聚合物纳米复合材料制备与激光微结构加工研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光微细加工技术以其特有的高精度二维和三维微加工优势,及在微电子、计算机、光通信、生物医学等高技术领域的潜在应用,已经成为人们的研究重点。过去十年里,国内外科学家利用激光微加工技术,已经成功地制作出二维或三维微/纳米结构和器件,如光子晶体、弹簧和齿轮等。近年来,为了提高微结构或器件的功能性,扩大其使用范围,特别是希望通过赋予适合激光微加工的材料的功能化,来达到改善微结构的性能,如光、电、磁等,人们正在努力研究适合于激光微加工的功能化材料和制备方法。本论文的研究目的是研究适合于激光微加工的聚合物纳米复合材料的制备方法,并将其应用到激光微加工中,制备出聚合物纳米复合材料的功能性微结构图形,为微/纳尺度功能性器件的制备提供新的方法。
     本论文由六章组成,各章具体内容如下:
     第一章:本章详细介绍了相关研究背景,对包括纳米复合材料的制备方法和性质、光聚合、双光子聚合、双光子微加工制作微结构的原理、微结构的功能与用途等进行了综述。在此基础上,分析了目前双光子微加工所面临的问题,阐述了本论文的研究目的和意义。
     第二章:本章针对激光加工特点重点论述了聚合物纳米复合材料的制备方法,提出了适用于激光加工的聚合物纳米复合材料的制备方法。特别对利用光聚合技术制备的聚合物微结构中原位合成半导体纳米粒子的基本原理与途径进行了深入的讨论。本章为整个论文的研究工作提供了基本研究思路和工作方向。
     第三章:本章重点对第二章提出的适用于激光加工的聚合物纳米复合材料的制备方法进行了实验验证,研究了利用原位合成法制备硫化镉纳米复合材料的各种影响因素。本章综合运用各种表征手段,研究了光刻胶组成与光聚合速率的关系、含镉离子聚合物的硫化时间对硫化镉纳米粒子合成的影响,对聚合物中硫化镉纳米粒子含量、晶型、尺寸及荧光等特性进行了表征。本章的研究结果表明,利用原位生成的方法,成功制备了硫化镉—聚合物纳米复合材料。本章的研究工作为第二章所提出的聚合物纳米材料原位合成原理与方法提供了实验证据,为第五章的聚合物纳米复合材料的激光微结构制备提供了材料制备的基础。
     第四章:本章针对聚合物中原位合成硫化镉纳米粒子的尺寸控制,重点研究了以通过控制聚合物网络及微胶束中镉离子数量,来调节聚合物中硫化镉纳米尺寸的原理及方法。通过光刻胶中的交联剂加入量的控制,成功地实现了2~8nm范围内硫化镉粒子尺寸的控制。同时,通过改变甲基丙烯酸镉的浓度,在交联剂含量不变的条件下,实现了微胶束中镉离子数量的控制。上述硫化镉—聚合物纳米复合材料表现出明显的量子尺寸效应,紫外光照射下,实现了其荧光发光波长从450nm到550nm的调控。
     第五章:本章讨论聚合物纳米复合材料的激光微加工和微结构性能。研究以不同种类的硫化镉纳米复合材料为基体材料,来进行激光微加工制作,主要涉及三个方面的内容。一是,利用单光子四光束干涉技术,制备出不同形状微结构,并研究其微加工条件和微结构的性质;二是,充分运用双光子微加工技术,制备不同形状的三维微结构如微米尺度的手等,并研究其光学性质;三是,利用激光微加工技术制备了光子晶体,研究了材料和晶格常数改变,对光子晶体带隙的影响。研究结果表明,通过原位合成方法获得的聚合物纳米复合材料光子晶体可以提高聚合物光子晶体的光子带隙效应。
     第六章:本章对本论文的研究工作和结果进行了总结。
The use of the laser micro-fabrication (LMF) in two- and three-dimensional (2D and 3D) micro-fabrications for various fields’applications has been intensively studied. Since the laser micro-fabrication as a new technology over a decade ago, a large variety of micro-objects including 2D and 3D micro-optical components, micromechanical devices, and 3D photonic crystals have been fabricated. Recent efforts have been made to improve the function of micro-objects obtained with LMF; in particular, many studies have been carried out with the aim of developing functional the microstructures relying on the material. In this thesis, efforts to develop the effective synthesize of the functional nano-composites which could be applied to LMF and also describe attempts to fabricate the various the microstructures with the functional nano-composites and improve the performance of the micro-structures based on the nano-composites were discussed. The major content of the thesis as follows:
     1. The literatures review was covered. The purpose, the significance and the methods of research in the paper were addressed.
     2. The synthetic methods of polymer nano-composites which were suitable for the laser micro-fabrication were reviewed. Especially, the preparation theory and process of semiconductor nano-particles in the polymer with in-situ synthetic methods by photo-polymerization were discussed in detail. The content offers the basic investigation methodology and research direction of the nano-composites 3. The nanocomposites with the in-situ synthesis methods were prepared; the polymeric rate of the photo resists and the influence factor on the synthesis of CdS were involved in the thesis. In addition, the content, structure, particle sizes and morphology of CdS nano-particles in polymer were characterized by XRD, TEM, Tg-DTA. The experimental results not only exhibited that the in-situ synthesis methods could successfully prepare CdS nano-composites with the photo-polymerization, but furnished the synthesis methods of the nano-composites which were applied to LMF for the future of work.
     4. The size control of CdS nano-particles in the nano-composites, especially the principle and methods for tuning CdS nano-particles sizes by the Cd2+ number controlling in the polymer network and micelle were discussed. It adjusted the content of the crosslinker and the concentration of Cd(MA)2 in the photo resists to fabricate CdS nano-composites with CdS particles size in the range of 2~8nm, which clearly showed photoluminescence properties and achieve the wavelength tuning of the photoluminescence in a range of 450~500nm, owing to the quantum size effect of CdS nano-particles in the material.
     5. LMF with the nano-composites and the property of the microstructures were investigated. The process condition and property of the diverse styles microstructures by the four beams interference of single photon were investigated. Secondly, for applying CdS nano-composites to LMF, The various three dimension microstructures such as micro-hand which showed the optical property were fabricated. Finally, the photonic crystals were manufactured using two-photon laser precision micro-fabrication. Here the influence of the materials and lattice constant on the properties of photonic bandgaps were discussed
     The synthesis method the nano-composites mentioned combined with the photo-polymerization, in the thesis contributed to make the laser micro-fabrication quite compelling for the micro-structures and micro-devices application.
引文
[1] 刘向峰,张军,“聚合物基纳米复合材料的展望”,塑料科技,2002,6:54-59.
    [2] 严满清,王平华,“高分子/无机纳米复合材料的研究进展”,现代塑料加工应用,2002,14(5):61-64.
    [3] Roy.R, KomarRneni.S, Roy DM, “Multiphase Ceramic Composites Made by Sol-Gel Technique”, Mater Res Proc, 1984, 32:347-359.
    [4] 孙向民,汪信,杨绪杰,“纳米材料改性塑料的研究进展”,工程塑料应用, 2003, 31(10): 63-66.
    [5] Chondury K R, Winiarz J G, et al, “Charge carrier mobility in an organic-inorganic hybrid nanocomposites”, Nanotechnoloy, 2003, 82:406-408.
    [6] Fan.J,Ji X, Zhang W.G, et al, “Preparation and photo-electronic properties of Q-CdS/polyanilines nanocomposites”, Chem.J.On.Inter., 2004, 6: 45-49.
    [7] 闫云辉,纪欣,章伟光,“聚合物/CdS 纳米杂化材料的组装与应用”, 化学与生物工程,2005,4:4-6.
    [8] 黄 丽 , 孙 正 滨 , 张 金 生 , “ 复 合 材 料 领 域 中 的 纳 米 技 术 进 展 ” , 复 合材 料 学报,2001,18(3):1-4.
    [9] 何斌,张铭,朱纪念,“纳米粒子/环氧树脂复合材料的研究进展”, 广东化工, 2006,33(155):75-80.
    [10] 何晓东,姚志敏,“ 聚烯烃纳米复合材料研究进展”,四川化工,2004,7(6):20-24.
    [11] 周春华, 张书香,刘威等,“纳米技术在聚合物改性方面的研究进展”,工程塑料应用,2002,30(12):59-62.
    [12] 付青存,阎宏永,宋文生等,“聚氨酯弹性体/无机纳米粒子复合材料研究进展”,化学推进剂与高分子材料,2006,4(4):12-14.
    [13] H. Li , C. P. Wong, “A Reworkable Epoxy Resin for Isotropically Conductive Adhesive”, IEEE Trans. on Advanced packaging, 2004, 27(1):165-172.
    [14] 夏先平,蔡水洲,谢长生,“聚合物基金属纳米复合材料的研究进展”,材料导报,2004,10(8):156-159.
    [15] 崔岩,张成义,张万喜,“ 聚合物基金属纳米复合材料研究进展”,高分子材料科学与工程,2004,20(2):19-23.
    [16] Davies L, et a1, “Comparison of the Linear and Nonlinear Optical Properties of Poly(p-phenylenevinylene)/Sol-Gel Composites Derived from Tetramethoxysilane and Methyltrimethoxysilane”, Chem.Mater., 1996, 8l: 2586-2589.
    [17] A. Biswas, O. C. Aktas, J. Kanzow, U. Schürmann, V. Zaporojtchenko, F. Faupel, “Polymer-metal optical nanocomposites with tunable particle plasmon resonance prepared by vapor phase co-deposition”, Mater. Lett., 2004, 58:1530-1534.
    [18] 夏和生,王琪,“纳米技术进展”,高分子材料科学与工程,2001,17(4):1-5.
    [19] 任显诚, 张伯兰,“纳米级CaC03粒子增韧增强聚丙烯的研究”,中国塑料, 2000, 14(1):22-26.
    [20] 何晓东,姚志敏,“聚烯烃纳米复合材料研究进展”,四川化工,2004,7(6):20-24.
    [21] Y. Kurokawa, H. Yasuda, A.Oya, “Preparation of a nanocomposite of polypropylene and smectite”, J.Mater.Sci.lett., 1996, 15(17):1481-1486.
    [22] 苏碧桃,敏世雄,余世雄等,“导电聚苯胺/TiO2复合纳米纤维的制备和表征”, 北师范大学学报(自然科学版),2006,42(4):67-70.
    [23] 殷华茹,姜继森,“γ-Fe2O3/聚噻吩纳米复合材料的制备及其导电性能研究”,功能材料,2005,36(10):1524-1527.
    [24] 纪欣,章伟光等,“Q-CdS/聚合物纳米复合膜的制备与荧光性能”,高分子学报,2005,1:98-101.
    [25] Esumi K, Torigoe K, “Preparation and characterization of noble metal nanoparticles using dendrimers as protective colloids”, Adsorption and nanostructures, 2002, 117:80-87.
    [26] 陈平,左芳,董星龙,钟武波,“ 聚合物-金属纳米复合材料的制备与应用”,高分子通报,2006,2:18-23.
    [27] 杨建军,“飞秒激光超精细“冷”加工技术及其应用”, 激光与光电子学进展,2004,41(3):42-52.
    [28] Parthenopoulos D A, Rentzepis P M, “Three-Dimensional Optical Storage Memory”, Science, 1989, 245:843-845.
    [29] Maruo S, Nakamura O, Kawata S., “Three-dimensional microfabrication with two-photon-absorbed photopolymerization”, Opt. Lett., 1997, 22:132-134.
    [30] Sun H-B, Matsuo S, Misawa H., “ Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin”, Appl. Phys. Lett.,1999, 74:786-789.
    [30] Cumpston B.H, et al, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication”, Nature, 1999, 398: 51-54.
    [31] Belfield K.D, Schafer K.J, et al, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging”, J. Phys. Org. Chem., 2000, 13: 837-849.
    [32] Lu Y, Hasegawa F, et al, “ Highly sensitive two-photon chromophores applied to three-dimensional lithographic microfabrication: design, synthesis and characterization towards two-photon absorption cross section”, J. Mater. Chem., 2004, 14: 75-80.
    [33] K-S Lee1, D-Y Yang, et al, “Review Recent developments in the use of two-photonpolymerization in precise 2D and 3D microfabrications”, Polym. Adv. Technol., 2006, 17: 72–82.
    [34] 樊美公等,“光化学基本原理与光子学材料科学”,科学出版社,2001.
    [35] 徐兵,宋仁国,戴丽娜,“脉冲激光烧蚀技术的研究现状及进展”,光电子技术,2006,26(2):138-142.
    [36] 倪晓昌,王清月,“飞秒激光烧蚀研究进展“,激光与光电子学进展,2002,39(12):3-9.
    [37] 李艳宁,唐洁,胡小唐,张国雄,“脉冲激光微加工技术在MEMS中的应用”,压电与声光,2005,27(2):185-189.
    [38] B Sun, et al, “Two-Photon Laser Precision Microfabrication and Its Applications toMicro–Nano Devices and Systems”, J. Lightwave. Tech., 2003, 21(3): 624-633.
    [39] M. Alboto, D. Beljonne, J.-L. Brédas, et al, “ Design of Organic Molecules with Large Two-Photon Absorption Cross Sections”, Science, 1998, 281: 1653-1656.
    [40] 潘传鹏,周明等,“双光子微加工技术与应用研究”,纳米技术与精密工程,2004,2(4):278-283.
    [41] 龚莹,蒋中伟,周拥军等,“飞秒激光双光子微细加工技术及研究现状”,光学技术,2004,30(5):637-640.
    [42] S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, et al, “Finer features for functional micro devices”, Nature, 2001, 412: 697-678.
    [43] K. Barker, T. Baldacchini, et al, “Waveguides Fabrication by Two-Photon Absorption Polymerization”, Harvard REU, 2005, 1-9.
    [44] Guo H C, Guo H C, Jiang H B, et a1, “ Micrograting polymerization fabrication with a single femtosecond laser pulse at 400 nm wavelength”, Chinese Phys. Lett., 2003, 20: 682-684.
    [45] 潘恩亚等,“双光子吸收光致聚合技术应用于微元件制作之研究”,JOURNAL OF C.C.I.T., 2005, 34(1): 1-16.
    [46] Cumpston B H, Ananthavel S P, Barlow S,et al, “Two Photon Polymerization Initations for Three-Dimensional Optical Data Storage and Microfabrication”, Nature, 1999, 398: 51-54.
    [47] 王成勇,当代科技讲座之四。
    [48] S.Maruo, K. Ikuta, H. Korogi, “Submicron manipulation tools driven by light in a liquid”, Appl. Phys. Lett., 2003, 82(1): 133-135.
    [49] Yokoyama S,Nakahama T,Miki H, et a1, “Two-photon-induced polymerization in a laser gain medium for optical microstructure”, Appl. Phys. Lett., 2003, 82(19): 3221-3223.
    [50] 袁大军,蒋中伟,徐藻等,“双光子三维微细加工的进展”,纳米技术与精密工程,2004,2(1):50-53.
    [51] X-M Duan, H-B Sun, K.Kaneko, S. Kawata, “Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication”, Thin Solid Films, 2004, 453-454: 518-521.
    [52] Perry J W, Marder S R, Stellacci F, et al. “ Laser and electron-beam induced growth of nanoparticles for 2D and 3D metal patterning”, Adv. Mater., 2002, 14(3): 194-198.
    [53] Pe′ ter Galajda, Pa′ l Ormos, “Complex micromachines produced and driven by light”, Appl.Phys. Lett., 2001, 78(2): 249-251.
    
    [1] Witzgall G, Vrijen R, Yablonovitch E, Doan V, Schwartz BJ, “Single-shot two-photonexposure of commercial photoresist for the production of three-dimensional structures” , Opt. Lett., 1998, 23:1745-1747.
    [2] Teh WH, Durig U, Salis G, Harbers R, Drechsler U, Mahrt RF, Smith CG, Guntherodt HJ, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication”, Appl. Phys. Lett., 2004, 84: 4095-4097.
    [3] 董涛,杨朝初,P.Bernhard,侯丽雅,“三维复杂微系统的微立体光刻成型工艺”,仪器仪表学报,2004,25(3):362-367.
    [4] A.Bertsch, P. Bernhard, C. Vogt,P. Renaud, “Rapid prototyping of small size objects”, Rapid Prototyping Journal, 2000, 6(4): 259-256.
    [5] R. Guo, S-H Xiao, X-M Zhai, et al, “Micro lens fabrication by means of femtosecond two photon photopolymerization”, Opt.Express., 2006, 14(2): 810-816.
    [6] H-B Sun,S.i Matsuo,H. Misawa, “ Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin”, Appl.Phys.Lett., 1999, 74(6): 786-788.
    [7] H-B Sun, T.Suwa, K.Takada, et al, “Shape precompensation in two-photon laser nanowriting of photonic lattices”, Appl.Phys.Lett., 2004, 85(17): 3708-3710..
    [8] X-M Duan, H-B Sun, K.Kaneko, S. Kawata, “Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication”, Thin Solid Films, 2004, 453-454: 518-521.
    [9]M.Albota, D.Beljonne,et al, “Design of organic molecules with large two-photon absorption cross section”, Science, 1998, 28(11): 1653-1656.
    [1] Dayang Wang, Yaan Cao, et al, “Synthesis and characteristics of ZnS/CdS composite nanocrystals in block copolymer micelle”, Mater. Res. Soc. Symp. Proc., 1999, 14(6): 2381-2384.
    [2] R.Shenhar, T. B.Norsten, V. M. Rotello, “Polymer-Mediated Nanoparticle Assembly: Structural Control and Applications”, Adv.Mater., 2005, 17(6): 657-669.
    [3] T. W.Smith, R.A. Cheatham, “Functional Polymers in the Generation of Colloidal Dispersions of Amorphous Selenium”, Macromolecules, 1980,13(5): 1203-1207.
    [4] J. Yue, V. Sankaran, R. E. Cohen, R. R. Schrockt,“ Interconversion of ZnF2 and ZnS nanoclusters within spherical microdomains in block copolymer films”, J. Am. Chem. Soc. 1993,115(10): 4409-4410.
    [5] Zhang J, Coombs N, Eugenia K,“ A New Approach to Hybrid Nanocomposite Materials with Periodic Structures”, J.Am.Chem.Soc., 2002, 124(14): 14512-14513.
    [6] Khanna P K, Lonkar S P,et al, “Polyaniline-CdS nanocomposite from organometallic cadmium precursor”, Mater.Chem.Phys., 2004, 87: 49-52.
    [7] D.Yang, S.J. Jhaveri, C.K. Ober, “Three-Dimensional Microfabrication by Two-Photon Lithography”, Mater. Res. Soc. Symp. Proc., 2005, 30: 976-982.
    [8] R.Guo, Z-Y Li, et al,“Log-pile photonic crystal fabricated by two-photon photopolymerization”, J. Opt. A: Pure Appl. Opt., 2005, 7: 396-399.
    [9] 潘才元,高分子化学,合肥:中国科学技术出版社,2001
    [10] 刘晓暄,邓湘,“反应型受阻胺4-丙烯酰胺基-2,2,6,6-四甲基哌啶 (AATP)熔融本体光聚合反应动力学研究”, 感光科学与光化学,2004,22(4): 277-286.
    [11] E.Andrzejewska, “Photopolymerization kinetics of multifunctional monomers”, Prog. Poly. Sci., 2001, 26: 605-665.
    [12] B-S Chiou, S.A. Khan, “Real-Time FTIR and in Situ Rheological Studies on the UV Curing Kinetics of Thiol-ene Polymers, Macromolecules, 1997, 30: 7322-7328.
    [13] C. Peinado, E. F. Salvador, et al, “Ultraviolet Curing of Acrylic Systems: Real-Time FourierTransform Infrared, Mechanical, and Fluorescence Studies”, J.Poly. Sci.: Part A: Poly. Chem., 2002, 40: 4236-4244.
    [14] 樊美公等,光化学基本原理与光子学材料科学,科学出版社,2001.
    [15] M. Moffitt, A. Eisenberg,“ Size Control of Nanoparticles in Semiconductor-Polymer Composites. 1. Control via Multiplet Aggregation Numbers in Styrene-Based Random Ionomers ”,Chem. Mater.,1995, 7: 1178-1184.
    [16] Y. Kayanuma, “Wannier exciton in microcrystals”, Solid state commun., 1986, 59(6): 405-408.
    [17] P. E. Lippens, M. Lannoo, “Calculation of the band gap for small CdS and ZnS crystallites”, Phys. Rev. B 39, 1989: 10935 – 10942.
    [18] L. E. Brus, “A simple model for the ionization potential, electron affinity, and agueous redox potentials of small semiconductor crystallites”, J. Chem. Phys., 1983, 79:5566-5571.
    [19] L.E. Brus, “Electron-electron and Electron-Hole Interactions in Small Semiconductor Crystallites: The Size Dependence of the Lowest Excited Electronic State”, J. Chem. Phys., 1984, 80: 4403-4407.
    [20] D. Wu, X. Ge, Z.H. Zhang, M.Z. Wang, S.L Zhang, “Novel One-Step Route for Synthesizing CdS/Polystyrene Nanocomposite Hollow Spheres”, Langmuir, 2004, 20: 5192.
    [21] P. Nandakumar, C. Vijayan, K. Dhanalakshmi, G. Sundararajan, P. K. Nair, Y.V.G.S. Murti, “Synthesis and characterization of CdSnanocrystals in a perfluorinated ionomer (Nafion)”, Mater. Sci. Eng., 2001, B83: 61-65.
    [22] Martin, T. P., Schaber, H., “Matrix isolated II-VI molecules: Sulfides of Mg, Ca, Sr, Zn and Cd”, Spectrochimica Acta., 1982, 38A: 655-660.
    [23] Y.H,Ni, H.Q.Hao, et al, “Preparation, Characterization, and Optical, ElectrochemicalProperty Research of CdS/PAM Nanocomposites”, J.Phys.Chem.B., 2006, 110: 17347-17352.
    [24] N.Chestnoy,T.D.Harris,R.Hull, L.E.Brus, “Luminescence and Photophysics of CdS Semiconductor Clusters: The Nature of the Emitting Electronic State”, J.Phys.Chem.,1986, 90: 3393-3399.
    [1] T. D.Luccio, A. M. Laera, “Controlled Nucleation and Growth of CdS Nanoparticles in a Polymer Matrix”, J. Phys. Chem. B, 2006, 110: 12603-12609
    [2]李峰,胡征等,“纳米粒子的控制生长和自组装研究进展”,无机化学学报,2001, 17(3): 315-324.
    [3] Geoffrey A. Ozin, “Nanochemistry: Synthesis in diminishing dimensions”, Adv. Mater., 1992, 4(10): 612-649.
    [4] Y. Wang, N. Herron, “ Optical properties of cadmium sulfide and lead(II) sulfide clustersencapsulated in zeolites”, J. Phys. Chem., 1987, 91(2): 257-260.
    [5] H. Sawada, T.Narumi, et al, “Preparation of novel fluoroalkyl end-capped oligomers/silica hybrid nanoparticles-encapsulation of a variety of guest molecules into fluorinated nanoparticles”, Colloid. Polym. Sci., 2005, 284(5): 551-555.
    [6] K. Nakagawa, K. Tanaka, et al, “Optochemical HCl gas sensor using substituted tetraphenylporphine–ethylcellulose composite films”, J. Mater. Chem., 1998, 8: 1199 – 1204.
    [7] Antonietti, M., Forster, S., “Novel Amphiphilic Block Copolymers by Polymer Reactions and Their Use for Solubilization of Metal Salts and Metal Colloids”, Macromolecules, 1996, 29(11): 3800-3806.
    [8] R.Tassoni, R. R. Schrock, et al, “Synthesis of PbS Nanoclusters within Microphase-Separated Diblock Copolymer Films”, Chem. Mater., 1994, 6(6): 744-749.
    [9] P. Liu, Z. Su, “Preparation and Characterization of PMMA/ZnO Nanocomposites via In-Situ Polymerization Method”, J. Macro. Sci. Part B: Physics, 2005, 45(1): 131-138.
    [10]C.C.Zeng, “Extrusion of Polystyrene Nanocomposite Foams With Supercritical CO2”, Polymer Engineering and Science, 2003, 43(6): 1261-1275.
    [11] 柯昌美,汪厚植等, “纳米CdS/聚丙烯酸酯复合材料的制备”,化工新型材料,2005, 33 (7):34-49.
    [12] R. Leung, M. J. Hou, et al, “Macro and Microemulsions”, Am.Chem.Soc.,1985, 2: 325-344.
    [13] E.Andrzejewska, “Photopolymerization kinetics of multifunctional monomers”, Prog. Poly. Sci., 2001, 26: 605-665.
    [14] J. E. Elliott, C. N. Bowman, “Kinetics of Primary Cyclization Reactions in Crosslinked Polymers: An Analytical and Numerical Approach to Heterogeneity in Network Formation”, Macromolecules, 1999, 32: 8621-8628.
    [15] M.Seo, Z. Nie, S. Xu, M. Mok, P. C. Lewis, R Graham, E.Kumacheva, “Continuous Microfluidic Reactors for Polymer Particles”, Langmuir, 2005, 21: 11614-11622.
    [16] K. N. Plunkett, M. L. Kraft, Q. Yu, J. S. Moore, “Swelling Kinetics of Disulfide Cross-Linked Microgels”, Macromolecules, 2003, 36: 3960-3966.
    [17] Wang D, et al, “Size Control of CdS Nanocrystals in Block Copolymer Micelle”, Chem. Mater., 1999, 11(2): 392-398.
    [18] T. Vossmeyer, L. Katsikas, et al, “CdS Nanoclusters: Synthesis, Characterization, SizeDependent Oscillator Strength, Temperature Shift of the Excitonic Transition Energy, and Reversible Absorbance Shift”, J. Phys. Chem., 1994, 98 (31): 7665-7673.
    [19] M. G. Moffitt, A. Eisenberg, “Size Control of Nanoparticles in Semiconductor-Polymer Composites. 2. Control Via Sizes of Spherical Ionic Microdomains in Styrene-Based Diblock Ionomers”, Chem. Mater., 1995, 7: 1178-1184.
    [20] L.E. Brus, “Electron-electron and Electron-Hole Interactions in Small Semiconductor Crystallites: The Size Dependence of the Lowest Excited Electronic State”, J. Chem. Phys., 1984, 80: 4403-4407.
    [21] D. Wu, X. Ge, Z.H. Zhang, M.Z. Wang, S.L Zhang, “Novel One-Step Route for Synthesizing CdS/Polystyrene Nanocomposite Hollow Spheres”, Langmuir, 2004, 20: 5192-5195
    [22] P. Nandakumar, C. Vijayan, K. Dhanalakshmi, G. Sundararajan, P. K. Nair, Y.V.G.S. Murti, “Synthesis and characterization of CdSnanocrystals in a perfluorinated ionomer (Nafion)”, Mater. Sci. Eng., 2001, B83: 61-65.
    [23] Martin, T. P., Schaber, H., “Matrix isolated II-VI molecules: Sulfides of Mg, Ca, Sr, Zn and Cd”, Spectrochimica Acta., 1982, 38A: 655-660.
    [24] Y.H,Ni, H.Q.Hao, et al, “Preparation, Characterization, and Optical, Electrochemical Property Research of CdS/PAM Nanocomposites”, J.Phys.Chem.B., 2006,110: 17347-17352.
    [25] C.L Lu, C. Guan, Y.F Liu, Y.R Cheng,, B.Yang, “PbS/Polymer Nanocomposite Optical Materials with High Refractive Index”, Chem. Mater., 2005, 17(9): 2448-2454.
    [26] J.S. Koo, P. G. R. Smith, R. B. Williams, “Synthesis and Characterization of Methacrylate-Based Copolymers for Integrated Optical Applications”, Chem. Mater., 2002, 14(12): 5030-5036.
    [27] P. Nandakumar, C. Vijayan, K. Dhanalakshmi, G. Sundararajan, P. K. Nair, Y.V.G.S. Murti, “Synthesis and characterization of CdSnanocrystals in a perfluorinated ionomer (Nafion) ”, Mater. Sci. Eng., 2001, B83, 61-65.
    [28] T.Vossmeyer, L.Katsikas, M.Giersing, I.G.Popovic, K.Diesner, A.Chemseddine, A.Eychmuller,H.Weller, “CdS Nanoclusters: Synthesis, Characterization, Size Dependent Oscillator Strength, Temperature Shift of the Excitonic Transition Energy, and Reversible Absorbance Shift”, J.Phys.Chem.,1994, 98(31): 7665-7673.
    [29]多分散性=Dw/Dn,N为粒子数,D为颗粒直径。
    [30] R.S.Kane, R.E.Cohen, “Semiconductor Nanocluster Growth within Polymer Films”, Langmuir, 1999, 15(1): 39-43.
    [31]J .h. Zhan, X.G Yang, D.W Wang, S.D Li, Yi Xie, Y. Xia, a Y. Qian, “Polymer-Controlled Growth of CdS Nanowires” , Adv. Mater. , 2000, 12(18): 1348-1351.
    [32] C.Lu, C. Guan, et al, “PbS/Polymer Nanocomposite Optical Materials with High Refractive Index”, Chem. Mater., 2005, 17: 2448-2454.
    [33] C.Lu, Z.C. Cui, “Preparation and characterization of ZnS–polymer nanocomposite films with high refractive index”, J. Mater. Chem., 2003, 13: 2189–2195
    [34] Korgel, B. A., Monbouquette. H. G, “Synthesis of Size-Monodisperse CdS Nanocrystals Using Phosphatidylcholine Vesicles as True Reaction Compartments”, J.Phys.Chem., 1996, 100(1): 346-351.
    [35] J. P. Kuczynski, B. H. Milosavljevic, J. K. Thomas, “Photophysical properties of cadmium sulfide in Nafion film”, J. Phys. Chem., 1984, 88(5): 980-984.
    [36] Y Wang, N herron, “Photoluminescence and relaxation dynamics of cadmium sulfide superclusters in zeolites Ying Wang, Norman Herron”, J.Phys.Chem., 1988, 92(17): 4988-4994.
    [37] Y. K. LiuJ. A. Zapien, C. Y. Geng, Y. Y. Shan, C. S. Lee, Y. Lifshitz, and S. T. Lee, “High-quality CdS nanoribbons with lasing cavity” , Appl. Phys. Lett., 2004, 85(15): 3241-3243.
    [1] 杨建军, “飞秒激光超精细“冷”加工技术及其应用”, 激光与光电子学进展,2004,41(3):42-52.
    [2]李炎,蒋红兵等,“透明材料飞秒激光三维微制备”,量子电子学报,2004, 21(2):188-192.
    [3] H.-B. Sun, Y. Xu, S. Matsuo, and H. Misawa, “Femtosecond laser-microfabricated two-dimensional photonic crystal structures in vitreous silica,” Opt. Rev., 1999, 6: 396–398.
    [4] H.-B. Sun, Y. Xu, S. Juodkazis, K. Sun, M. Watanabe, J. Nishii, S. Matsuo, and H. Misawa, “Arbitrary-lattice photonic crystals created by multiphoton microfabrication” , Opt. Lett., 2001, 26: 325–327.
    [5] C.W.Chang, S.Ch.Cheng, High-efficiency coupling between external and photonic crystal waveguides by longitudinally shifting waveguide junctions, Optics Communications, 2004, 242: 517-524.
    [6] H.B Sun, K Takada, Elastic force analysis of functional polymer submicron oscillators, Appl. Phys. Lett., 2001, 79(19): 3173-3175.
    [7] H. Kou, A. Asif, et al, A novel hyperbranched polyester acrylate used for microfabrications, Polym. Adv. Technol., 2004, 15: 192–196.
    [8] K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Lett. Phys., 1997, 71: 3329–3331.
    [9] Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron.Lett., 2000, 36: 226–227.
    [10] 潘恩亚等,“双光子吸收光致聚合技术应用于微元件制作之研究”,JOURNAL OF C.C.I.T., 2005, 34(1): 1-16.
    [11] Kawamura K, Ogawa T, Sarukura N, et al,“Fabrication of suface relief gratings on transparent dielectric materials by two beam holographic method using infrared femtosecond laser pulses”, Appl. Phys. B, 2000, 71: 119-121.
    [12] Toshiaki K, S Matsuo, S J kazis, H Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals”, Appl.Phys.Lett., 2001, 79(6): 725-727.
    [13] 赵全忠,邱建荣等,“多光束干涉飞秒激光转写周期微结构”,激光与光电子学进展,2005,42(12):19-20.
    [14] 张锦, 冯伯儒, 郭永康,“双光束双曝光与四光束单曝光干涉光刻方法的比较”,光电工程,2005,32(12),21-24.
    [15] 张锦,冯伯儒,郭永康, “四激光束干涉光刻制造纳米级孔阵的理论分”, 光子学报,2003,32(4):398-401.
    [16] H-B.Sun, etc, “Three-Dimensional Nanonetwork Assembled in a Photopolymerized Rod Array”, Adv. Mater., 2003, 15(23): 2011-2014.
    [17] E.Y.Pan, N. W. Pu, et al, “Fabrication of high-aspect-ratio sub-diffraction-limit microstructures by two-photonabsorption photopolymerization”, Appl. Phys. B, 2003, 77(5): 485-488.
    [18] 刘立鹏,周明,戴起勋,“飞秒激光三维微细加工技术”, 光电工程, 2005, 32(4): 93-96.
    [19] Zissi, S., Bertsch, A, Jezequel, J.-Y., Corbel, S, Lougnot, D. J., Andre, J. C., “ Stereolithography and Microtechniques” , Microsystem Technology, 1996, 2(2): 97-102.
    [20] Horiyama, M., Sun, H.-B., Miwa, M.,Matsuo, S., Misawa, H., “Threedimensional Microstructures Created by Laser Microfabrication Technology,” Jap. J. Appl. Phys., 1999, 38 2B: 212-215.
    [21] Maruo, S., Nakamura, O., Kawata, S., “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Optic. Lett., 1999, 22(2): 132-134.
    [22] Kawata, S., Sun, H.-B., Tanaka, T., Takada, K., “Finer Features for Functional Microdevices,” Nature, 2001, 412: 97-698.
    [23]T. Tanaka, H.-B. Sun, S. Kawada, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system”, Appl. Phys. Lett., 2002, 80: 312-314.
    [24] H-B Sun, et al, “Two-Photon Laser Precision Microfabrication and Its Applications to Micro–Nano Devices and Systems”, J.Ligh.. Tech., 2003, 21(3): 624-633.
    [25] S. Shoji, S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin”, Appl. Phys. Lett., 2000, 76(19): 2668-2670.
    [26] M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography”, Nature, 2000, 404: 53-56
    [27] D. Mei, B. Cheng, W. Hu, Z. Li, D. Zhang, “ Three-dimensional ordered patterns by light interference”, Opt. Lett., 1995, 20: 429-432.
    [28] I.Z Cai, X L Yang, Y R Wang, “Formation of three-dimensional periodic microstructures by interference of four naoncoplanar beam”, J.Opt.Soc.Am., 2002, 19: 2238-2244.
    [29] S.Shoji, H B Sun, S .Kawata, “Photofabrication of wood-pole three-dimensional photonic crstals using four-beam laser interference”, Appl.Phys.Lett., 2003, 83(4): 608-610.
    [30] D N Sharp, A J Turberfield, R G Denning, “Holographic photonic crystals with diamond symmetry”, Phys.Rev. B, 2003, 68: 205102-205108.
    [31] E.Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics”, Phys. Rev.Lett., 1987, 58: 2059-2062.
    [32] C. J. Barrelet, J. Bao, M. L.ar, H-G Park, F. Capasso, C. M. Lieber, “Hybrid single-nanowire photonic crystal and microresonator structure”, Nano. Letters., 2006, 6(1): 11-15.
    [33] R. M. Amos, W. L. Barnes, “Modification of spontaneous emission lifetime in the presence of corrugated metallic surfaces”, Phys. Rev. B, 1999, 59, 11: 7708-7714.
    [34] S. John, “Strong localization of photons in certain disordered dielectric superlattices”, Phys. Rev. Lett., 1987, 58 (23): 2486-2489.
    [35] 何赛灵,沈林放,肖三水,符建, 光子晶体的研究及其应用.
    [36] 黄声野, 光子晶体简介.
    [37] Rui Guo, Zhiyuan Li, Zhongwei Jiang, et al, “Log-pile photonic crystal fabricated by two-photon photopolymerization”, J. Opt. A: Pure Appl. Opt., 2005, 7: 396-399.
    [38] K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures”, Phys. Rev. Lett., 1990, 65: 3152-3155.
    [39] K Kanek, H B Sun, X M Duan, S Kawata, “Submicron diamond-lattice photonic crystals produced by two-photon laser nanofabrication”, Appl. Phys. Lett., 2003, 83: 2091-2093.
    [40] X M Duan, H B Sun, K Kaneko, S Kawata, “Two-photo polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication”, Thin Solid Films, 2004, 453-454: 518-519.
    [41] H B Sun, T.Suwa, K.Takada, R. P.i Zaccaria, “Shape precompensation in two-photon laser nanowriting of photonic lattices”, Appl. Phys. Lett., 2004, 85(17): 3708-3710.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700