I, Mullick F G, et al. Uranium analysis in urine by inductively coupled plasma dynamic reaction cell mass spectrometry. Anal. Bioanal. Chem.,2005,382(1):73-79
    [109]陆秉源,陆文伟,朱玮琳,等.等离子体质谱-氧气碰撞池技术测定复杂基体样品中痕量砷和硒.分析化学,2009,37(12):1781-1785
    [110]王萌,丰伟悦,陆文伟,等.电感耦合等离子体质谱间接法测定蛋白质含量.分析化学,2008,36(3):321-324
    [111]谢建滨,张慧敏,黎雪慧,等.尿中10种元素碰撞池ICP-MS方法快速测定.中国公共卫生,2008,24(8):975-976
    [112]Antes F G, Mesko M F, Barin J S, et al. Development of multi-elemental method for quality control of parenteral component solutions using ICP-MS. Microchem. J.,2011,98(1):144-149
    [113]Sarmiento-Gonzalez A, Marchante-Gayon J M, Tejerina-Lobo J M, et al. ICP-MS multielemental determination of metals potentially released from dental implants and articular prostheses in human biological fluids. Anal. Bioanal. Chem.,2005,382 (4):1001-1009
    [114]Goulle J P, Saussereau E, Grosjean J, et al. Accidental potassium dichromate poisoning. Toxicokinetics of chromium by ICP-MS-CRC in biological fluids and in hair. Forensic Sci. Int.,2012,217(1):8-12
    [115]柳洁,曾丽,何碧英.全血中14种痕量有毒金属元素的ICP-MS测定方法的研究.现代预防医学,2008,35(23):4652-4654
    [116]汤鋆,应英,谭莹,等.碰撞池ICP-MS直接测定全血中有害痕量金属元素.中国卫生检验杂志,2011,21(12):2851-2856
    [117]de Muynck D, Vanhaecke F. Development of a method based on inductively coupled plasma-dynamic reaction cell-mass spectrometry for the simultaneous determination of phosphorus, calcium and strontium in bone and dental tissue. Spectrochim. Acta.,2009,64B(5):408-415
    [118]Simpson L A, Hearn R, Merson S, et al. A comparison of double-focusing sector field ICP-MS, ICP-OES and octopole collision cell ICP-MS for the high-accuracy determination of calcium in human serum. Talanta,2005,65(4): 900-906
    [119]Aureli F, D'Amato M, De Berardis B, et al. Investigating agglomeration and dissolution of silica nanoparticles in aqueous suspensions by dynamic reaction cell inductively coupled plasma-mass spectrometry in time resolved mode. J. Anal. At. Spectrom.,2008,27(9):1540-1548
    [120]李政军,黄金凤,刘健斌,等.八极杆碰撞/反应池测定纯铜中的磷.分析试验室,2007,26(1):76-78
    [121]Resano M, Marzo P, Perez-Arantegui J, et al. Laser ablation-inductively coupled plasma-dynamic reaction cell-mass spectrometry for the determination of lead isotope ratios in ancient glazed ceramics for discriminating purposes. J. Anal. At. Spectrom.,2008,23(9):1182-1191
    [122]陈玉红,刘正,王海舟.电感耦合等离子体质谱法测定钢铁及合金中痕量磷.冶金分析,2007,27(12):17-20
    [123]Liu H T, Jiang S J. Dynamic reaction cell inductively coupled plasma mass spectrometry for determination of silicon in steel. Spectrochim. Acta,2003, 58B(1):153-157
    [124]Sahayam A C, Jiang S J, Wan C C. Determination of ultra-trace impurities in high purity gallium arsenide by inductively coupled plasma mass spectrometry after volatilization of matrix. J. Anal. At. Spectrom.,2004,19(3):407-409
    [125]卫碧文,谢秋慧,郑翊,等.电感耦合等离子体质谱法测定玩具材料中17种 有毒有害元素.理化检验(化学分册),2010,46(5):500-502
    [126]杨毅,刘英波,王劲榕,等.电感耦合等离子体质谱法测定多晶硅中18个痕量元素.冶金分析,2009,29(11):8-12
    [127]Nonose N, Ohata M, Narukawa T, et al. Removal of isobaric interferences in isotope dilution analysis of vanadium in silicon nitride fine ceramics powder by DRC-ICP-MS. J. Anal. At. Spectrom.2009,24(3):310-319
    [128]全玉.电感耦合等离子体质谱法检测氧化镓中杂质元素.分析试验室,2009,28(12):107-110
    [129]Simpson L A, Thomsen M, Alloway B J, et al. A dynamic reaction cell (DRC) solution to oxide-based interferences in inductively coupled plasma mass spectrometry (ICP-MS) analysis of the noble metals. J. Anal. At. Spectrom., 2001,16(12):1375-1380
    [130]Jiang W, Hibbert D B, Moran G, et al. Measurement of gold and sulfur mass fractions in L-cysteine-modified gold nanoparticles by ICP-DRC-MS after acid digestion:validation and uncertainty of results. J. Anal. At. Spectrom.,2012,27 (9):1465-1473
    [131]Yang C H, Jiang S J. Determination of B, Si, P and S in steels by inductively coupled plasma quadrupole mass spectrometry with dynamic reaction cell. Spectrochim. Acta,2004,59B(9):1390-1394
    [132]Resano M, Garcia-Ruiz E, Vanhaecke F. Laser ablation-inductively coupled plasma-dynamic reaction cell-mass spectrometry for the multi-element analysis of polymers. Spectrochim. Acta,2005,60B(11):1472-1481
    [133]白金峰,刘彬,张勤,等.碰撞池-电感耦合等离子体质谱法测定地球化学样品中钒和铬.冶金分析,2009,29(6):17-22
    [134]Daniels S L, Arslan Z. Coprecipitation with calcium hydroxide for determination of iron in fish otoliths by collision cell ICP-MS. J. Mass Spectrom.,2007,42(5):584-590
    [135]de Madinabeitia S G, Lorda M E S, Ibarguchi J I G. Simultaneous determination of major to ultratrace elements in geological samples by fusion-dissolution and inductively coupled plasma mass spectrometry techniques. Anal. Chim. Acta, 2008,625(2):117-130
    [136]Vanhaecke F, Resano M, Garcia-Ruiz E, et al. Laser ablation-inductively coupled plasma-dynamic reaction cell-mass spectrometry (LA-ICP-DRC-MS) for the determination of Pt, Pd and Rh in Pb buttons obtained by fire assay of platiniferous ores. J. Anal. At. Spectrom.,2004,19(5):632-638
    [137]Wang Y, Brindle I D. Ultra-trace determination of vanadium in lake sediments: a performance comparison using O2, N2O, and NH3 as reaction gases in ICP-DRC-MS. J. Anal. At. Spectrom.,2011,26(7):1514-1520
    [138]Bianchi S R, Amais R S, Pereira C D, et al. Evaluation of a Collision-Reaction Interface (CRI) for Carbon Effect Correction on Chromium Determination in Environmental Samples by ICP-MS. Anal. Lett.,2012,45(18):2845-2855
    [139]Ogawa Y, Yamasaki S, Tsuchiya N. Application of a dynamic reaction cell (DRC) ICP-MS in chromium and iron determinations in rock, soil and terrestrial water samples. Anal. Sci.,2010,26(8):867-872
    [140]Inagaki K, Takatsu A, Nakama A, et al. Determination of selenium in sediment by isotope-dilution inductively coupled plasma mass spectrometry with an octapole reaction cell. Anal. Bioanal. Chem.,2006,385(1):67-75
    [141]许萍,陈铭学,牟仁祥,等.ICP-MS混合模式测定植物性农产品中的9种痕量元素.分析测试学报,2011,30(10):1138-1142
    [142]Guo W, Hua S H, Li X F, et al. Use of ion-molecule reactions and methanol addition to improve arsenic determination in high chlorine food samples by DRC-ICP-MS. Talanta,2011,84(3):887-894
    [143]Pick D, Leiterer M, Einax J W. Reduction of polyatomic interferences in biological material using dynamic reaction cell ICP-MS. Microchem. J.,2010, 95(2):315-319
    [144]彭荣飞,侯建荣,黄聪.碰撞池ICP-MS同时测定婴幼儿奶粉中的常量、微量和痕量元素.中国卫生检验杂志,2010,20(12):3166-3168
    [145]Ambushe A A, McCrindle R I, McCrindle C M E. Speciation of chromium in cow's milk by solid-phase extraction/dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS). J. Anal. At. Spectrom.,2009,24(4): 502-509
    [146]Tseng Y J, Tsai Y D, Jiang S J. Electrothermal vaporization dynamic reaction cell inductively coupled plasma mass spectrometry for the determination of Fe, Co, Ni, Cu, and Zn in biological samples. Anal. Bioanal. Chem.2007,387(8): 2849-2855
    [147]Tseng Y J, Tsai Y D, Jiang S J. Electrothermal vaporization dynamic reaction cell inductively coupled plasma mass spectrometry for the determination of Fe, Co, Ni, Cu, and Zn in biological samples. Anal. Bioanal. Chem.2007,387(8): 2849-2855
    [148]D'Ilio S, Petrucci F, Amato M D, et al. Method validation for determination of arsenic, cadmium, chromium and lead in milk by means of dynamic reaction cell inductively coupled plasma mass spectrometry. Anal. Chim. Acta,2008,624(1): 59-67
    [149]Dufailly V, Noel L, Guerin T. Determination of chromium, iron and selenium in foodstuffs of animal origin by collision cell technology, inductively coupled plasma mass spectrometry (ICP-MS), after closed vessel microwave digestion. Anal. Chim. Acta,2006,565(2):214-221
    [150]Noel A K L, Chekri R, Vastel C, et al. Optimisation of ICP-MS collision/reaction cell conditions for the determination of elements likely to be interfered (V, Cr, Fe, Co, Ni, As and Se) in foodstuffs. Talanta,2011,85(5): 2605-2613
    [151]Dufailly V, Noel L, Guerin T. Optimisation and critical evaluation of a collision cell technology ICP-MS system for the determination of arsenic in foodstuffs of animal origin. Anal. Chim. Acta,2008,611(2):134-142
    [152]徐永,俞丹宏.电感耦合等离子体质谱法测定西红柿中微量元素.理化检验(化学分册),2006,42(12):991-993
    [153]黄晓文,张念,黄小龙,等.碰撞池ICP-MS测定大米中Ca、Mn、Fe、Cu、 Ni、As、Se、Sr、Cd、Ba和Hg的研究.光谱实验室,2009,26(5):1096-1099
    [154]刘华章,彭荣飞,侯建荣,等.ICP-MS碰撞池技术测定食盐、调味品和尿液中的Cr、V、As和Se.中国卫生检验杂志,2008,18(4):577-579
    [155]Wu M C, Jiang S J, Hsi T S. Determination of the ratio of calcium to phosphorus in foodstuffs by dynamic reaction cell inductively coupled plasma mass spectrometry. Anal. Bioanal. Chem.,2003,377 (1):154-158
    [156]谢建滨,张慧敏,姜杰,等.ICP-M法碰撞/反应池技术测定螺旋藻中砷、铅、镉含量的方法研究.实用预防医学,2008,15(4):1231-1232
    [157]孙耀帆,李群,江志刚,等.电感耦合等离子体质谱法测定花生中34种元素.分析试验室,2012,31(6):108-112
    [158]符靓,唐有根.电感耦合等离子体质谱法测定食品添加剂中的微量元素.食品工业科技,2012,33(9):362-365
    [159]符靓,唐有根.电感耦合等离子体质谱法测定食品添加剂纯碱中的杂质元素.食品工业,2012,33(6):119-121
    [160]符靓.八极杆碰撞/反应池-ICP-MS法测定果脯中的重金属元素.食品工业科技,2012,33(15):311-314
    [161]Guo W, Hu S H, Zhao J, et al. Removal of spectral interferences and accuracy monitoring of trace cadmium in feeds by dynamic reaction cell inductively coupled plasma mass spectrometry. Microchem. J.,2011,97(2):154-159
    [162]Vassileva E, Hoenig M. Determination of the total and extractable mass fractions of cadmium and lead in mineral feed by using isotope dilution inductively coupled plasma mass spectrometry. Anal. Chim. Acta,2011,701(1): 37-44
    [163]Leonhard P, Pepelnik R, Prange A, et al. Analysis of diluted sea-water at the ng L"1 level using an ICP-MS with an octopole reaction cell. J. Anal. At. Spectrom. 2002,17(3):189-196
    [164]Ardini F, Magi E, Grotti M. Determination of ultratrace levels of dissolved metals in seawater by reaction cell inductively coupled plasma mass spectrometry after ammonia induced magnesium hydroxide coprecipitation. Anal. Chim. Acta,2011,706(1):84-88
    [165]荆淼,沈阳,沈金灿,等.应用带八级杆碰撞/反应池(ORS)的电感耦合等离子体质谱(ORS-ICP-MS)同时测定大洋海水中的痕量元素.环境化学,2004,23(5):600-604
    [166]彭荣飞,黄聪,卓召模,等.碰撞池ICP-MS测定近海海水中的Cr、As、 Se、Cd、Cu、Zn、Hg和Pb.中国卫生检验杂志,2008,18(12):2529-2531
    [167]Bollinger D S, Schleisman A J. Analysis of high purity acids using a dynamic reaction cell ICP-MS. At. Spectrosc.,1999,20(6):60-63
    [168]Hattendorf B, Gunther D. Strategies for method development for an inductively coupled plasma mass spectrometer with bandpass reaction cell. Approaches with different reaction gases for the determination of selenium. Spectrochim. Acta, 2003,58B(1):1-13.
    [169]Pereira C D, Garcia E E, Silva F V, et al. Behaviour of arsenic and selenium in an ICP-QMS with collision and reaction interface. J. Anal. At. Spectrom.,2010, 25(11):1763-1768
    [170]Castro W, Trejos T, Naes B, et al. Comparison of high-resolution and dynamic reaction cell ICP-MS capabilities for forensic analysis of iron in glass. Anal. Bioanal. Chem.,2008,392(4):663-672
    [171]张萍,谢华林.用带八极杆碰撞/反应池的ICP-MS伺时测定电镀废水中的 12种重金属元素.材料保护,2012,45(6):66-68
    [172]Popp M, Hann S, Mentler A, et al. Determination of glyphosate and AMPA in surface and waste water using high-performance ion chromatography coupled to inductively coupled plasma dynamic reaction cell mass spectrometry (HPIC-ICP-DRC-MS). Anal. Bioanal. Chem.,2008,391(2):695-699
    [173]李吉生,杨生鸿,刘海英,等.动态碰撞反应池模式-电感耦合等离子体质谱检测藏药中的微量元素.安徽农业科学,2011,39(1):123-124
    [174]Spolaor A, Vallelonga P, Gabrieli J, et al. Determination of Fe2+ and Fe3+ species by FIA-CRC-ICP-MS in Antarctic ice samples. J. Anal. At. Spectrom.,2012, 27(2):310-317
    [175]Iglesias M, Gilon N, Poussel E, et al. Evaluation of an ICP-collision/reaction cell-MS system for the sensitive determination of spectrally interfered and non-interfered elements using the same gas conditions. J. Anal. At. Spectrom., 2002,17(10):1240-1247
    [176]Ueng R L, Sahayam A C, Jiang S J, et al. Microwave-assisted volatilization of chlorides of Ge and Se for the determination of trace impurities in high purity Ge and Se by ICP-MS. J. Anal. At. Spectrom.,2004,19(5):681-684
    [177]施燕支,王艳泽,王英锋,等.带八极杆碰撞/反应池的电感耦合等离子体质谱测定中药中的微量元素.分析试验室,2007,26(3):76-78
    [178]Vais V, Li C, Cornett J. Condensation reaction in the bandpass reaction cell improves sensitivity for uranium, thorium, neodymium and praseodymium measurements. Anal. Bioanal. Chem.,2003,377(1):85-88
    [179]Moureau J, Granet M, Chartier F, et al. High accuracy measurements of Mo isotopes by MC-ICPMS with in situ Mo/Zr separation using N2O in a collision reaction cell. J. Anal. At. Spectrom.,2008,23(11):1538-1544
    [180]de Albuquerque F I, Duyck C B, Fonseca T C O, et al. Determination of As and Se in crude oil diluted in xylene by inductively coupled plasma mass spectrometry using a dynamic reaction cell for interference correction on 80Se. Spectrochim. Acta,2012,71-72:112-116
    [181]于宙,江志刚,张帅,等.用八级杆碰撞反应池技术电感耦合等离子体质谱法测定化妆品中17种有害元素.科学技术与工程,2011,11(6):1381-1385
    [182]Fialho L L, Pereira C D, Nobrega J A. Combination of cool plasma and collision-reaction interface for correction of polyatomic interferences on copper signals in inductively coupled plasma quadrupole mass spectrometry. Spectrochim. Acta,2011,66(5):389-393
    [183]de Souza J R, Duyck C B, Fonseca T C O, et al. Multielemental determination in oil matrices diluted in xylene by ICP-MS with a dynamic reaction cell employing methane as reaction gas for solving specific interferences. J. Anal. At. Spectrom.,2012,27(8):1280-1286
    [184]王梅艳,白洁,马木提·库尔班,等.核桃隔膜总黄酮和微量元素的测定.食品科学,2007,28(10):477-479
    [185]张春晖,丁秋红,商翎,等.铁岭市东部山区野生经济植物榛子营养元素地球化学特征.地质与资源,2006,15(4):299-303
    [186]任雪峰,吴冬青,王永生,等.FAAS法测定苦杏仁和甜杏仁中的13种金属元素.光谱实验室,2009,26(3):403-406
    [187]Naozuka J, Olieira P V. Cu, Fe, Mn and Zn distribution in protein fractions of brazil-nut, cupuassu seed and coconut pulp by solid-liquid extraction and electrothermal atomic absorption spectrometry. J. Braz. Chem. Soc.,2007,18(8): 1547-1553
    [188]许景秀,李尚德.FAAS法测定豫南板栗中的微量元素.广东微量元素科学,2009,16(5):56-59
    [189]Naozuka J, Vieira E C, Nascimento AN, et al. Elemental analysis of nuts and seeds by axially viewed ICP OES. Food Chem.,2011,124(4):1667-1672
    [190]Welna M, Klimpel M, Zyrnicki W. Investigation of major and trace elements and their distributions between lipid and non-lipid fractions in Brazil nuts by inductively coupled plasma atomic optical spectrometry. Food Chem.,2008, 111(4):1012-1015.
    [191]Kanamkumarath S S, Wuilloud R G, Caruso J A. Studies of various elements of nutritional and toxicological interest associated with different molecular weight fractions in Brazil Nuts. J. Agric. Food Chem.,2004,52(19):5773-5780
    [192]Momen A A, Zachariadis G A, Anthemidis AN, et al. Use of fractional factorial design for optimization of digestion procedures followed by multi-element determination of essential and non-essential elements in nuts using ICP-OES technique. Talanta,2007,71(1):443-451
    [193]Enisoy-Karakas S, Gaga E O, Cankurc O, et al. Uncertainty of high resolution inductively coupled plasma mass spectrometry based aerosol measurements. Talanta,2009,79(5):1298-1305
    [194]王小如.电感耦合等离子体质谱应用实例.北京:化学工业出版社,2005: 265-266
    [195]Nardi E P, Evangelista F S, Tormen L, et al. The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples. Food Chem.,2009,112(3):727-732
    [196]聂西度,何晓梅,李立波,等.有机酸在电感耦合等离子体质谱中基体效应的研究.光谱学与光谱分析,2007,27(7):1420-1423
    [197]孙志梅.土豆中微量钙、镁含量的原子吸收法测定.淮南师范学院学报,2007,9(5):15-16
    [198]卫学青,李瑜,吴安君.微波消解-原子吸收光谱法测定不同品种马铃薯中的微量元素.食品科学,2011,32(12):216-218
    [199]Tinggi U, Reilly C, Patterson C. Determination of manganese and chromium in foods by atomic absorption spectrometry after wet digestion. Food Chem.,1997, 60(1):123-128
    [200]Lante A, Lomolino G, Cagnin M, et al. Content and characterisation of minerals in milk and in Crescenza and Squacquerone Italian fresh cheeses by ICP-OES. Food Control.,2006,17(3):229-233
    [201]Mesko M F, Mello P A, Bizzi C A, et al. Iodine determination in food by inductively coupled plasma mass spectrometry after digestion by microwave induced combustion. Anal. Bioanal. Chem.,2010,398(2):1125-1131
    [202]Herwig N, Stephan K, Panne U, et al. Multi-element screening in milk and feed by SF-ICP-MS. Food Chem.,2011,124(3):1223-1230
    [203]聂西度,梁逸曾,符靓.电感耦合等离子体质谱法测定甜味剂中重金属元素.光谱学与光谱分析,2012,32(10):2838-2841
    [204]黄冬根,周文斌,刘雷,等.ICP-MS法测定高岭土中微量成分及杂质元素的研究.光谱学与光谱分析,2009,29(2):504-508
    [205]陈兰珍,芮玉奎,赵静,等.应用ICP-MS测定不同种类蜂蜜中的微量元素和重金属.光谱学与光谱分析,2008,28(6):1403-1405
    [206]Hernandez O M, Fraga J M G, Jimenez A I, et al. Characterization of honey from the Canary Islands:determination of the mineral content by atomic absorption spectrophotometry. Food Chem.,2005,93(3):449-458
    [207]Tuzen M, Silici S, Mendil D, et al. Trace element levels in honeys from different regions of Turkey. Food Chem.,2007,103(2):325-330
    [208]Erbilir F, Erdogrul O. Determination of heavy metals in honey in Kahramanmaras City, Turkey. Environ. Monit. Assess.,2005,109(13):181-187
    [209]Leblebici Z, Aksoy A. Determination of Heavy Metals in Honey Samples from Central Anatolia Using Plasma Optical Emission Spectrofotometry (ICP-OES). Pol. J. Environ. Stud.,2008,17(4):549-555
    [210]郭岚,王蕊,柳英霞,等.电感耦合等离子体-原子发射光谱法同时测定不同种类蜂蜜中的20种微量元素.分析科学学报,2011,27(1):530-532
    [211]Sanna G, Piloa M I, Piua P C, et al. Determination of heavy metals in honey by anodic stripping voltammetry at microelectrodes. Anal. Chim. Acta,2000, 415(1-2):65-173
    [212]Munoz E, Palmero S. Determination of heavy metals in honey by potentiometric stripping analysis and using a continuous flow methodology. Food Chem.,2006,94(3):478-483
    [213]石美,冯加民,陆永超,等.毛细管电泳-间接紫外法检测蜂蜜中的多种金属离子.分析测试学报,2010,29(11):1159-1164
    [214]Frazzoli C, D'Ilio S, Bocca B. Determination of Cd and Pb in honey by SF-ICP-MS:validation figures and uncertainty of results. Anal. Lett.,2007, 40(10):1992-2004
    [215]NIE Xidu, LIANG Yizeng, TANG Yougen, et al. Determination of trace elements in high purity nickel by high resolution inductively coupled plasma mass spectrometry. J. Cent. South. Univ. Technol.,2012,19(9):2416-2420
    [216]Xie H L, Nie X D. Quantification of trace amounts of impurities in high purity cobalt by high resolution inductively coupled plasma mass spectrometry. Chinese Chem. Lett.,2006,17(8):1077-1080
    [217]Krystek P, Ritsema R. An incident study about acute and chronic human exposure to uranium by high-resolution inductively coupled plasma mass spectrometry(HR-ICPMS). Int. J. Hyg. Environ. Health,2009,212(1):76-81
    [218]Balcaen L, Woods G, Resano M, et al. Accurate determination of S in organic matrices using isotope dilution ICP-MS/MS. J. Anal. At. Spectrom.,2013,28(1): 33-39
    [219]Marin R C, Sarkis J E S, Nascimento M R L. The use of LA-SF-ICP-MS for nuclear forensics purposes:uranium isotope ratio analysis. J. Radioanal. Nucl. Chem.,2013,295(1):99-104
    [220]Kruger P C, Bloom M S, Arnason J G, et al. Trace elements in human follicular fluid:development of a sensitive multielement ICP-MS method for use in biomonitoring studies. J. Anal. At. Spectrom.,2012,27(8):1245-1253

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700