用户名: 密码: 验证码:
重金属对扁额细首纽虫抗氧化防御系统及脂质过氧化作用的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以青岛海滨常见种扁额细首纽虫Cephalothrix simula(Iwata,1952)为实验材料,研究了纽虫暴露在铜离子浓度为0.005,0.018和0.056 mg/l、锌离子浓度为0.14,0.43和1.35mg/l、镉离子浓度为0.5,1.6和5.0 mg/l溶液里96 h,纽虫体内金属积累、抗氧化酶、金属硫蛋白以及丙二醛的变化情况。目的是为了揭示重金属对扁额细首纽虫抗氧化防御系统及脂质过氧化作用的影响,为利用纽形动物监测重金属污染提供理论依据。
     通过将扁额细首纽虫暴露在不同浓度铜、锌、镉溶液里96 h,分析了纽虫积累金属离子含量的变化。结果表明纽虫金属积累的量和溶液里的金属浓度正相关,溶液里的金属离子浓度越高,其体内金属离子含量也越高。另外,虫体内的金属离子含量与暴露时间成明显的线性关系,即,随着暴露时间的延长,其体内金属离子含量逐渐增加。当扁额细首纽虫暴露在0.006 mg/l Cu~(2+)溶液里,与对照组相比,虫体内金属含量显著增加发生在24 h(p<0.05),在0.018和0.056 mg/l Cu~(2+)溶液里,其显著增加在12和6 h(p<0.05);暴露在0.14,0.43和1.35 mg/l Zn~(2+)溶液里,其显著增加在24、12和6 h(p<0.05);在0.5,1.6和5.0mg/l Cd~(2+)溶液,其显著增加在6 h(p<0.05)。实验证明,扁额细首纽虫具有较强的金属积累能力,尤其是对镉离子积累能力。
     通过将扁额细首纽虫暴露在铜,锌和镉不同浓度的溶液里96 h,分析了其体内CAT,SOD及GPX活力变化规律。结果表明:CAT,SOD和GPX(除了GPX在浓度0.006和0.018 mg/l Cu处理组)均在6-12 h内发生显著变化(p<0.05)。三种金属离子显著的抑制了CAT,CAT的活力在6或12 h达到最小值(p<0.05),之后逐渐增加。当纽虫暴露铜溶液时,其SOD的活力变化在48 h内,表现为显著增加,而暴露在锌溶液里24 h后,才被诱导,在镉溶液里72 h前一直被抑制。另外,纽虫暴露在铜溶液里,GPX在24 h达到极大值,在锌溶液里则分别在6 h达到极大值,在镉溶液里6或12 h被显著抑制(p<0.05)。实验结果说明扁额细首纽虫体内的CAT,SOD及GPX对铜,锌和镉三种重金属离子均具有较强的敏感性,尤其是CAT,在短时间内可以作为一种监测环境中重金属污染的指示指标。
     将扁额细首纽虫暴露在不同浓度的铜、锌、镉溶液里96 h,分析了其体内的金属硫蛋白含量变化。结果表明,三种不同浓度的重金属离子均诱导纽虫合成金属硫蛋白,浓度越高,诱导作用也越大。当纽虫暴露在0.018和0.056 mg/l Cu~(2+)溶液里时,其体内的MT含量快速增加,12 h达到最大值(p<0.05),然后缓慢的降低,直到48 h后MT开始逐渐增加(p<0.05);而在浓度为0.006 mg/l Cu~(2+)溶液组,MT含量直到24 h处才达到最大值(p<0.05)。当纽虫暴露在浓度为0.14,0.43和1.35mg/l Zn~(2+)三种溶液里时,MT的含量均在12 h达到最大值(p<0.05),然后快速降低,24 h开始保持稳定。当暴露在浓度为0.5,1.6和5.0 mg/l Cd~(2+)三种溶液里时,MT的含量变化与Zn~(2+)溶液组的变化相似,但是MT含量在6 h处就达到最大值(p<0.05),然后快速降低,12 h开始缓慢增加。通过揭示重金属污染后,MT含量的变化规律,阐明了扁额细首纽虫MT可以作为一种理想的生物标志物用来监测环境中重金属污染状况。
     通过对扁额细首纽虫暴露在不同浓度铜、锌、镉溶液里96 h,分析纽虫体内丙二醛含量的变化,结果表明纽虫体内的丙二醛含量均在6 h就产生了明显的变化(除了在浓度为5.0mg/lCd溶液里)。当纽虫暴露三种浓度Cu~(2+)溶液时,其体内的MDA含量均高于对照组。在0.056 mg/l Cu~(2+)溶液处理组,其体内的MDA含量快速增加,6 h达到最大值(p<0.05),然后缓慢的降低,保持稳定。而在浓度为0.006、0.018 mg/l Cu~(2+)溶液组,其体内的MDA含量在72 h处出现高峰值(p<0.05)。当纽虫暴露三种浓度Zn~(2+)溶液时,其体内的MDA含量除了在高浓度组(0.43 mg/l Zn~(2+))96 h时高于对照组,MDA含量均小于对照组、均在6 h迅速降低(p<0.05),而后逐渐增加。当纽虫暴露在浓度为0.5和1.6 mg/l Cd~(2+)溶液里时,MDA含量在6 h处显著增加(p<0.05),在12 h处,三个实验处理组的纽虫体内的MDA含量均降到最小值(p<0.05),而后逐渐增加;但是在5.0 mg/l Cd~(2+)处理组,48 h处恢复到正常水平,之后又开始减少(p<0.05);1.6 mg/l Cd~(2+)处理组,MDA含量在48 h处,出现第二次高峰(p<0.05);而在0.5 mg/l Cd~(2+)处理组,72 h后保持稳定。实验结果说明,三种金属离子均对扁额细首纽虫体内的脂质过氧化作用产生了影响,导致机体内MDA的含量产生了明显的变化。MDA含量的变化,揭示了不同浓度三种金属离子对纽虫产生了毒性作用,改变了纽虫体内的正常生理代谢水平。MDA的含量变化可以间接的反应环境中重金属污染状况。
Cephalothrix simula(Iwata) is one of the most common nemertean along the coast of Qingdao.In present study,the nemertean were exposed in copper(Cu) ion solutions at concentration of 0.005,0.018,0.056 mg/l,and zinc(Zn) ion solutions at concentration of 0.14,0.43,1.35 mg/l,cadmium(Cd) ion solutions at concentration of 0.5,1.6,5.0 mg/l for 96 h.Then heavy metal accumulation in vivo,variations of antioxidant enzyme activities,metallothionein(MT) contents and malondialdehyde (MDA) contents of the nemertean were determined respectively.The aim is to explore the effects of heavy metals on the antioxidant defense system and lipid peroxidation of the nemertean,and then accumulate the knowledge that the nemertean was used as a bioindicator to monitor heavy metal pollutants.The results are as follows.
     The results of heavy metal accumulation in vivo showed that positive correlation existed between the contents of metal ions in vivo and in exposed solutions,and in groups of higher concentrations of ion solutions,the contents of metal ions in vivo were more than the lower ones.In addition,a linear correlation appeared between the contents of metal ions in vivo and the exposed time,the contents of metal ions in vivo were increased by exposed time extended.When the nemertean were exposed in 0.006 mg/l Cu~(2+) solutions,the significant increase of Cu concentrations in vivo appeared at 24 h(p<0.05),while in 0.018 and 0.056 mg/l Cu~(2+) solutions,it appeared at 12 and 6 h(p<0.05).Similarly,in Zn~(2+) treatment groups,the significant increase appeared at 24,12 and 6 h(p<0.05).But in Cd~(2+) treatment groups,it all appeared at 6 h(p<0.05).The data revealed that the nemertean C.simula has a high ability to accumulate Cu,Zn and Cd,especially Cd.
     Determination of the activities of CAT,SOD and GPX of C.simula illustrated that activities of CAT,SOD and GPX showed distinct changes at 6-12 h(p<0.05) except for GPX in groups of 0.006 and 0.018 mg/l Cu~(2+) treatment.CAT was significantly inhibited by the three heavy metal ions and its activity reached the nadir level at 6 or 12 h(p<0.05) before it started to increase.SOD activities were significantly increased within 48 h in a Cu~(2+) solution,it was only induced after 24 h in Zn solutions.However,it was inhibited before 72 h in Cd~(2+) solutions.Additionally, the activity of GPX reached maximum at 24 h in Cu~(2+) solution and at 6 h in Zn~(2+) solution,but it was significantly inhibited at 6 or 12 h in Cd~(2+) solution.These results revealed that CAT,SOD and GPX of C.simula are sensitive to Cu,Zn and Cd ions in vivo,especially CAT,which might be considered as a biomarker of Cu,Zn and Cd monitor within short time.
     Variations of MT contents demonstrated MT was significantly induced by three heavy metal ions and at the same time in groups of higher concentrations of metal solutions the contents of MT in vivo were induced more than the lower ones.In groups of 0.018 and 0.056 mg/l Cu~(2+) solutions,MT contents increased fast and got the highest points at 12 h(p<0.05),then slowly decreased till 48 h.After that increased gradually till 96 h(p<0.05),but in group of 0.006 mg/l Cu~(2+) treatment the contents of MT got the highest points at 24 h(p<0.05).When in 0.14,0.43 and 1.35 mg/l of Zn~(2+) treatment,MT contents got the highest points at 12 h(p<0.05),and rapidly decreased. After 24 h,MT contents tended to be steady.However,when exposed in 0.5,1.6 and 5.0 mg/l of Cd~(2+) solution,variations of MT were similar to that in Zn~(2+) treatment,but MT contents got the highest points at 6 h(p<0.05),then rapidly decreased till 12 h. Variations of MT contents in vivo after heavy metal ions treatments reflected that MT in C.simula might be considered as a biomarker to monitor heavy metals pollutants.
     Variations of MDA contents after the worms were exposed in Cu,Zn and Cd solutions at different concentrations for 96 h demonstrated that the contents of MDA distinctly changed at 6 h(p<0.05) in all the treatment groups,except for in the 5.0 mg/l Cd~(2+) treatment.MDA contents in Cu~(2+) treatment groups were all higher than that of control groups.In 0.056 mg/l Cu~(2+) treatment,it quickly increased and reached the peak values at 6 h,then slowly decreased and tended to be steady,but in groups of 0.006 and 0.018 mg/l Cu~(2+) solutions peak values of MDA contents appeared at 72 h(p<0.05).While in three concentrations of Zn~(2+) solutions,MDA contents all kept lower than control values(except for 0.43 mg/l Zn~(2+) treatment at 96 h),and rapidly decreased at 6 h(p<0.05),then gradually increased.However,in groups of 0.5 and 1.6 mg/l Cd~(2+) treatments,the significant increase of MDA content appeared at 6 h(p<0.05),then the values in all concentration treatments decreased to the nadir at 12 h(p<0.05),and then gradually increased,but differently,in 5.0 mg/l Cd~(2+) treatment,it was near to control values at 48 h,and then slowly decreased.In group of 1.6 mg/l Cd~(2+) treatment,MDA content reached the second peak values at 48 h.Present data showed that three heavy metal ions could affect lipid peroxidation and MDA content in C.simula.And the variations of MDA content implied the toxicity of three heavy metal ions to C.simula,and mignt be used as a biomarker to monitor indirectly heavy metal pollution.
引文
不破敬一郎.生物体与重金属(王子亮,赵连春,吴柄昌,雷扬).北京:中国环境出版社,1985
    陈顺志,盒有采,李常涪等.过氧化脂质TBA显色的三种方法学比较.临床检验杂志,1984,2(4):176-178
    沉瑷,周玫.自由基医学.北京:人民军医出版社,1991
    方允中,李文杰.自由基与酶-基础理论及基在生物学和医学中的应用.北京:科学出版社,1989
    方允中,郑荣梁.自由基生物学的理论与应用.北京:科学出版社,2002.
    耿义群.硒一谷胱甘肽过氧化物酶在脑抗氧化损伤中的研究进展,脑与神经疾病杂志,2004,12(3):239-240
    黄先玉,刘沛然.水体污染生物检测的研究进展.环境科学进展,1999,7:14-18
    金岚.环境生态学.第1版,北京:高等教育出版社1992.
    李江平,李雯.指示生物及其在环境保护中的应用.云南环境科学,2001,20(1):51-54
    李永祺,丁美丽.海洋污染生态学.北京:海洋出版社,1991.
    李静,刘班,刘成玉.红细胞膜脂质过氧化损伤及其作用机制.青岛大学医学院学报,2006,42(1):90-94
    刘晓玲,周忠良,陈立侨.镉对中华绒螫蟹(Eriocheir sinensis)抗氧化酶活性的影响.海洋科学,2003,27(8):59-62
    刘志勇,魏国林.金属硫蛋白的研究进展.江西科学,2004,22(2):104-109
    吕海燕,曾江宁等.浙江沿岸贝类生物体中Hg、Cd、Pb、As含量的分析.东海海洋,2001,19(3):25-31
    马藏允,刘海.几种大型底栖生物对Cd、Zn、Cu的积累实验研究.中国环境科学,1997,17(2):151-155
    潘鲁青,任加云,吴众望.重金属离子对中华绒螯蟹肝胰脏和鳃丝SOD,CA T活力的影响.中国海洋大学学报,2004,34(2):189-194
    冉良骥,吕太平,乔小蓉.SOD酶生物传感器筛选清除超氧阴离子自由基的活性物.药学学报,2004,39(6):453-457
    王海藜,陶澍.生物标记物在水环境研究中的应用.中国环境科学,1999,19(5):421-426
    王晓丽,孙耀,张少娜,王修林.牡蛎对重金属生物富集动力学特性研究.生态学报,2004,24 (5):1086-1090
    吴益春,吕昕,王凡,赵元凤,刘长发.Cu在扇贝组织中的蓄积及其对酶活性的影响.应用与环境生物学报,2005,11(5):559-562
    吴众望,潘鲁青.重金属离子对凡纳滨对虾肝胰脏MT含量的影响.水产学报,2005,29(5):715-718
    夏弈明,朱莲珍.血和组织中谷胱甘肽过氧化物酶活力的测定方法.卫生研究,1987,16:29-33
    叶属峰,陆健健.无脊椎动物金属硫蛋白(MTs)多样性及其生态服务功能.生物多样性,2000,8(3):317-324
    郁建全.浅谈重金属对生物毒性效应的分子机理.环境污染与防治,1996,18(4):28-31
    曾丽璇,陈桂珠,余日清,李耀初,卢杰.水体重金属污染生物监测的研究进展.环境监测管理与技术,2003,15:12-15
    张夫芹,李志超,赵德化,等.DCDDP对肺动脉高压大鼠SOD活性和MDA含量的影响.第四军医大学学报,1998,19(5):564-566
    赵红霞,詹勇,许梓荣.重金属对水生动物毒性的研究进展(一).内陆水产,2003,28(1):38-40
    朱赓伯.金属硫蛋白的生物学特性及生理作用.生命的化学,1995,15:23-26
    周永欣,章宗涉.水生生物毒性实验方法.北京:农业出版社.1989
    Adams,E.,Simkiss,K.,Taylor,M.,Metal ion metabolism in the moulting crayfish (Austropotamobious pallipes).Comp.Biochem.Physiol.A.1982,72:73-76
    Almeida,E.A.D.,Miyamoto,S.,Bainy,A.C.D.,Medeiros,M.H.G.D.,Mascio,P.D.,Protective effect of phospholipid hydroperoxide glutathione peroxidase(PHGPx) against lipid peroxidation in mussels Perna perna exposed to different metals.Mar.Pollut.Bull.2004,49:386-392
    Allen,E.J.Todd,R.A.,The fauna of the Salcombe Estuary.J.mar.biol.Ass.U.K.,1900,6:151-217
    Alloway,B.J,Ayres D.C.Chemical principles of environmental pollution.Oxfor d:Blackie Academic and Professional,1993.291
    Akberali,H.B.,Black,J.E.,Behavioural responses of the bivalve Scrobicularia plana(Dacosta)subjected to short-term copper(Cu Ⅱ) concentrations.Mar.Environ.Res.1980,4;97-107
    Anadon, N., Primeros datos sobre la fauna de nemertinos de la Peninsula Iberica Asturias y sur de Galicia (N. y NW. de Espana). Boln R. Soc. esp. Hist. nat. (Biol.). 1980, 78: 337-345
    Anderson, R.A., Roussel, A.M., Zouari, N., Mahjoub, S.J., Matheau, J.M., Abdelhamid, A.K., Potential antioxidant effects of zinc and chromium supplementation in people with type 2 diabetes mellitus. J. Am. Coll. Nutr. 2001,20; 212-218
    Andrews, G.K., Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem. Pharmacol. 2000, 59: 95-104
    Bagnyukova, T.V., Storey, K.B., Lushchak, V.I., Adaptive response of antioxidant enzymes to Catalase inhibition by aminotriazole in goldfish liver and kidney. Comp. Biochem. Physiol. B. 2005a, 142:335-341
    Bagnyukova, T.V., Vasylkiv, O.Y., Storey, K.B., Lushchak, V.I., Catalase inhibition by amino triazole induces oxidative stress in goldfish brain. Brain Res. 2005b, 1052: 180-186
    Bagnyukova, T.V., Chahrak, O.I., Lushchak, V.I., Coordinated response of goldfish antioxidant defenses to environmental stress. Aquatic Toxicology, 2006,78; 325-331
    Balfour, W.E., Willmer, E.N., Iodine accumulation in a nemertine, Lineus ruber. J. Exp. Biol. 1967,46:551-556
    Baraboy, V.A., Sutkovoy, D.A., Oxidative-Antioxidant Homeostasis at Norm and Pathology. Chernobylinterinform, Kyiv, Russian: 1997.
    Barja de Quiroga, G., Lopez-Torres, M., Perez-Campo, R., Catalase is needed to avoid tissue peroxidation in Rana perezi in normoxia. Comp. Biochem. Physiol. C. 1989, 94: 391-398
    
    Baster, J., Opuscula subseciva. Harlem, 1762, 1: 1-154
    
    Batrik, M., Piskac, A., Veterinary Toxicology. Elsevier Scientific, Amsterdamz: 1988. 82-89
    Bebianno, M.J., Serafim, M.A., Comparison of metallothionein induction in response to cadmium in the gills of the bivalve molluscs Mytilus galloprovincialis and Ruditapes decussates. The Science of the Total Environment, 1998, 214: 123-131
    Berthet, B., Mouneyrac, C., Perez, T., Amiard-Triquet, C., Metallothionein concentration in sponges (Spongia Officinalis) as a biomarker of metal contamination. Comp. Biochem. Physiol. C, 2005, 141:306-313
    Blackmore, G., Interspecific variation in heavy metal body concentrations in Hong Kong marine invertebrates. Environ. Pollut, 2001, 114: 303-311
    Bouzyk, E., Iwanenko, T., Jarocewicz, N., Kruszewski, M., Sochanowicz, B., Szumiel, I., Antioxidant defense system in differentially hydrogen peroxide sensitive L5178Y sublines. Free Radic. Biol. Med. 1997,22: 697-704
    Bracken, W.M., Klaassen, C.D., Induction of metallothionein by steroids in rat primary hepatocyte cultures. Toxicol. Appl. Pharmacol. 1987, 87:381-388
    Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 1976,72:248-254
    Bray, T.M., Bettger, W.J., The physiological role of zinc asan antioxidant. Free Radic. Biol. Med. 1990, 8:281-291
    
    Burgeot, T., Bocquene, G., Porte, C., Dimeet, J., Santella, R.M., Garcia de la parra, L.M., Pfhol-Leszkowicz, A., Raoux, C., Galgani, F., Bioindicators of pullutant exposure in the northwestern Mediteranean Sea. Mar. Ecol. Prog. Ser. 1996, 131:125-141
    Butler, P.A.., Andren, L., Bonde, G.J., Jernelov, A., Reish, D.J., Monitoring organisms. In FAO Technical Conference on Marine Pollution and its Effects on Living Resouces and Fishing. Rome, Italy, 1971, pp. 101 - 112
    
    Byan, G.W., Hummerstone, L.G., Indicators of heavy-metal contamination in the Loose estuary (Cornwall) with particular regard to silver and lead. J. Mar. Biol. Assoc. U.K, 1977, 57: 75- 92
    Calabrese, E.J., Baldwin, L.A., Chemical hormesis: it's historical foundations as a biological hypothesis. Toxicologic. Patholog. 1999,27: 195-216
    Casalino, E., Calzaretti, G., Sblano, C., Landriscina, C., Molecular inhibitory mechanisms of antioxidant enzymes in rat liver and kidney by cadmium. Toxicol. 2002, 179: 37-50
    Casterline, J.L., Yip, G. The distribution and binding of cadmium in oyster, soybean and rat liver and kidney. Arch Environ Contain Toxicol, 2002,1975(3): 319-329
    
    Chandran, R., Sivakuma, A.A., Mohandas, S., Aruchami, M., Effect of cadmium and zinc on antioxidant enzyme activity in the gastropod, Achatina fulica. Comp. Biochem. Physiol. C. 2005, 140: 422-426
    Chernyshev, A.V., Food and feeding behavior of the nemertean Tortus tokmakovae. Russ. J. Mar. Biol. 2000, 26: 120-123
    
    Chevion, M., Korbashi, P., Katzhandler, J., Saltman, P., Zinc-A redox-inactive metal provides a novel approach for protection against metal-mediated free radical induced injury: Study of paraquat toxicity in E. coli. Adv. Exp. Med. Biol. 1990,264: 217-222
    Cohen, G., Hochstein, P., Glutathione peroxidase: the primary agent for the elimination of hydrogen peroxide in erythrocytes. Biochemistry, 1963, 2: 1420-1428
    
    Correia, A.D., Livingstone, D.R., Costa, M.H., Effects of water-borne copper on metallothionein and lipid peroxidation in the marine amphipod (Gammarus locusta). Mar. Environ. Res. 2002, 54: 357-360
    
    Cossu, C., Doyotte, A., Jacquin, M.C., Babut, M., Exinger, A., Vasseur, P., Glutathione reductase, selenium dependent glutathione peroxidase, glutathione levels, and lipid peroxidation in fresh water bivalves, Unio tumidus, as biomarkers of aquatic contamination in field studies. Ecotox. Environ. Safe. 1997,38: 122-131
    
    Couillard, Y., Campbell, P.G.C., Pellerin-Masicotte, J., Auclair, J.C., Field transplantation of a freshwater bivalve, Pyganodon grandis, across a metal contamination gradient. 2. etallothionein response to Cd and Zn exposure, evidence for cytotoxicity, and links to effects at higher levels of biological organization. Can. J. Fish Aquat. Sci. 1995, 52: 703-715
    Dallinger, R., Berger, B.E., Hunziker, P., Kagi, J. H. R., Structure and function of metallothionein isoforms in terrestrial snails. In: Klaassen C (ed. ), Metallothionein IV , Birkhauser Verlag Basel, Switzerland , 1999,173 - 17
    Drevet, J.R., The antioxidant glutathione peroxidase family and spermatozoa: A complex story. Mol. Cell. Endocrinol. 2006, 250: 70-79
    
    Devi, M., Thomas, D.A., Barber, J.T., Fingerman, M., Accumulation and physiology and biochemical effects of cadmium in a simple aquatic food chain. Ecotoxicol. Environ. Saf. 1996, 33(1): 38-43
    Di Giulio, R.T., Washburn, P.C., Wenning, R.J., Biochemical responses in aquatic animals: a review of determinants of oxidative stress. Environ. Toxicol. Chem. 1989, 8: 1103-1123
    Di Giulio, R.T., Benson, W., Sanders, B., Van Veld, P., Biochemical mechanisms: metabolism, adaptation and toxicity. In: Rand, G.M.. (Ed.), Fundamental of Aquatic Toxicology-Effects, Environmental Fate and Risk Assessment, 2nd edR Taylor and Francis, Washington: 1995. 523-561
    
    Diguiseppi, J., Fridovich, I., The toxicology of molecular oxygen. Crit. Rev. Toxicol. 1984, 12:315-342
    
    Dorval, J., Hontela, A., Role of glutathione redox cycle and Catalase in defense against oxidative stress induced by endosulfan in adrenocortical cells of rainbow trout (Oncorhynchus mykiss). Toxicol. Appl. Pharmacol. 2003, 192: 191-200
    
    Doyotte, A., Cossu, C., Jacquin, M.C., Babut, M., Vasseur, P., Antioxidant enzymes, glutathione and lipid peroxidation of experimental or field exposure in the gills and the digestive gland of the freshwater bivalve Unio tumidus. Aquat. Toxicol. 1997, 39; 93-110
    Drevet, J.R., The antioxidant glutathione peroxidase family and spermatozoa: A complex story. Mol. Cell. Endocrinol. 2006,250: 70-79
    
    Efremova, S.M., Margulis, B.A., Guzhova, I., et al., Heat shock protein H sp70 expression and DNA damage in Baikalian sponges exposed to model pollutants and wastewater from Baikalsk Pulp and Paper Plant. Aquatic toxicology, 2002,57:267-280
    Escobar, J.A., Rubio, M.A., Lissi, E.A., SOD and Catalase inactivation by singlet oxygen and peroxyl radical. Free Radic. Biol. Med. 1996,20: 285-297
    Erickson, R.J., Benoit, D.A., Mattson, V.R., et al., The effects of water chemistry on the toxicity of copper to fathead minnows, Environ. Toxicol. Chem. 1996,15: 181 - 193.
    Fabricius, O., Beskrivelse over 4 lidet bekjendte Flad-Orme (Planaria angulata, fuscescens, Candida & brunnea). Skr. naturh. Selsk. Kbh. 1798,4: 52-66
    Ferraris, J.D., Molecular approaches to the study of evolution and phylogeny of the Nemertina. Hydrobiologia, 1993, 266: 255-265
    
    Fichet, D., Radenac, G., Miramand, P. Experimental studies of impacts of harbour sediments resuspension to marine invertebrates larvae: bioavailability of Cd, Cu, Pb and Zn and toxicity. Mar. Pollut. Bull. 1998, 36: 509-518
    Fisher, N.S., Reinfelder, J.R., Metal speciation and biavailability in aquatic systems. New York: Wiley, 1995.363-406
    
    Formigari, A., Irato, P., Santon, A., Zinc, antioxidant systems and metallothionein in metal mediated-apoptosis: Biochemical and cytochemical aspects. Comp. Biochem. Physiol. C. 2007, 146:443-459
    
    Franzen, A., Sensenbaugh, T., The spermatozoon of Gononemertes parasita Nemertea, (Hoplonemertea) with a note on sperm evolution in the nemerteans. Int. J. invert. Repro. 1988, 14:25-36
    
    Fraysse, B., Baudin, J.P., Laplace, J.G., Effects of Cd and Zn waterborne exposure on the uptake and depuration of 57Co ,110Ag and Cs by the Asian clam ( Corbicula fluminea) and the zebra mussel (Dreissena polymorpha) whole organism study. Environmental Pollution, 2002, 118:297-306
    
    Fretter, V., Graham, A., A functional anatomy of invertebrates. Academic Press, London: 1976. pp.589
    Furuno, K., Suetsugu, T., Sugihara, N., Effects of metal ions on lipid peroxidation in cultured rat hepatocytes loaded with a-liolenic acid. J. Toxicol. Environ. Health. 1996,48:121 - 129
    Geffard, A., Amiard-Triquet, C., Amiard, J.C., Do seasonal changes affect metallothionein induction by metals in mussels, Mytilus edulis?. Ecotoxicol. Environ. Safety. 2005, 61: 209- 220
    
    George, S.G., Viarengo, A., An integration of current knowledge of the uptake, metabolism and intracellular control of heavy metals in mussels. Sixth Symposium on Pollution and Physiology of Marine Organisms, November 1983. Mystic, Connecticut, USA: 1984.
    Geret, F., Serafim, A., Barreira, L., Bebianno, M.J., Response of antioxidant systems to copper in the gills of the clam Ruditapes decussates. Mar. Environ. Res. 2002, 54: 413-417
    Geret, F., Jouan, A., Turpin, V., Bebianno, M.J., Cosson R.P., Influence of metal exposure on metallothionein synthesis and lipid peroxidation in two bivalve mollusks: the oyster (Crassostrea gigas) and the mussel (Mytilus edulis). Aquat. Living Resour, 2002, 15: 61-66
    Gnassia-Barelli, M., Romeo, M., Puiseux-Dao, S., Effects of cadmium and copper contamination on calcium content of the bivalve Ruditapes decussatm. Mar. Environ. Res. 1995, 39: 325- 328
    
    Grosell, M., Nielsen, C., Bianchini, A., Sodium turnover rate determines sensitivity to acute copper and silver exposure in freshwater animals, Comp. Biochem. Physiol. C. 2002, 133: 287-303
    
    Hardivillier, Y., Denis, F., Demattei, M.V., Bustamante, P., Laulier, M., Cosson, R., Metal influence on metallothionein synthesis in the hydrothermal vent mussel Balhymodiolus thermophilus. Comp. Biochem. Physiol. C. 2006, 143: 321-332
    Harris, E. D., Regulation of antioxidant enzymes. J. FASEB. 1992, 6: 2675-2683
    Hartwig, A., Carcinogenicity of metal compounds: possible role of DNA repair inhibition. Toxicol. Lett. 1998, 102-103: 235-239
    
    Hassoun, E.A., Stohs, S.J., Cadmium-induced production of superoxide anion and nitric oxide, DNA single strand breaks and lactate dehydrogenase leakage in J774A.1 cell cultures. Toxicology, 1996,112:219-226
    Haux, C., Forlin, L., Biochemical methods for detecting effects of contaminants on fish. Ambio. 1988,17:376-380
    
    Hensbergen, P.J., Velzen, M.J.M., Nugroho, R.A., Donker, M.H., Straalen, N.M., Metallothionein-bound cadmium in the gut of the insect Orchesella cincta (Collembola) in relation to dietary cadmium exposure. Comparative Biochemistry and Physiology. C, 2000, 125: 17-24
    
    Hermes-Lima, M., Oxygen in biology and biochemistry: role of free radicals. In: Storey, K.B. (Ed.), Functional Metabolism: Regulation and Adaptation. Wiley-Liss, Hoboken, 2004. pp.319-368
    
    Hillyard, S.D., Sera, R., Gonick, H.C., Effects of Cd on short-circuit current across epithelial membranes. II Studies with the isolated frog skin epithelium, urinary bladder and large intestine. J. Membrane Biol. 1979,46:283-294
    
    Hogstrand, C., Wilson, R.W., Polgar, D., Wood, C.M., Effects of zinc on the kinetics of branchial calcium uptake in freshwater rainbow trout during adaptation to waterborne zinc. J. Exp. Biol. 1994, 186:55-73
    
    Hogstrand, C., Wood, C.M., The physiology and toxicology of zinc in fish. In: Taylor, E.W. (Ed.), Toxicology of Aquatic Pollution: Physiological, Cellular and Molecular Approaches, Society for Experimental Biology, Seminar Series: 57. Cambridge University Press, Cambridge: 1996. pp. 61-84
    
    Hussain, T., Shukla, G.S., Chandra, S.V., Effects of cadmium on superoxide dismutase and lipid peroxidation in liver and kidney of growing rats: in vivo and in vitro studies. Pharm. Toxicol. 1987., 60: 355-359
    
    Hutcheson, M., Miller, D.C., White, A.Q., Respiratory and behavioral responses of the grass shrimp Palaemonetes pugio to cadmium and reduced dissolved oxygen. Mar. Biol. 1985, 88: 59-66
    Inza, B., Ribeyre, F., Boudou, A., Dynamics of cadmium and mercury compounds (inorganic mercury or methylmercury): uptake anddepuration in Corbicula fluminea. Effects of temperature and pH. Aquatic Toxicology, 1998,43: 273-285
    Ireland, M.P., Wootton, R.J., Distribution of lead, zinc, copper and manganese in the marine gastropods, Thais lapillus and Littorina littorea, around the coasts of Wales. Environ. Pollut. 1977,12:27-41
    Jennings, J. B. A histochemical study of digestion and digestive enzymes in the rhynchocoelan Lineus ruber (O. F. Muller). Biol. Bull. 1962, 122: 63-72
    Jennings, J. B., Gibson, R. Observations on the nutrition of the seven species of rhynchocoelan worms. Biol. Bull. 1969,136:405-433
    Jing, G., Li, Y., Xie, L.-P., Zhang, R.-Q., Metal accumulation and enzyme activities in gills and digestive gland of pearl oyster (Pinctada fucatd) exposed to copper Comparative Biochemistry and Physiology, Part C, 2006, (144): 184-190
    Jungmann, J., Reins, J.A., Schobert, C., Jentsch, S., Resistance to cadmium mediated by ubiquitin-dependent proteolysis. Nature. 1993, 361: 369-371
    Kem, W.R., Abbott, B.C., Coates, R. M. Isolation and structure of a hoplonemertine toxin. Toxicon, 1971,9:15-22
    Kem, W.R., Scott, K.N., Duncan, J.H. Hoplonemertine worms- a new source of pyridine neurotoxins. Experientia, 1976, 32: 684-686
    Kem, W.R. Alzheimer s drug design based upon an invertebrate toxin (anabaseine) which is a potent nicotinic receptor antagonist. Invertebr. Neurosci. 1997, 3: 251-259
    Kofod, P., Bauer, R., Danielsen, E., Larsen, E., Bjerrum, M.J., ~(113)Cd-NMR investigation of a cadmium-substitution copper, zinc-containing superoxide dismutase from yeast. Eur. J. Biochem. 1991, 198: 607-611
    Kono, Y., Fridovich, I., Superoxide radical inhibits Catalase. J. Biol.Chem. 1982, 257: 5751 - 5764
    Kuris, A.M., Blau, S.F., Paul, A.J., Shields, J.D., Wickham, D.E., Infestation by brood symbionts and their impact on egg mortality of the red king crab, Paralithodes camchatica, in Alaska: Geographic and temporal variation. Can. J. Fish. Aquat. Sci. 1991, 48: 559-568
    Landis, G.N., Tower, J., Superoxide dismutase evolution and life span regulation. Mech. Ageing. Dev. 2005,126:365-379
    Langston, W.J., Bebianno, M.J., Burt, G.R., Metal handling strategies in molluscs. In: Metal Metabolism in Aquatic Environments. Chapman and Hall, London, 1998. pp. 219-283
    Lau, S., Mohamed, M., Tan Chi Yen, A., Su'ut, S., Accumulation of heavy metals in freshwater mollusks. The Science of the Total Environment, 1998,214: 113-121
    
    Laszczyca, P., Augustyniak, M., Babczynska, A., Bednarska, K., Kafel, A., Migula, P., Wilczek, G., Witas, I., Profiles of enzymatic activity in earthworms from zinc, lead and cadmium polluted areas near Olkusz (Poland). Environ. Int. 2004, 30: 901-910
    
    Lionetto, M.G., Caricato, R., Giordano, M.E., Pascariello, M.F., Marinosci, L., Schettino, T., Integrated use of biomarkers (acetylcholinesterase and antioxidant enzymes activities) in Mytilus galloprovincialis and Mullus barbatus in an Italian coastal marine area. Mar. Pollut. Bull. 2003,46: 324-330
    
    Linnaeus, C. Systema Naturae. Editio decima tertia, aucta, reformata. Ed. Gmelin, Leipsiae, 1, Part 6, Vermes Testacea, 1788,3087-3094,3098
    
    Livingstone, D. R., Lemaire, P., Matthews, A. A., Peters, L., Bucke, D., and Law, R. J. Pro-oxidant, antioxidant and 7-ethoxyresorufin odeethylase (EROD) activity responses in liver of dab (Limanda limandd) exposed to sediment contaminated with hydrocarbons and other chemicals. Mar. Pollut. Bull. 1993,26: 602-606
    
    Lopes, P.A., Pinheiro, T., Santos, M.C., Mathias, M.D. L., Collares-Pereia, M.J., Viegas-Crespo, A.M., Response of antioxidant enzymes in freshwater fish populations (Leuciscus alburnoides complex) toinorganic pollutants exposure. The Science of the Total Environment, 2001,280:153-163
    
    Lushchak, V.I., Bagnyukova, T.V., Husak, V.V., Luzhna, L.I., Lushchak, O.V., Storey, K.B., Hyperoxia results in transient oxidative stress and an adaptive response by antioxidant enzymes in goldfish tissues. Int. J. Biochem. Cell Biol. 2005, 37: 1670-1680
    Margoshes, M., Vallee B.L., A cadmium protein from equine kidney costex. J. Am. Chem. Soc. 1957,79:4813-4819
    Martin, M.H., Coughtrey, P.J., Biological monitoring of heavy metal pollution: Land and air.London: Applied Science Publishers of The United Kingdom, 1982.
    
    Martinez, M., Ramo, J.D., Torreblanca, A., Diaz-Mayans, J., Effect of cadmium exposure on zinc levels in the brine shrimp Artemia parthenogenetica. Aquaculture, 1999, 172: 315-325
    Mason, A.Z., Nott, J.A., The role of intracellular biomineralized granules in the regulation and detoxification of metal in gastropods with spcial reference to the marine prosobranch Littorina littorea. Aquat. Toxicol. 1981, 1:239-256
    Mason, R.P., Laportes, J.M, Andres S., Factors controlling the bioaccumulation of mercury, methylmercury, arsenic, selenium and cadmium by freshwater invertebrates and fish. Environmental Contamination and Toxicology, 2000, 38: 283-297
    
    McCarthy, J.F., Shugart, L.R., Biomarkers of environmental contamination. Chelsea, MI, 1990.
    McDermott, J.J. The feeding biology of Nipponnemertes pulcher (Johnston) (Hoplonemertea), with some ecological implications. Ophelia, 1984, 23: 1 -21
    McDermott, J.J., Roe, P., Food, feeding behavior and feeding ecology of nemerteans. Amer. Zool. 1985,25: 113-125
    McDermott, J. J., Snyder, R. L. Food and feeding behavior of the hoplonemertean Oerstedia dorsalis. Hydrobiologia, 1988, 156:47-51
    McDermott, J.J., Observations on feeding in a South African suctorial hoplonemertean, Nipponnemertes sp.(Family Cratenemertidae). Hydrobiologia, 1998, 365: 251-256
    McDermott, J.J., Status of the nemertea as prey in marine ecosystems. Hydrobiologia, 2001,456: 7-20
    McEvoy, E.G., Gibson, R., Heavy metal levels in six species of Swedish marine nemerteans. Sarsia. 1982,67:61-62
    
    McEvoy, E.G., Heavy metals in marine nemerteans. Hydrobiologia, 1988, 156: 135-143
    McEvoy, E.G.., Sundberg, P., Patterns of trace metal accumulation in Swedish marine nemerteans. Hydrobiologia, 1993, 266: 273-280
    
    Michiels, C., Raes, M., Toussaint, O., Remacle, J., Importance of SE-glutathione peroxidase, Catalase, and CU/ZN-SOD for cell survival against oxidative stress. Free. Radic. Biol. Med. 1994, 17:235-248
    Moksnes, P., Lindahl, U., Haux, C., Metallothionein as a bioindicator of heavy metal exposure in the tropical shrimp, Penaeus vannamei: a study of dose-dependent induction. Marine Environmental Research, 1995,39: 143-146
    
    Moore, J., Gibson, R., The evolution and comparative physiology of terrestrial and freshwater nemerteans. Biol. Rev. 1985,60:257-312
    Mosleh, Y.Y., Paris-Palacios, S., Biagianti-Risbourg, S., Metallothioneins induction and antioxidative response in aquatic worms Tubifex tubifex (Oligochaeta, Tubificidae) exposed to copper. Chemosphere, 2006,64: 121 - 128
    Mule, M.B., Lomte, V.S., Effect of heavy metals (CuSO_4 and HgCl_2) on the oxygen consumption of the freshwater snail. J. Environ. Biol. 1994,15: 263-268.
    Muller, O.F., Vermium terrestrium et fluviatilium, seu animalium infusoriorum, helminthieorum et testaceorum, non marinorum, succincta historia. Heineck et Faber, Havniae et Lipsiac. 1. Part 1. 1773. pp. 135
    Muller, O.F., Vermium terrestrium et fluviatilium, seu animalium infusoriorum, helminthicorum, et testaceorum, non marinorum, succincta historia. Heineck and Faber, Havniae et Lipsiae. 1. Part 2. 1774. pp. 72
    
    Narula, S. S., Brouwer, M., Hua, Y., Armitage, I. M., Three-dimensional solution structure of Callinectes sapidus metallothionein-I determined by homonuclear and heteronuclear magnetic resonance spectroscopy. Biochemistry, 1995,34: 620-631
    Noel-Lambot, F., Distribution of cadmium, zinc and copper in the mussel Mytilus edulis. Existence of cadmium-binding proteins similar to metallothioneins. Experientia. 1976, 32: 324-325
    Nuria, R.I., Milan, V., Advances in the structure and chemistry of metallothioneins. J. Inorg. Biochem. 2002, 88: 388-396
    Ohkawa, H., Ohish, I.N., Yagi, K., Assay for lipid peroxidation in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95: 351-363
    Onosaka, S., Tanaks, k., Doi, M., Okahara, K., A simplified procedure for determination of metallothionein in animal tissues. Eisei. Kagaku. 1978, 24: 128-133
    Onosaka, S., Cherian, M.G., Comparison of Metallothionein Determination by Polarographic and Cadmium-saturation method. Toxicol. Appl. Pharmacol. 1982, 63: 270-274
    Oteiza, P.I., Olin, K.L., Fraga, C.G., Keen, C.L., Zinc deficiency causes oxidative damage to proteins, lipids and DNA in rat. Biochemical an Molecular Role of Nutrients, 1995, 125: 823-829
    
    Pagenkopf, G.K., Gill surface interaction model for trace-metal toxicity to fishes: role of complexation, pH, and water hardness, Enbiron.Sci.Technol. 1983,17: 342-347
    Palace, V.P., Mjewski, H.S., Klaverkamp, J.F., Interactions among antioxidant defenses in liver of rainbow trout (Oncorhyncus mykiss) exposed to cadmium. Can. J. Fish. Aquat. Sci. 1992, 50: 156-162
    Palumaa, P., Tammiste, I., Kruusel, K., Kangur, L., Jornvall, H., Sillard, R., Metal binding of metallothionein-3 versus metalllothionein-2: lower affinity and higher plasticity. Biochim. Biophys. Acta. 2005, 1747: 205-211
    Pan, L.-Q., Zhang. H.-X., Metallothionein, antioxidant enzymes and DNA strand breaks as biomarkers of Cd exposure in a marine crab, Charybdis japonica. Comparative Biochemistry and Physiology, Part C, 2006, 144: 65-75.
    Park, J.D., Liu, Y.P., Klaassen, C.D., Protective effect of metallothionein against the toxicity of cadmium and other metals. Toxicology, 2001, 163: 93-100
    Parsons, S.C., Di Silvestro, R.A., Effects of mild Zinc deficiency, plus or minus an acute-phase response, on glactosamine-induced hepatitis in rats. Br. J. Nutr. 1994,72:611-618
    Peck, L. S., Larval development in the Antarctic nemertean Parborlasia corrugatus (Heteronemertea:Lineidae). Mar. Biol. 1993,116: 301-310
    Pellerin-Massicotte, J., Oxidative processes as indicators of chemical stress in marine bivalves. J. Aquat. Ecosyst. Health. 1994, 3: 101 -111
    Perceval, O., Alloul, B.P., Cadmium accumulation and metallothionein synthesis in freshwater bibalves (Pyganodon grandis): relative influence of the metal exposure gradient versus limnological variability. Environmental Pollution, 2002, 118:5-17
    
    Perez, E., Blasco, J., Sole, M., Biomarker responses to pollution in two invertebrate species: Scrobicularia plana and Nereis diversicolor from the Cadiz bay (SW Spain). Mar. Environ. Res. 2004, 58: 275-279
    Phillips, D.J.H., Trace metals in the common mussel, Mytilus edulis (L.) and the alga Fucus vesiculosus (L.) from the region of the Sound (Oresund). Environ. Pollut. 1979, 18: 31-43
    Pipe, R.K., Coles, J.A., Carissan, F.M.M., Ramanathan, K., Copper induced immunomodulation in the marine mussel, Mytilus edulis. Aquat. Toxicol. 1999, 46: 43-54
    Powell, S.R., The antioxidant properties of zinc. J. Nutr. 2000, 130: 1447S-1454S
    Prakash, T.N., Rao, K.S.J., Modulations in antioxidant enzymes in different tissues of marine bivalve Perna viridis during heavy metal exposure. Mol. Cell. Biochem. 1995,146:107-113
    Quintanilha, A.T., Packer, L., Szyszlo, J.M., Racanelli, T.L., Davies, K.J., Membrane effects of vitamin E deficiency: bioenergetic and surface charge density studies of skeletal muscle and liver mitochondria. Ann. NY Acad. Sci. 1982,393: 32-47
    
    Radi, A.A., Matkovics, B., Effects of metal ions on the antioxidant enzyme activities, protein contents and lipid peroxidation of Carp tissues. Comp. Biochem. Physiol. C. 1988, 90: 69-72
    Rainbow, P.S., Biomonitoring of heavy metal availability in the marine environment. Marine Pollution Bulletin, 1995,31:183-192
    Rainbow, P.S., Trace metal accumulation in marine invertebrates: marine biology or marine chemistry. Journal-Marine Biological Association of The United Kingdom, 1997, 77: 195- 210
    Rainbow, P.S., Wolowicz, M., Flalkowski, W., Biomonitoring of trace metals in the gulf of Gdansk ,using Mussels (Mytilus Trossulus) and Barnacles (Balanus Improvisus ). Water Research, 2000,34 (6): 1823-1829
    Reddy, S.L., Venugopal, N.B., Rao, R.J., In vivo effects of cadmium chloride on certain aspects of carbohydrate metabolism in the tissues of a freshwater field crab Barytelphusa guerini. Bull. Environ. Contain. Toxicol. 1989,42: 847-853
    Remacle, J., Lambert, D., Raes, M., Pigeolet, E., Michiels, C., Toussaint, O., Importance of various antioxidant enzymes for cell stability. Confrontation between theoretical and experimental data. Biochem. J. 1992,286: 41-46
    Richardson, M.L., Gangolli, S. The Dictionary of Substances and Their Effects, Vol. 2. Roy. Soc. of Chem. Cambridge. 1993.
    
    Riek, R., Precheur, B., Wang, Y.Y., Mackay, E.A., Wider, G., Guntert, P., Liu, A.Z., Kagi, J.H.R., Wuthrich, K., NMR structure of the sea urchin ( Strongylocentrotus purpuratus) Metallothionein MTA. The Journal of Molecular Biology, 1999, 291: 417-428
    Roditi, H.A., Fisher, N.S., Wilhelmys, A.S., Field testing a metal bioaccumulation model for Zebra Mussels. Environmental Science and Technolgy, 2000, 34 (13): 2817-2825
    Roe, P., Parthenogenesis in Carcinonemertes spp. (Nemertea: Hoplonemertea). Biol. Bull. mar. biol. Lab. Woods Hole, 1986, 171: 640-646
    
    Roesijadi, G., Metallothioneins in metal regulation and toxicity in aquatic animals. Aquat. Toxicol. 1992,22:81 - 114
    
    Roesijadi, G., Robinson, W.E., Metal regulation in aquatic animal: mechanisms of uptake, accumulation, and release, in aqutic toxicology. Melecular, Biochemcial and Celluar Perspectives, Boca Roton: CRC press, 1994.
    Roesijadi, G., Metallothionein and its role in toxic metal regulation. Comp. Biochem. Physiol. C. 1996,113: 117-123
    
    Roesijadi. G., Brubacher, L.L., Unger, M.E., Anderson, R.S., Metallothionein mRNA induction and generation of reactive oxygen species in molluscan hemocytes exposed to cadmium in vitro. Comp. Biochem. Physiol. C. 1997,118 (2) :171 - 176
    Romeo, M., Gnassia-Barelli, M., Lafaurie, M., Heavy metals pollution in marine food chains. J. Eur. Hydrol. 1995, 26 (2): 227-238
    
    Romeo, M., Gnassia-Barelli, M., Effect of heavy metals on lipid peroxidation in the Mediterranean clam Ruditapes decussatus. Comp. Biochem. Physiol. C. 1997, 118: 33-37
    
    Romeo, M., Bennani, N., Gnassia-Barelli, M., Lafaurie, M., Girard, J.P., Cadmium and copper display different responses towards oxidative stress in the kidney of the sea bass Dicentrarchus labrax. Aquatic Toxicology, 2000, 48: 185-194
    Romero-Isart, N., Vasak, M., Advances in the structure and chemistry of metallothioneins. J. Inorg. Biochem. 2002, 88: 388-396
    Rosenberg, D.M,, Resh, V. H., Freshwater biomonitoring andbenthic macroinvertebrates. New York: Chapmann and Hall,1993.
    
    Saez, G.T., Bannister, W.H., Bannister, J.V., Free radicals and thiol compounds: the role of glutathione against free radical toxicity. In: Vina, J. (Ed.), Glutathione Metabolism and Physiological Functions. CRC Press, Boca Raton: 1990. pp. 237-254
    Sagan, L.A., What is hormesis and why haven't we heard about it before. Health Physics. 1987, 52:521-525
    
    Saint-Denis, M., Narbonne, J.F., Arnaud, C., Ribera, D., Biochemical responses of the earthworm Eisenia fetida andrei exposed to contaminated artificial soil: effects of lead acetate. Soil. Biol. Biochem. 2001, 33: 395-404
    
    Santon, A., Irato, P., Medici, V., D'Inca, R., Albergoni, V., Sturniolo, G.C., Effect and possible role of Zn treatment in LEC rats, an animal model of Wilson's disease. Biochim. Biophys Acta. 2003,1637:91-97
    Santon, A., Formigari, A., Albergoni, V., Irato, P., Effect of Zn treatment on wild type and MT-null cell lines in relation to apoptotic and/or necrotic processes and on MT isoform gene expression. Biochim. Biophys Acta. 2006,1763: 305-312
    Sies, H., Strategies of antioxidant defence. Eur. J. Biochem. 1993,215: 213-219
    Shields, J. D., Kuris, A. M., An in vitro analysis of egg mortality in Cancer anthonyi: The role of symbionts and temperature. Biol. Bull. 1988, 174: 267-275
    
    Schlenk, D., Davis, K.B., Griffin, B.R., Relationship between expression of hepatic metallothionein and sublethal stress in channel catfish following acute exposure to copper sulphate. Aquaculture, 1999,177:367-379
    Shimizu, M., Hochadel, J.F., Waalkes, M.P., Effects of glutathione depletion on cadmium- induced metallothionein synthesis, cytotoxicity, and proto-oncogene expression in cultured rat myoblasts. J. Toxicol. Environ. Health. 1997, 51: 609-621
    Shulkin, V.M., Presley, B.J., Kavun, V.I., Metal concentrations in mussel Crenomytilus grayanus and oyster Crassostrea gigas in relation to contamination of ambient sediments. Environ. Int. 2003, 29: 493-502
    
    Sies, H., Strategies of antioxidant defence. Eur. J. Biochem. 1993,215:213-219
    Slater, T.F., Free-radical mechanisms in tissue injury. Biochem. J. 1984,222:1 - 15
    Slinger, I., Gibson, R., Biochemical observations on the Phosphatase enzymes of five species of nemertean worms. Comp. Biochem. Physiol. 1974, 47B: 279-288
    Slinger, I., Gibson, R. Biochemical studies on the esterase enzymes of four species of nemertean worms. J. Exp. Mar. Biol. Ecol. 1975,17: 95-102
    Somani, S.M., Husain, K., Schlorff, E.C., Response of antioxidant system to physical and chemical stress. In: Baskin, S.I., Salem, H. (Eds.), Oxidants, Antioxidants and Free Radicals. Taylor and Francis, Bristol: 1997. 125-141
    Spry, D.J., Wood, C.M., Ion flux rates, acid-base status, and blood gases in rainbow trout, Salmo gairdneri, exposed to toxic zinc in natural soft water. Can. J. Fish Aquat. Sci. 1985, 42: 1332-1341
    
    Spry, D.J., Hodson, P.V., Wood, C.M., Relative contributions of dietary and waterborne zinc in the rainbow trout, Salmo gairdneri. Can. J. Fish Aquat.Sci. 1988, 45: 32-41
    Spurgeon, D.J., Sturzenbaum, S.R., Svendsen, C., Hankard, P.K., Morgan, A.J., Weeks, J.M., Kille, Peter., Toxicological, cellular and gene expression responses in earthworms exposed to copper and cadmium. Comp. Biochem. Physiol. C. 2004, 138: 11-21
    Stebbing, A.R.D., Hormesis- the stimulation of growth by low levels of inhibition. Sci. Tol. Environ. 1982, 22: 212-234
    Stebbing, A.R.D., Tolerance and hormesis increased resistance to copper in hydroids linked to hormesis. Marine Environmental Research, 2002, 54: 805-809
    Stoh, S.J., Bagchi, D., 1995. Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology Medicine, 1995,18: 321-336
    
    Swee, T., Clark, J., Stephen, L., Enzymatic and histopathologic biomarkers as indicators of contaminant exposure and effect in Asian clam ( Potamocorbula amurensis). Biomarkers, 1999, 4(6): 256-264
    Takada, M., Hayashi, H., Effect of Cd on active sodium transport by the abdominal skin and the isolated epidermis of the bullfrog: Differences in effects between epidermal and dermal Cd applications. Jpn. J. Physiol. 1980, 30: 257-269
    Taylor, C.G., Towner, R.A., Janjen, E.G., Bray, T.M., MRI detection of hyperoxia-induced lung edema in Zn-deficient rats. Free Radic. Biol. Med. 1990, 9:229-233.
    Thiel, M., Kruse, I., Status of the Nemertea as predators in marine ecosystems. Hydrobiologia, 2001,456:21-32
    Thollesson, M., Norenburg, J.L., Ribbon worm relationships: a phylogeny of the phylum Nemertea. Proceedings of the Royal Society, London, B, 2003, 270: 407-415
    Torchin, M.E., Lafferty, K.D., Kuris, A.M. Infestation of an introduced host, the European green crab, Carcinus maenas, by a symbiotic nemertean egg predator, Carcinonemertes epialti. J. Parasitol. 1996, 82: 449-453
    Valko, M., Rhodes, C.J., Moncol, J., Izakovic, M., Mazur, M., Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 2006, 160: 1-40
    Venugopal, N.B.R.K., Ramesh, T.V.D.D., Reddy, D.S., Reddy, S.L.N., Effect of cadmium on antioxidant enzyme activities and lipid potroxidation in a freshwater field crab Barytelphus aguerini. Bul Environ Contain Toxicol. 1997, 59: 132-138
    Viarengo, A., Heavy metal in marine invertebrate: mechanisms of regulation and toxicity at the cellular level. CRC Crit. Rev. Aquat. Sci. 1989,1: 295-317
    Viarengo, A., Canesi, L., Pertica, M., Poli, G., Moore, M. N., Orunesu, M., Heavy metal effects on lipid peroxidation in the tissues of Mytilus galloprovincialis Lam. Comp. Biochem. Physiol. 1990,97:37-42
    Viarengo, A., Nott, J.A.., Mechanisms of heavy metal action homeostasis in marine invertebrates. Camp. Biochem. Phsiol. C. 1993, 104: 355-372
    Viarengo, A.., Burlando, B., Ceratto, N., Panfoli, I., Antioxidant role of metallothioneins: a comparative overview. Cell. Mol. Biol. 2000,46,407-417
    Virgili, F., Canali, R., Figus, E., Vignolini, F., Nobili, F., Mengheri, E., Intestinal damage induced by zinc deficiency is associated with enhanced Cu Zn superoxide dismutase activity in rats. Effect of dexamethasone or thyroxine treatment. Free Radic. Biol. Med. 1999, 26: 1194- 1201
    Wang, D., Couillard. Y., Campbell, P.G., et al., Changes in subcellular metal partitioning in the gills of freshwater bivalves (Pyganodon grandis) living along an environmental cadmium gradient. Canadian Journal of Fisheries and Aquatic Sciences, 1999, 56 (5): 774-784.
    Wang, W., Factors affecting metal toxicity to (and accumulation by) aquatic organism overview . Environ Int. 1987, 30( 3): 437-457
    Weckx, J.E.J., Clijsters, H.M.M., Zinc phytotoxicity induces oxidative stress in primary leaves of Phaseolus vulgaris. Plant Physiol. Biochem. 1997, 35: 405-410
    Webb, D.A., Studies on the ultimate composition of biological material. Part II. Spectrograph analyses of marine invertebrates, with special reference to the chemical composition of their environment. Sci. Proc. R. Dubl. Soc. 1937, 21: 505-539
    Wicklum, D., Davies, R.w., The effects of chronic cadmium stress on energy acquisition and allocation in a freshwater benthic invertebrate predator. Aquatic toxicology, 1996, 35: 237- 252
    Winston, G.W., Di Guilio, R.J., Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat. Toxicol. 1991, 19: 137-161
    
    Wofford, H.W., Thomas, P., Effects of xenobiotics on peroxidation of hepatic microsomal lipids from striped mullet and Atlantic croaker. Mar. Environ. Res. 1988, 24: 285-289
    Wren, C. D., Harris, S., Harttrup, N., Ecotoxicology of mercury and cadmium. In Handbook of Ecotoxicology (D. J. Hoffman, B. A. Rattner, G. A. Burton, Jr., and J. Cairns, Jr., Eds.), Lewis, Boca Raton, FL. 1995. pp. 392-423
    
    Wu, J.-P., Chen, H.-C., Metallothionein induction and heavy metal accumulation in white shrimp Litopenaeus vannamei exposed to cadmium and zinc. Comp. Biochem. Physiol. C. 2005, 140: 383-394
    Xu, L.-H., Zhang, Y.-Y., Cheng, Y.-Y., The advances of molecular ecotoxicology and its significance in water environment protection. Acta Hydrobiol Sin, 1995,19:171-185
    Yu, B.P., Cellular defenses against damage from reactive oxygen species. Physiol. Rev. 1994, 74(1): 139-162
    
    Zhao, Y.-f., Sun, S.-C., Effects of salinity, temperature and pH on the survival of the nemertean Cephalothrix simula Iwata, 1952. Journal of Experimental Marine Biology and Ecology, 2006,328: 168-176
    
    Zhong, Z., Troll, W., Koenig, K.L., Frenkel, K., Carcinogenic sulfide salts of nickel and cadmium induce H_2O_2 formation by human polymorphonuclear leukocytes. Cancer Res. 1990, 50: 7564-7570
    
    Zidenberg-Cherr, S., Halsted, C. H., Olin, K. L., Villanueva, J., Tang, A., Phinney, S. D.,Keen, C. L. Ethanol induced changes in free radical defense mechanisms and tissue fatty acid composition. Hepatology, 1991, 13: 1185-1192
    
    Zikic, R.V., Stajn, A., Saicic, Z., Spasic, M., Ziemnicki, K., Petrovic, V., The activities of superoxide dismutase, Catalase and ascorbic acid content in the liver of goldfish (Carassius auratus gibelio Bloch) exposed to cadmium. Physiol. Res. 1996, 45: 479-481
    Zikic, R.V., Stajn, A.S., Ognjanovic, B.I., Pavlovic, S.Z., Saicic, Z.S., Activities of superoxide dismutase and Catalase in erythrocytes and transaminases in the plasma of carps (Cyprinus carpio L.) exposed to cadmium. Physiol Res. 1997, 46: 391-396
    
    Zikic, R.V., Stajn, A. S., Pavlovic, S.Z., Ognjanovic, B.I., Saicic, Z.S., Activities of superoxide dismutase and Catalase in erythrocytes and plasma transaminases of goldfish (Carassius auratus gibelio Bloch.) exposed to cadmium. Physiol. Res. 2001, 50:105- 111
    Zyadah, M.A., Abdel-Baky, T.E., Toxicity and bioaccumulation of copper, zinc and cadmium in some aquatic organisms. Bull. Environ. Contam. Toxicol. 2000, 64: 740-747

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700